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Empirical Mode Decomposition as a Filter Bank

Patrick Flandrin,Fellow, IEEE, Gabriel Rilling and Paulo Gqmadves

Abstract— Empirical Mode Decomposition (EMD) has recently the detail signald(¢), until this latter can be considered as
been pioneered by N.E. Huanget al. for adaptively representing  zero-mean according to some stopping criterion. Once this is
nonstationary signals as sums of zero-mean AM-FM components gchjeved, the detail is considered as the effective IMF, the
[2]. In order to better understand the way EMD behaves in corres o;ldin residual is computed and step 5 applies ’
stochastic situations involving broadband noise, we report here p g. P . P pplies.
on numerical experiments based on fractional Gaussian noise. In By construction, the number of extrema is decreased when
such a case, it turns out that EMD acts essentially as a dyadic going from one residual to the next (thus guaranteeing that
filter bank resembling those involved in wavelet decompositions. the complete decomposition is achieved in a finite number
It is also pointed out that the hierarchy of the extracted modes of steps), and the corresponding spectral supports are ex-
may be similarly exploited for getting access to the Hurst ected to’ decrease accordingly. While modes and residuals
exponent. pected 1o . gy- W SR

can intuitively be given a “spectral” interpretation, it is worth
stressing the fact that, in the general case, their high vs. low
frequency discrimination applies only locally and corresponds
| EMD BASICS by no way to a pre-determined subband filtering @g., in
' a wawelet transform). Selection of modes rather corresponds

T HE starting point of the Empirical Mode Decompositiong an automatic and adaptive (signal-dependent) time-variant
(EMD) is to consider signals at the level of their localjjtering.

oscillations. Looking at the evolution of a signalt) between

two consecutive local extrema (say, two minima occurring at || EMD ANALYSIS OF ERACTIONAL GAUSSIAN NOISE

times¢_ andt,), we can heuristically define a (local) high- . . . .

frequency part{d(t),i_ < t < t,}. Also calleddetail, d(t) For a gve.n signalz(t), EMD ends up with a representation

corresponds to the oscillation terminating at the two minim%{c the form:

and passing through the maximum which necessarily exists in K

between them. For the picture to be complete, we also identify w(t) = m(t) + Z di (1), @)

the corresponding (local) low-frequency part(t), or local k=1

trend, so that we havex(t) = m(t) + d(t) for t_ < t < wheremg(t) stands for a residual “trend” and the “modes”

t,. Assuming that this is done in some proper way for alld,(t),k = 1,... K} are constrained to be zero-mean AM-

the oscillations composing the entire signal, we get what k8 waveforms. As such, EMD proves especially efficient

referred to as anntrinsic Mode Function (IMF) as well as in those deterministic situations which precisely enter the

a residual consisting of all local trends. The procedure caffamework of “sinusoidal models” (at large) [2]. At the notable

then be applied to this residual, considered as a new signakxseption of a recent study [5], much less attention has been

decompose, and successive constitutive components of a sigreadl to more realistic situations involving noise, and little is

can therefore be iteratively extracted, the only definition dfown indeed on the decomposition achieved by EMD when

such a so-extracted “component” being that it is locailg,( the analyzed signal is only the realization of some stochastic

at the scale of one single oscillation) in the highest frequenpyocess. We propose in this letter to address this issue by

band. resorting to fractional Gaussian noise as a versatile model for
Given a signalz(t), the effective algorithm of EMD can be broadband noise.

summarized as follows [2]:

1) identify all extrema ofx(t) A. Fractional Gaussian noise

2) |n.terpolate “between Immma (resp. maxima), ending up Let us recall that fractional Gaussian noise (fGn) is defined
with some “envelopeeuin (t) (resp.emax(t)) as the increment process of fractional Brownian motion [3]. In

3) compute the av_erage(t) = (emin(t) + emax(t))/2 discrete-time, fGn corresponds to a time sefgg[n],n =

4) faxtract the detauii_(t) = (t) —m(t) ...,—1,0,1,...} indexed by a real-valued parameter<

5) iterate on the residuah(t) H < 1 (its Hurst exponent), and such that its autocorrelation

In practice, the above procedure has to be refined$l¥iag  sequencer,, [k] := E{yx[n]yu(n + k|} reads:
process which amounts to first iterating steps 1 to 4 upon "

Index Terms— Empirical Mode Decomposition, filter banks,
wavelets, fractional Gaussian noise.
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Fig. 1. EMD equivalent filters —n the case of fractional Gaussian noise,

EMD can be interpreted as a filter bank of overlapping band-pass filters for
modes of indices k& > 2, the mode #1 corresponding essentially to a half-band
high-pass filter. For each value of the Hurst exponent (H = 0.2,0.5 and 0.8),
5000 independent time series of 512 points each have been generated, and
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Fig. 2. IMF zero-crossings —Fhe (base 2) logarithm of the average number
of zero-crossings is plotted in dashed-dotted lines as a function of the IMF
number, for 3 different values of the Hurst exponent (H = 0.2 (crosses), 0.5
(circles) and 0.8 (sguares)). We observe in each case a straight line whose
slope (estimated by a linear fit over the 6 first modes, superimposed full lines)
is very close to —1, indicating an almost dyadic decrease across modes.

the average spectra of the 7 first IMFs are plotted as a function of normalized
frequency.

C. Filter bank structure

We will here report on extensive simulations that have been The qualitative appreciation given above about the equiva-
carried out on such processes, withvarying from0.1 to 0.9. lent filter bank structure of EMD can be quantified further as
The data length has been typically setXo= 512 and, for follows. By construction, each IMF is a zero-mean waveform
each value offf, 5000 independent sample paths of fGn hav&hose number of zero-crossings differs at most by one from
been generated via the Wood and Chan algorithm [4]. Detaifte humber of its extrema. The number of these zero-crossings
on the effective implementation of the EMD algorithm will notS @ rough indication of the mean frequency of each mode, and

be given here, but the Matlab codes used for the simulatiof$ way this number varies from mode to mode is a further
are available [7]. indication of the hierarchical structure of the equivalent filter

bank. As evidenced in Figure 2, the number of zero-crossings
zp [k] is a decreasing exponential function of the mode number
B. Equivalent filters k:

A first analysis of the fGn time series consists in estimating zu k] p;j,’C , ?3)

a power spectrum for each mode of the decomposition. To this

end, empirical autocorrelation functions are first computed fafith py very close to2.

each mode of each realization, prior being ensemble averagetlsing this result, we can further check for a possible self-
ove all realizations, tapered and Fourier transformed. Th#smilarity in the filter banks of Figure 1. Denoting 8. (f)
results, mode by mode, in a frequency profile that can ltee power spectrum of the-th IMF dj(¢t), self-similarity of
interpreted as the frequency output of some equivalent filtéhe band-pass filters would mean that

As evidenced in Figure 1, the collection of all such filters
tend to organize in a filter bank structure which is reminiscent
of what is classically observed in wavelet decompositions in
similar situations [1]. Indeed, while the filter associated to tifer some a and any k¥’ > k > 2, and hence that the
mode#1 is essentially high-pass (although it contains a nopower spectra of all IMF's could be collapsed onto a sin-
negligible low-pass part in the lower half-band), the modes gfe curve, when properly renormalized. Such a collapse via
higher indices are characterized by a set of overlapping bamdnormalization can be observed on Figure 3, obtained with
pass filters. Moreover, each mode of indgx+ 1),k > 2, the specific choicex = 2H — 1. Even if some low frequency
occupies a frequency domain which is roughly the upper hatfiscrepancies can be observed (especially wHer< 1/2),
band of that of the previous residual of indexIt is worth to  these diagrams support the claim that, in a first approximation
point out that similar results have been obtained independen(nd in agreement with the findings reported in [5] for white
by Wu and Huang [5] in the case of white noise (correspondimpise), EMD acts on fGn as a dyadic filter bank of constant-
here toH = 1/2). band-pass filters.

S (f) = 3 H Sl ) (4)
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Fig. 3. EMD filter bank renormalization -When renormalized accordingto ~ Fig- 4.  IMF variance and estimation of the Hurst exponght— Top: the

(base 2) logarithm of the average variance is plotted as a function of the

ther.h.s. of (4) with« = 2H —1 and py as obtained from the slopes of Figure
2, the band-pass frequency profiles of Figure 1 (i.e., the spectra corresponding
to modes 2 to 7, plotted here in log-log coordinates) almost collapse onto
a single curve. This supports the claim that, in a first approximation, the
equivalent filter bank structure of EMD is dyadic with constant-@QQ band-pass
filters.

IMF number, for 3 typical values of the Hurst exponent (H = 0.2 (crosses),
0.5 (circles) and 0.8 (squares)), with the corresponding linear fits and H
estimates. Bottom: when plotted as a function of the Hurst exponent H, the
IMF log-variance slope p(H) is almost linear when H > 1/2, in accordance
with the simplified model p(H) = 2(H — 1) predicted by self-similarity and

the approximation pg = 2 (superimposed straight line).

D. Estimation of H . , . .

i i . . as a “wavelet-like” filter bank. An interesting by-product
Using the filter bank structure described above, it becomgs iyis interpretation is that EMD may offer a new way
possible to get access to the Hurst exponéhtvia the of analyzing self-similar processes. Thorough comparisons
variance progression across IMF’s. In fact, assuming that thénich are beyond the scope of this letter) with other existing
renormalization equation (4) is satisfied by the considerggainods are in progress. Let us just mention that benefits very
IMF's, it immediately follows that their variance should bejmilar to those of wavelet-based methods are obtained when
such that: using EMD: in particular, the technique happens to naturally

cope with superimposed smooth trends.
From a more general perspective, the results presented here
Examples of log-variance progressions are plotted in tiggearly call for theoretical elements which would explain the
top graph of Figure 4, with the corresponding linear fits anshserved behavioure.(., the H-dependence of the filter bank
H estimates. It turns out that the expected straight lines afgucture), a task which is made difficult by the fact that EMD
obtained forH = 0.5 and 0.8 but that a significant bending does not admit an analytical definition. The purpose of the
occurs ford = 0.2. present experimental study was to be a contribution aimed at
While only 3 typical values of H are displayed on this a better understanding of one specific aspect of EMD (the
Figure for the sake of readability, it appears from mor@ay it decomposes broadband noise), filling somehow the gap
complete experiments within the rangel < H < 0.9 that between a still non-existing theory and the application of an
the observed behaviour is quite general and that the |in%’p’pealing method to real-world situations (seg,, [6]).
dependence of the log-variance as a function of the mode index
is only a gross approximation wheii < 1/2. In other words,
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the measured slope, a good agreement with the model (5) when
H >1/2 and a clear deviation from it wheH < 1/2.

var dg (t) o p&?il)k. (5)
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