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Empirical Mode Decomposition as a Filter Bank
Patrick Flandrin,Fellow, IEEE, Gabriel Rilling and Paulo Gonc¸alvès

Abstract— Empirical Mode Decomposition (EMD) has recently
been pioneered by N.E. Huanget al. for adaptively representing
nonstationary signals as sums of zero-mean AM-FM components
[2]. In order to better understand the way EMD behaves in
stochastic situations involving broadband noise, we report here
on numerical experiments based on fractional Gaussian noise. In
such a case, it turns out that EMD acts essentially as a dyadic
filter bank resembling those involved in wavelet decompositions.
It is also pointed out that the hierarchy of the extracted modes
may be similarly exploited for getting access to the Hurst
exponent.

Index Terms— Empirical Mode Decomposition, filter banks,
wavelets, fractional Gaussian noise.

I. EMD BASICS

T HE starting point of the Empirical Mode Decomposition
(EMD) is to consider signals at the level of their local

oscillations. Looking at the evolution of a signalx(t) between
two consecutive local extrema (say, two minima occurring at
times t− and t+), we can heuristically define a (local) high-
frequency part{d(t), t− ≤ t ≤ t+}. Also calleddetail, d(t)
corresponds to the oscillation terminating at the two minima
and passing through the maximum which necessarily exists in
between them. For the picture to be complete, we also identify
the corresponding (local) low-frequency partm(t), or local
trend, so that we havex(t) = m(t) + d(t) for t− ≤ t ≤
t+. Assuming that this is done in some proper way for all
the oscillations composing the entire signal, we get what is
referred to as anIntrinsic Mode Function (IMF) as well as
a residual consisting of all local trends. The procedure can
then be applied to this residual, considered as a new signal to
decompose, and successive constitutive components of a signal
can therefore be iteratively extracted, the only definition of
such a so-extracted “component” being that it is locally (i.e.,
at the scale of one single oscillation) in the highest frequency
band.

Given a signalx(t), the effective algorithm of EMD can be
summarized as follows [2]:

1) identify all extrema ofx(t)
2) interpolate between minima (resp. maxima), ending up

with some “envelope”emin(t) (resp.emax(t))
3) compute the averagem(t) = (emin(t) + emax(t))/2
4) extract the detaild(t) = x(t) − m(t)
5) iterate on the residualm(t)
In practice, the above procedure has to be refined by asifting

process which amounts to first iterating steps 1 to 4 upon
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the detail signald(t), until this latter can be considered as
zero-mean according to some stopping criterion. Once this is
achieved, the detail is considered as the effective IMF, the
corresponding residual is computed and step 5 applies.

By construction, the number of extrema is decreased when
going from one residual to the next (thus guaranteeing that
the complete decomposition is achieved in a finite number
of steps), and the corresponding spectral supports are ex-
pected to decrease accordingly. While modes and residuals
can intuitively be given a “spectral” interpretation, it is worth
stressing the fact that, in the general case, their high vs. low
frequency discrimination applies only locally and corresponds
by no way to a pre-determined subband filtering (as,e.g., in
a wavelet transform). Selection of modes rather corresponds
to an automatic and adaptive (signal-dependent) time-variant
filtering.

II. EMD ANALYSIS OF FRACTIONAL GAUSSIAN NOISE

For a given signalx(t), EMD ends up with a representation
of the form:

x(t) = mK(t) +
K∑

k=1

dk(t), (1)

wheremK(t) stands for a residual “trend” and the “modes”
{dk(t), k = 1, . . . K} are constrained to be zero-mean AM-
FM waveforms. As such, EMD proves especially efficient
in those deterministic situations which precisely enter the
framework of “sinusoidal models” (at large) [2]. At the notable
exception of a recent study [5], much less attention has been
paid to more realistic situations involving noise, and little is
known indeed on the decomposition achieved by EMD when
the analyzed signal is only the realization of some stochastic
process. We propose in this letter to address this issue by
resorting to fractional Gaussian noise as a versatile model for
broadband noise.

A. Fractional Gaussian noise

Let us recall that fractional Gaussian noise (fGn) is defined
as the increment process of fractional Brownian motion [3]. In
discrete-time, fGn corresponds to a time series{yH [n], n =
. . . ,−1, 0, 1, . . . } indexed by a real-valued parameter0 <
H < 1 (its Hurst exponent), and such that its autocorrelation
sequencerxH

[k] := E{yH [n]yH [n + k]} reads:

rxH
[k] =

σ2

2
(
|k − 1|2H − 2|k|2H + |k + 1|2H

)
. (2)

As is well-known, the special caseH = 1/2 reduces to
white noise, whereas other values induce non-zero correla-
tions, either negative when0 < H < 1/2 or positive when
1/2 < H < 1 (long-range dependence).



IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. XX, XXX 2003 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

H = 0.2

76 5 4 3 2 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

H = 0.5

76 5 4 3 2 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

H = 0.8

76 5 4 3 2 1

frequency

Fig. 1. EMD equivalent filters —In the case of fractional Gaussian noise,
EMD can be interpreted as a filter bank of overlapping band-pass filters for
modes of indices k ≥ 2, the mode #1 corresponding essentially to a half-band
high-pass filter. For each value of the Hurst exponent (H = 0.2, 0.5 and 0.8),
5000 independent time series of 512 points each have been generated, and
the average spectra of the 7 first IMFs are plotted as a function of normalized
frequency.

We will here report on extensive simulations that have been
carried out on such processes, withH varying from0.1 to 0.9.
The data length has been typically set toN = 512 and, for
each value ofH, 5000 independent sample paths of fGn have
been generated via the Wood and Chan algorithm [4]. Details
on the effective implementation of the EMD algorithm will not
be given here, but the Matlab codes used for the simulations
are available [7].

B. Equivalent filters

A first analysis of the fGn time series consists in estimating
a power spectrum for each mode of the decomposition. To this
end, empirical autocorrelation functions are first computed for
each mode of each realization, prior being ensemble averaged
over all realizations, tapered and Fourier transformed. This
results, mode by mode, in a frequency profile that can be
interpreted as the frequency output of some equivalent filter.
As evidenced in Figure 1, the collection of all such filters
tend to organize in a filter bank structure which is reminiscent
of what is classically observed in wavelet decompositions in
similar situations [1]. Indeed, while the filter associated to the
mode#1 is essentially high-pass (although it contains a non-
negligible low-pass part in the lower half-band), the modes of
higher indices are characterized by a set of overlapping band-
pass filters. Moreover, each mode of index(k + 1), k ≥ 2,
occupies a frequency domain which is roughly the upper half-
band of that of the previous residual of indexk. It is worth to
point out that similar results have been obtained independently
by Wu and Huang [5] in the case of white noise (corresponding
here toH = 1/2).
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Fig. 2. IMF zero-crossings —The (base 2) logarithm of the average number
of zero-crossings is plotted in dashed-dotted lines as a function of the IMF
number, for 3 different values of the Hurst exponent (H = 0.2 (crosses), 0.5
(circles) and 0.8 (squares)). We observe in each case a straight line whose
slope (estimated by a linear fit over the 6 first modes, superimposed full lines)
is very close to −1, indicating an almost dyadic decrease across modes.

C. Filter bank structure

The qualitative appreciation given above about the equiva-
lent filter bank structure of EMD can be quantified further as
follows. By construction, each IMF is a zero-mean waveform
whose number of zero-crossings differs at most by one from
the number of its extrema. The number of these zero-crossings
is a rough indication of the mean frequency of each mode, and
the way this number varies from mode to mode is a further
indication of the hierarchical structure of the equivalent filter
bank. As evidenced in Figure 2, the number of zero-crossings
zH [k] is a decreasing exponential function of the mode number
k:

zH [k] ∝ ρ−k
H , (3)

with ρH very close to2.
Using this result, we can further check for a possible self-

similarity in the filter banks of Figure 1. Denoting bySk(f)
the power spectrum of thek-th IMF dk(t), self-similarity of
the band-pass filters would mean that

Sk′(f) = ρ
α(k′−k)
H Sk(ρk′−k

H f) (4)

for some α and any k′ > k ≥ 2, and hence that the
power spectra of all IMF’s could be collapsed onto a sin-
gle curve, when properly renormalized. Such a collapse via
renormalization can be observed on Figure 3, obtained with
the specific choiceα = 2H − 1. Even if some low frequency
discrepancies can be observed (especially whenH < 1/2),
these diagrams support the claim that, in a first approximation
(and in agreement with the findings reported in [5] for white
noise), EMD acts on fGn as a dyadic filter bank of constant-Q
band-pass filters.
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Fig. 3. EMD filter bank renormalization —When renormalized according to
the r.h.s. of (4) with α = 2H−1 and ρH as obtained from the slopes of Figure
2, the band-pass frequency profiles of Figure 1 (i.e., the spectra corresponding
to modes 2 to 7, plotted here in log-log coordinates) almost collapse onto
a single curve. This supports the claim that, in a first approximation, the
equivalent filter bank structure of EMD is dyadic with constant-Q band-pass
filters.

D. Estimation of H

Using the filter bank structure described above, it becomes
possible to get access to the Hurst exponentH via the
variance progression across IMF’s. In fact, assuming that the
renormalization equation (4) is satisfied by the considered
IMF’s, it immediately follows that their variance should be
such that:

var dk(t) ∝ ρ
(α−1)k
H . (5)

Examples of log-variance progressions are plotted in the
top graph of Figure 4, with the corresponding linear fits and
H estimates. It turns out that the expected straight lines are
obtained forH = 0.5 and 0.8 but that a significant bending
occurs forH = 0.2.

While only 3 typical values ofH are displayed on this
Figure for the sake of readability, it appears from more
complete experiments within the range0.1 ≤ H ≤ 0.9 that
the observed behaviour is quite general and that the linear
dependence of the log-variance as a function of the mode index
is only a gross approximation whenH < 1/2. In other words,
a self-similar model for the considered filter bank makes sense
mostly for H ≥ 1/2, as expected from the approximated
renormalization collapse of Figure 3. This is further supported
by the bottom graph of Figure 4 in which we can observe, for
the measured slope, a good agreement with the model (5) when
H ≥ 1/2 and a clear deviation from it whenH < 1/2.

III. C ONCLUSION

We reported here on first numerical experiments aimed at
supporting the claim that, in the case of structured broadband
stochastic processes such as fractional Gaussian noise, the
built-in adaptivity of EMD makes it behave spontaneously
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Fig. 4. IMF variance and estimation of the Hurst exponentH — Top: the
(base 2) logarithm of the average variance is plotted as a function of the
IMF number, for 3 typical values of the Hurst exponent (H = 0.2 (crosses),
0.5 (circles) and 0.8 (squares)), with the corresponding linear fits and H
estimates. Bottom: when plotted as a function of the Hurst exponent H , the
IMF log-variance slope p(H) is almost linear when H ≥ 1/2, in accordance
with the simplified model p(H) = 2(H − 1) predicted by self-similarity and
the approximation ρH = 2 (superimposed straight line).

as a “wavelet-like” filter bank. An interesting by-product
of this interpretation is that EMD may offer a new way
of analyzing self-similar processes. Thorough comparisons
(which are beyond the scope of this letter) with other existing
methods are in progress. Let us just mention that benefits very
similar to those of wavelet-based methods are obtained when
using EMD: in particular, the technique happens to naturally
cope with superimposed smooth trends.

From a more general perspective, the results presented here
clearly call for theoretical elements which would explain the
observed behaviours (e.g., theH-dependence of the filter bank
structure), a task which is made difficult by the fact that EMD
does not admit an analytical definition. The purpose of the
present experimental study was to be a contribution aimed at
a better understanding of one specific aspect of EMD (the
way it decomposes broadband noise), filling somehow the gap
between a still non-existing theory and the application of an
appealing method to real-world situations (see,e.g., [6]).
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