
Efficient Traversability Mapping for Service Robots
Using a Point-cloud Fast Filter

Carlos Medina Sánchez1, Matteo Zella1, Jesús Capitan2, Pedro J. Marron1

Abstract— This paper proposes Point-cloud Fast Filter (PFF),
an algorithm to process efficiently 3D data from point-cloud
sensors in order to build traversability maps for service
robots. Our method is intended to be integrated with a
2D mapping algorithm, enhancing 2D standard maps with
enough traversability information for robot navigation in indoor
structured environments. The method is agnostic to the 3D
sensor or mapping algorithm used, and keeps computational
requirements low. Thus, we enable middle-class computers and
a wide variety of sensors to be employed for service robots,
reducing the costs of the platform. We evaluate the performance
of PFF with different 3D sensors on a real robot and its impact
on mapping, comparing it with alternative 2D and 3D mapping
approaches.

I. INTRODUCTION

Service robots have become a reality in the last decade.
The enhancement in the robustness of robotics platforms has
enabled robots to operate in a long-term (more than one
day) fashion for elderly care [1], office delivery tasks [2]
or assistance in hospitals [3]. In these indoor environments,
safe and precise robot localization and navigation are of
uppermost importance. Moreover, in long-term operation, the
addition of 3D information to determine traversability maps
for the robots is crucial. In fact, in the case of permanent
non-traversable objects such as stairs, as well as movable
ones like tables or chairs, 2D sensors might fail to detect
their presence, thus affecting the ability of robots to operate
in such scenarios. However, 3D mapping and localization al-
gorithms (Sec. II) are known to be computationally intensive
tasks in general.

We are interested in investigating efficient mapping ap-
proaches that suffice for robot navigation in office-like
scenarios (multi room environments with office furniture:
desks, chairs, etc.). This implies integrating information from
3D sensors, while constraining the processing significantly,
thus making the approach practical for service robots of
limited resources and cost, such as the common TurtleBot 2
platforms shown in Fig. 1. To achieve this, we introduce the
Point-cloud Fast Filter (PFF) to process efficiently 3D data
from point-cloud sensors in order to build robot traversability
maps, or so-called 2.5D maps (Sec. III). First, 3D data are
filtered out depending on robot physical constraints. Then, a
method to recognize stairs or similar non-traversable areas
is applied. In doing this, we design a simple, yet effective

1University of Duisburg-Essen. Essen, 45127, Ger-
many. carlos.medina-sanchez@uni-due.de,
matteo.zella@uni-due.de, pjmarron@uni-due.de

2University of Seville. Seville, 41092, Spain. jcapitan@us.es

Fig. 1: Example of our Turtlebot 2 platforms used as service
robots in office-like scenarios.

algorithm aimed at running on middle-class (see specs of the
BM in Sec. IV) computing machines.

This paper, therefore, offers the following contributions:
• The design of a practical algorithm (PFF) able to

efficiently extract relevant data for mapping and local-
ization from point-cloud sensors, which can be executed
on middle-class machines;

• A method agnostic to the sensor or mapping algorithm
used, as PFF can be integrated with different mapping
algorithms and sensors (e.g., LiDARs or RGB-D cam-
eras) as long as their interface provides point-cloud data;

• The analysis of the impact of different 3D sensors on
the behavior of PFF, highlighting the trade-offs between
alternative system configurations.

We evaluate our approach (Sec. IV) using well-known 3D
sensors to assess its efficiency for traditional platforms.
We also demonstrate the overall performance by running a
mapping algorithm on a real robot operating in an indoor
environment. Based on the experience gathered in this work,
we identify possible directions for future work (Sec. V).

II. RELATED WORK

Indoor robot mapping and localization is a well-known
and active research topic, due to the variety of aspects
involved. In particular, the interplay between software and
hardware with respect to the application requirements defines
a complex design space. In this section, we highlight the
relevant aspects of interest for our work.

A. Sensors for Mapping

Before discussing the algorithmic aspects involved in robot
mapping, we identify the different classes of sensors that can
be exploited to perceive a robot’s surroundings. For indoor
scenarios, three main sensor categories can be identified: 2D
LiDARs, depth cameras, and 3D LiDARs. An overview of



the characteristics of typical sensors from each category is
reported in Table I. We highlight the differences between the
various sensors to later analyze the impact of each sensing
technology on the resulting behavior of our approach. In any
case, our main goal is to design an efficient solution that is
agnostic to the specific sensor employed.

A first interesting characteristic distinguishing LiDARs
from cameras is the practical inability to perform facial
recognition, thus better protecting the privacy of people
walking in the environment. According to their sampling
time, and assuming a social environment with people moving
at an average speed of 1 m/s, the 2D LiDAR would be able
to capture displacements of 5 cm per sample, the 3D LiDAR
10 cm per sample, and the camera 3.4 cm. Therefore, the
difference in sampling rate is not significant. With respect to
the Field of View (FoV), LiDARs can reach a horizontal FoV
of up to 360°. However, a 2D sensor is clearly limited to only
a plane, while the VLP-16 (3D LiDAR) has a vertical field of
view of 30°, which is already sufficient for many applications
in service robotics; furthermore, even if significantly more
expensive, it can reach up to 100m. In comparison, depth
cameras are cheaper while still offering 3D perception data;
though, their FoV is significantly limited.

B. Traversability Mapping

For Unmanned Ground Robots, employed as indoor ser-
vice robots, it is common to work with 2D information from
laser-based sensors [4]. To handle this type of information
there is a wide spectrum of algorithms able to build maps
for 2D robot navigation [5]. However, depending on the
type of environment, 2D information may not suffice to
create reliable maps that guarantee safe robot navigation.
Therefore, enhanced methods using richer information have
been proposed. One option is to integrate measurements
from multiple 2D lasers located at different robot’s positions
and orientations [6]. Other works have proposed hardware
improvements adding degrees of freedom to 2D sensors by
using servo motors, which allow the robot to capture 3D
information [7].

A simpler solution from the hardware point of view is to
use sensors that directly provide 3D data, like depth cameras
(RGB-D) and 3D LiDARs. These had an important growth
thanks to the appearance of Unmanned Aerial Vehicles [8].
For indoor applications, depth cameras are more used since
they are cheaper and their shorter ranges are typically
sufficient. Some approaches use only depth information to
build 3D maps, while others combine it with color images
for more realistic maps [9], [10]. In [11], the Fast Sampling
Plane Filtering algorithm is presented for indoor localization
with a depth camera; something similar was proposed by
[12] but using a 2D laser with a servo motor to produce 3D
information.

One of the main limitations of depth cameras is their
reduced range and field of view. This is why 3D LiDARs are
preferred for outdoor applications, as they can easily reach
more than 50 meters perception range. Thus, methods for
3D mapping with LiDARs like LOAM [13] are becoming

TABLE I: Comparison of different sensors for mapping.

Sensor Privacy Sample FoV Range Price
time (H - V) (USD)

2D LiDAR
RPLIDAR A3 [19] + + 50 ms 360°-N/A 25 m 500

Depth camera (RGB-D)
Astra Camera [20] - - 33 ms 60°-49.5° 8 m 150

3D LiDAR
VLP-16 [21] + + 100 ms 360°-30° 100 m 4000

Fig. 2: PFF algorithm divided into its three stages: filtering,
processing and conversion. See Fig. 3 for hf , hr and θ.

common in aerial robotics as well as in autonomous car
driving [14], [15]. Even though these methods can provide
highly accurate maps, they are computationally demanding.
Our method lies in the category of the so-called 2.5D map-
ping approaches, where 2D maps are built with traversability
information focused not on the type of sensor [16], but rather
on the type of information (point-cloud). These methods
integrate 3D information into usual 2D maps in order to
determine the areas that cannot be traversed by the robot.
This may still imply heavy processing depending on the
algorithm [17] or if multiple sensors are used for this
task [18].

In this work, we focus on identifying an efficient solution
with limited computation requirements that is, nonetheless,
enough for indoor navigation in office-like scenarios. By
achieving this, we enable middle-class computers to be
employed for service robots, allowing a variety of sensors for
perception, and thus controlling the costs of the employed
platforms. At the same time, our approach frees computation
resources that can be exploited to run further algorithms and
services.



III. POINT-CLOUD FAST FILTER

In this section, we introduce our solution to process 3D
data in order to build traversability maps. Our approach is
based on the definition of an efficient and practical filter,
i.e., the Point-cloud Fast Filter (PFF). The structure of the
PFF, shown in Fig. 2, is composed of several steps that can
be grouped into three consecutive stages. The PFF receives
3D data in point-cloud format and the first stage involves a
horizontal and vertical filtering of points that are outside the
robot’s range of interest. The result is another 3D point-cloud
only with the points that match relevant obstacles for the
robot movements. The second stage performs the processing
of useful points to recognize stairs and to project the 3D
information onto a 2D plane, keeping only the nearest points.
The outcome is a 2D point-cloud data structure with one
point per angle, which is then converted into laser scans in
the last stage. This data type can be provided as input to
traditional 2D SLAM algorithms. In the reminder of this
section, we describe each stage individually.

A. Horizontal and Vertical Filter

First, PFF implements a vertical filter that divides the 3D
points into three sections depending on their height. The first
section contains all points placed at a height higher than the
robot height, hr. This information is filtered because it does
not interfere with the robot navigation (Fig. 3(a), red section).
The other sections cover all the remaining points, whose
height value can affect the ability of the robot to traverse
an area or not (Fig. 3(a), green and blue sections). These
points will be further processed in the following steps.

After identifying the points vertically relevant for a
traversability map, a horizontal filter is applied to preserve
only information within a FoV of interest, given the robot
task at hand and the sensor employed. The viewing angle is
centered at 0◦ and opens symmetrically from −θ/2 to θ/2
(Fig. 3(b)); all points outside of this range are discarded.
Note that θ cannot be greater than the actual sensor FoV,
for example, for a Velodyne VLP-16 360◦, for the Hokuyo
UTM-30LN 270◦, and for the Astra Camera 60◦. This ability
to dynamically adapt the FoV used is crucial to further
decrease the number of points and focus the subsequent
processing exclusively on the points of relevance for a
specific task, e.g., to drive the robot in a map already known.

B. Processing

Once the points with impact on traversability are iden-
tified, particular care must be taken to recognize structural
obstacles like stairs. For convenience, we focus in the fol-
lowing on the example of stairs, even though the approach is
generally applicable to any areas with “holes” (no ramps) that
the robot cannot visit. These cases involve the points whose
height is less than the surface above which the robot moves,
−hf (Fig. 3(a), blue section). Due to the vertical viewing
angle of the sensor, a complete perception of the stair may
not be possible. For this reason, an estimation needs to be
made by interpolating the different points whose height is
below the robot. If both the floor and the stair are within

(a) (b)

Fig. 3: Filtering of 3D data based on robot height and relevant
FoV: (a) Vertical filter: points in red section do not impact
robot traversability and are discarded; points in green and
blue sections are further processed. (b) Horizontal filter:
only points within the green angle sector are considered of
relevance for the ongoing task.

Fig. 4: Stairs recognition: the red point represents the sen-
sor’s reading. In this case, the floor in front of the robot
can also be seen within the FoV. Therefore, a virtual wall is
created projecting sensor readings up to the floor border (the
blue point nearest to the robot).

field of view, it is possible to easily understand where the
stair starts and therefore move the points with a height lower
than the floor (e.g., the red point in Fig. 4) to the front of the
robot as to build a “virtual wall” (e.g., the blue point nearest
to the robot in Fig. 4). If the sensor cannot perceive the
floor, the points are replaced to build such a “wall” directly
in front of the robot, as a precise positioning of the stair is
not possible. It is worth noting that if the stair is ascending
instead of descending, it will be treated as any other obstacle
placed above ground, so no extra processing is required.

Now that all the points relevant for the robot dimensions
and FoV are selected, they can be projected onto a 2D plane.
Thus, the data can be used as input for traditional SLAM
algorithms based on 2D sensor information. The last step
in the processing stage selects, for each horizontal angle
direction (with a resolution of R degrees), only the nearest
point while discarding the others which are farther. For
instance, if a 3D obstacle is within the robot FoV (see Fig. 5),
only the nearest points are used, which are the first points
that the robot would encounter if it had to move towards that
obstacle (green points in Fig. 5). The result is a point-cloud
on a 2D plane with one point per angle, using R as angular
resolution. The nearest point in terms of horizontal distance
from those at different heights is kept at each angle interval.

C. Point-cloud to Laser Scan Conversion

Once a 2D traversability map has been built, it is necessary
to convert such data in the appropriate format to be handled
by the SLAM algorithm of choice. For that, it is possible to



Fig. 5: Selection of nearest points for each horizontal angle:
Only the green points are selected.

define a vector of zeros with a size defined as 360◦/R, where
R is the desired horizontal resolution in degrees. Also note
that R must not be less than the resolution of the sensor,
e.g., for an Astra Camera 0.09375◦, for a Hokuyo UTM-
30LX 0.25◦ and for a Velodyne VLP-16 between 0.1◦ and
0.4◦. Then, the output points of the previous processing stage
can be inserted into their corresponding positions of this new
vector. For instance, in the case of a 360◦ view, a point with
angle equal to 0◦ would go to index 0 in the vector, and a
point with angle equal to 270◦ would go to index (360◦/R) ·
(270◦/360◦). This data structure resembles a typical laser
scan and can be provided together with the resolution R to
a 2D mapping algorithm for further processing.

IV. EXPERIMENTAL RESULTS

To evaluate our approach, we implemented the PFF al-
gorithm in C++ and integrated it into ROS Kinetic Kame.
We built traversability maps with our service robot based
on the TurtleBot 2 platform (Fig. 1), using GMapping 1 to
process the output of our PFF and build the map. Besides
using different sensors on board of the robot, we also tested
two different computers with various processing capabilities:
BM , a middle-class machine with a 2 cores at 1.9 GHz, i5
processor and 8 GB of RAM; PM , a high-end machine with
a 6 cores at 2.2 GHz, i7 processor and 16 GB of RAM, both
running Ubuntu 16.04.

We evaluate our approach by measuring processing times
and accuracy of the resulting traversability maps. With
respect to processing times, we present the average of 100
iterations for each case, under the same mapping parameters.
Two types of environments have been tested, with and
without the presence of stairs, to assess the impact of our stair
recognition module. In all experiments, the PFF resolution
parameter was set to R = 0.4◦ for the resulting vector that
is then provided to the GMapping algorithm. hf was set to
the actual height of the sensor mounted on the robot.

A. PFF Processing Time

We focus first on the performance of PFF and therefore
analyze its processing time from when the sensor readings
are available until the data are converted to be used by
mapping algorithms. The results presented in Table II show
that the processing time for the BM using a RGB-D camera is
approximately 3 and 5.6 times slower for the option without

1https://openslam-org.github.io/gmapping.html

TABLE II: PFF processing times (ms) for different sensor
configurations and machines.

Sensor (parameters) θ × hr BM PM Points x
Sample

Environment without stairs (Fig. 7)
Camera 60◦ × 40 cm 36.5 10.9 307,200
VLP-16 360◦ × 40 cm 11.6 1.2 30,000
VLP-16 180◦ × 40 cm 10.6 1.1 30,000

Environment with stairs (Fig. 8)
Camera 60◦ × 40 cm 73.6 17.3 307,200
VLP-16 360◦ × 40 cm 13.1 1.5 30,000
VLP-16 180◦ × 40 cm 11.8 1.3 30,000

and with stairs recognition, respectively, in comparison with
the times obtained for the 3D LiDAR. This is due to the
number of points that must be processed. The Astra camera
publishes around 9,000,000 points per second while the VLP-
16 LiDAR provides only 300,000 points per second.

This shows an advantage in the use of 3D LiDAR sensors
for indoor service robots, not only for the processing time
but also for the larger horizontal field of view, 360◦ for the
VLP-16 against the 60◦ of the Astra camera. Moreover, if
the horizontal field of view for the 3D LiDAR is restricted
from 360◦ to 180◦, a reduction in computation time is also
noticeable but only limited if compared to the number of
points that the PFF is able to filter.

B. Full Processing Time

After checking the results of the PFF processing time,
we analyze the processing time from when the sensor
publishes new measurements until GMapping processes the
data provided by the PFF. We compare our solution with
different sensor configurations with the results of a 3D
mapping algorithm (LOAM [13] with a 3D LiDAR) as
well as with a 2D mapping algorithm (GMapping with a
2D LiDAR). This experiment was carried out driving the
robot manually around the environments shown in Fig. 7
and Fig. 8, with and without stairs, respectively. The results
are reported in Table III. Note that these results include
processing time for the mapping algorithm, which depends
partially on the number of 3D points provided by the sensor.
In this experiment the camera was providing fewer points
than the 3D LiDAR, and its full mapping process is faster.
On the other hand, the 2D liDAR provides more points due to
the resolution of the sensor, so it takes more time to process
the information.

In the case of LOAM, it can be observed that the pro-
cessing time for the BM computer is 10 times slower than
for PM. On the other hand, the 2D solution for BM is 1.34
times slower than for PM. For the experiments with the PFF,
a significant decrease in computation time can be noticed,
beating LOAM or the 2D solution in all configurations.
Moreover, PFF with the BM is on average only 1.8 times
slower than with PM. Thus, PFF improves the efficiency
of the mapping procedure, making it possible on middle-
class machines, where complex 3D mapping algorithms are
impractical. A further increase in speed can be obtained by



TABLE III: Full processing times (ms) on different machines
and for different techniques. In LOAM, the parameters
indicate the horizontal and vertical FoV of the 3D LiDAR;
in Hokuyo, the horizontal FoV of the 2D LiDAR; For the
LOAM and the Hokuyo versions, since they do not filter
points, results were the same for both scenarios, with and
without stairs; in PFF the two parameters are θ and hr,
respectively.

Technique Parameters BM PM Sample
Time

VLP-16 + LOAM [13] 360◦ × 30◦ 2047 202 100 ms
Hokuyo + GMapping 270◦ 320 236 25 ms

Environment without stairs (Fig. 7)
Camera + PFF + GMapping 60◦ × 40 cm 56 31 33 ms
VLP-16 + PFF + GMapping 360◦ × 40 cm 218 139 100 ms

Environment with stairs (Fig. 8)
Camera + PFF + GMapping 60◦ × 40 cm 75 33 33 ms
VLP-16 + PFF + GMapping 360◦ × 40 cm 203 122 100 ms

restricting the FoV (θ parameter) if the application permits.

C. Traversability Results

The main idea of the PFF is to consider the robot
height and the presence of stairs in order to determine
the traversable areas. To validate this, we placed our robot
static in an environment with 3 different obstacles at fixed
locations: a chair, a box and a table (Fig. 6). Then, we ex-
perimented how the traversability maps would be generated
for a fixed value of θ = 180◦ and different values of hr,
corresponding to the different robot platforms in our lab.

For the detection of the chair, both PFF with hr = 40 cm
and hr = 25 cm (Fig. 6, bottom-left and bottom-right), with
a 3D LiDAR, are able to identify the base of the chair that
prevents the robot from passing through. On the contrary a
2D LiDAR (hf = 25 cm) can only observe the vertical pole
of the chair (Fig. 6, top-right). As for the box, the 2D LiDAR
is unable to see it because the sensor is located at a height
greater than the height of the box (Fig. 6 top-right), while
the two options with the PFF can detect it (Fig. 6, bottom).
Regarding the table, the PFF option with hr = 25 cm only
detects the legs of the table (Fig. 6, bottom-right) because
the robot would then be able to pass under it. However, when
we set hr = 40 cm the whole table is shown as an obstacle
(Fig. 6, bottom-left), as the robot can not go under the table.
On the other hand, a 2D LiDAR only detects the legs of the
table, which are at the observable height of the sensor.

D. Mapping Results

We finally tested the full processing chain including the
building of the traversability map. For this, we navigated
our robot manually throughout a static environment to create
2.5D maps with θ = 180◦ 2, hf = 25 cm and different values
of hr, using PFF with a 3D LiDAR. We then compared
the results with those obtained with a 2D LiDAR. This
experiment was carried out in a room (Fig. 7) with tables

2We did not use the full FoV of the LiDAR due to occlusions by other
physical components on the robot.

Fig. 6: Results of the laser scans for different configurations.
Top-left, static scenario with a chair (marked red), a box
(marked blue) and a table (marked green). Top-right, 2D
laser. Bottom-left, PFF with a 3D LiDAR and hr = 40 cm.
Bottom-right, PFF with a 3D LiDAR and hr = 25 cm.
TABLE IV: Traversable area for an office-like environment.

Sensor hr Traversable Difference
(cm) Square Meters w.r.t. 2D Map

Environment without stairs (Fig. 7)
VLP-16 (Fig. 7 (a)) 25 64.7 3.14%
VLP-16 (Fig. 7 (b)) 40 62.1 7.03%
VLP-16 (Fig. 7 (c)) 100 53.5 19.91%

2D LiDAR (Fig. 7 (d)) – 66.8 –
Environment with stairs (Fig. 8)

VLP-16 (Fig. 8 (b)) 25 6.46 64.93%
2D LiDAR (Fig. 8 (c)) – 18.42 –

of different heights, chairs, boxes and cabinets. Regardless
of the hr value, the traversable area computed through the
PFF is always lower compared with the result obtained by
a 2D sensor, as it is seen in Table IV. This is due to the
obstacles that the 2D sensor is not able to correctly perceive.
In this sense, the difference with respect to the mapping
based on a 2D-only sensor reports the obtained increase in
mapping accuracy by reporting the percentage of the area that
would be incorrectly recognized as traversable without a 2.5
mapping. Table IV also shows how this difference changes
for different robot heights in comparison to a pure 2D
solution that would not be able to consider this information.
This can be seen more clearly by comparing Fig. 7(a) with
Fig. 7(d), where in the bottom left there is a wide section
of tables that the 2D LiDAR cannot detect. If the robot had
to move in that area, it would collide against those objects
with a standard 2D map. Also, in an environment with stairs
(Fig. 8 (a)), where the 2D LiDAR is unable to see the stairs
(Fig. 8 (c)), the PFF correctly creates a virtual obstacle,
preventing the robot from falling down (Fig. 8 (b)). For
our case study, the difference in the accuracy of the correct
traversability map reaches nearly a third of the whole area.

V. CONCLUSIONS

We presented the Point-cloud Fast Filter (PFF), an efficient
solution that, combined with a standard SLAM algorithm,
can build traversable maps for service robots, specifically
targeting platforms without high computational capabilities.
We focused on indoor, office-like environments, which are



(a) (b) (c) (d)

Fig. 7: Traversability map for an office-like scenario: (a) PFF, VLP-16 and robot height = 25 cm, (b) PFF, VLP-16 and
robot height = 40 cm, (c) PFF, VLP-16 and robot height = 100 cm and (d) Hokuyo 2D LiDAR.

Fig. 8: Traversability map for a scenario with stairs: (a)
Scenario, (b) PFF with a 3D LiDAR, (c) 2D LiDAR.

at the same time structured but with obstacles at different
heights (e.g., chairs or tables) that may prevent robots from
passing through. Our algorithm filters out the input data from
3D sensors taking into account robot dimensions and field
of view of interest, in order to make the processing more
efficient. It also includes a module to detect stairs/holes (no
ramps) or similar obstacles that are typical in our considered
scenarios and not detected by 2D LiDAR sensors. Moreover,
our PFF is sensor and mapping agnostic in the sense that
it can be easily integrated with different sensors such as
RGB-D cameras or LiDARs, as well as with standard SLAM
algorithms.

Our results show an improvement in processing times
compared to other 2D and 3D mapping techniques. This
allows the service robot to reduce its hardware requirements
for the mapping task, and devote more resources to additional
services. Moreover, this reduction in the processing time does
not come at cost of safety, since the traversability maps are
enough to avoid collisions for the robot and environment at
hand. As future work, we plan to test our method in more
dynamic environments with people moving around and test
the long-term navigability of the robot.

REFERENCES

[1] N. Perez-Higueras, R. Ramon-Vigo, I. Perez-Hurtado, J. Capitan,
F. Caballero, and L. Merino, “A social navigation system in telepres-
ence robots for elderly,” in Using social robots to improve the quality
of life in the elderly, Workshop on the 8th International Conference
on Social Robotics, Kansas City, USA, 2016.

[2] J. Biswas and M. M. Veloso, “Localization and navigation of the
cobots over long-term deployments,” The International Journal of
Robotics Research, vol. 32, no. 14, pp. 1679–1694, 2013.

[3] J. Messias, R. Ventura, P. Lima, J. Sequeira, P. Alvito, C. Marques, and
P. Carrio, “A robotic platform for edutainment activities in a pediatric
hospital,” in 2014 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), May 2014, pp. 193–198.

[4] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha,
“Visual simultaneous localization and mapping: a survey,” Artificial
Intelligence Review, vol. 43, no. 1, pp. 55–81, 2015.

[5] J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D
SLAM techniques available in robot operating system,” in IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), 2013, pp. 1–6.

[6] S. Stiene and J. Hertzberg, “Virtual range scan for avoiding 3D obsta-
cles using 2D tools,” in 2009 International Conference on Advanced
Robotics, June 2009, pp. 1–6.

[7] D. Holz, D. Droeschel, S. Behnke, S. May, and H. Surmann, “Fast
3D perception for collision avoidance and SLAM in domestic envi-
ronments,” in Mobile robots navigation. IntechOpen, 2010.

[8] F. Nex and F. Remondino, “UAV for 3D mapping applications: a
review,” Applied Geomatics, vol. 6, no. 1, pp. 1–15, 2014.

[9] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-D
mapping with an RGB-D camera,” IEEE Transactions on Robotics,
vol. 30, no. 1, pp. 177–187, Feb 2014.

[10] C. Li, H. Wei, and T. Lan, “Research and implementation of 3D
SLAM algorithm based on kinect depth sensor,” in International
Congress on Image and Signal Processing, BioMedical Engineering
and Informatics, Oct 2016, pp. 1070–1074.

[11] J. Biswas and M. Veloso, “Depth camera based indoor mobile robot
localization and navigation,” in IEEE International Conference on
Robotics and Automation, May 2012, pp. 1697–1702.

[12] O. Wulf, K. O. Arras, H. I. Christensen, and B. Wagner, “2D mapping
of cluttered indoor environments by means of 3D perception,” in IEEE
International Conference on Robotics and Automation, vol. 4, 2004,
pp. 4204–4209.

[13] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, 2014, p. 9.

[14] K. Yoneda, H. Tehrani, T. Ogawa, N. Hukuyama, and S. Mita, “Lidar
scan feature for localization with highly precise 3-D map,” in IEEE
Intelligent Vehicles Symposium Proceedings, 2014, pp. 1345–1350.

[15] R. W. Wolcott and R. M. Eustice, “Fast lidar localization using mul-
tiresolution gaussian mixture maps,” in IEEE International Conference
on Robotics and Automation (ICRA), 2015, pp. 2814–2821.

[16] A. A. S. Souza and L. M. G. Gonalves, “2.5-dimensional grid mapping
from stereo vision for robotic navigation,” in Brazilian Robotics
Symposium and Latin American Robotics Symposium, 2012, pp. 39–
44.

[17] D. De Gregorio and L. Di Stefano, “Skimap: An efficient mapping
framework for robot navigation,” in IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 2569–2576.

[18] F. Yuan, A. Swadzba, R. Philippsen, O. Engin, M. Hanheide, and
S. Wachsmuth, “Laser-based navigation enhanced with 3D time-
of-flight data,” in IEEE International Conference on Robotics and
Automation, 2009, pp. 2844–2850.

[19] SLAMTEC. RP LiDAR A3 specifications. [Online]. Available:
https://www.slamtec.com/en/Lidar/A3Spec

[20] Orbbec. Astra camera specifications. [Online]. Available:
https://orbbec3d.com/product-astra-pro/

[21] Velodyne. Velodyne VLP-16 specifications. [Online]. Available:
https://velodynelidar.com/vlp-16.html


