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Abstract. Petri nets are a successful formal method for the modeling
and verification of asynchronous, concurrent and distributed systems.
Reachability analysis can provide important information about the be-
havior of the model. However, reachability analysis is a computationally
hard problem, especially when the state space is infinite. Abstraction-
based techniques are often applied to overcome complexity. In this paper
we analyze an algorithm, which uses counterexample guided abstraction
refinement. This algorithm proved its efficiency on the model checking
contest. We examine the algorithm from a theoretical and practical point
of view. On the theoretical side, we show that the algorithm cannot de-
cide reachability for relatively simple instances. We propose a new iter-
ation strategy to explore the invariant space, which extends the set of
decidable problems. We also give proofs on the theoretical limits of our
approach. On the practical side, we examine different search strategies
and we present our new, complex strategy with superior performance
compared to traditional strategies. Measurements show that our new
contributions perform well for traditional benchmark models as well.
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1 Introduction

The development of complex, distributed and safety-critical systems requires
mathematically precise proofs in order to ensure the suitability and correctness
of the design. Formal modeling and verification methods provide such tools.
However, a major drawback of using formal techniques is their computation and
memory-intensive nature. Even for relatively small asynchronous and concurrent
models, the state space and the set of possible behaviors can be unmanageably
large, or even infinite. This is usually referred to as the “state space explosion”
problem in the literature.

This problem also holds for one of the most popular modeling formalisms,
Petri nets. The behavior of a Petri net model is determined by the set of reach-
able states and fireable transitions. Therefore, reachability analysis is an im-
portant formal verification technique for Petri nets. The reachability problem
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answers the question whether a given state is reachable from the initial state
of the modeled system. However, solving reachability is a computationally hard
problem. Therefore, abstraction-based techniques are often involved to overcome
complexity.

Wimmel and Wolf published an algorithm [18], which applies counterexample
guided abstraction refinement to the reachability problem of Petri nets. Their
algorithm proved its efficiency at the model checking contest in 2013 [10]. After
its publication, we analyzed the algorithm regarding correctness and complete-
ness, and published our results in [8]. Although the algorithm can solve many
problems efficiently, we proved that it fails to decide reachability for relatively
simple instances. In worse cases it may even give a wrong answer. We suggested
improvements and we also extended the algorithm to be able to handle inhibitor
arcs and submarking coverability problems. Furthermore, we proved that even
the improved algorithm is incomplete due to its iteration strategy.

In this paper we continue our work with further theoretical and practical
investigations. In Section 2 we introduce the theoretical background of our work.
We present the algorithm of Wimmel and Wolf [18] and a brief overview of
our previous findings [8] in Section 3. Then, we introduce our current results.
On the theoretical side, we propose a new iteration strategy to be used during
the phase that explores the invariant space (Section 4). We show that our new
approach extends the set of decidable problems and we also give theoretical
results on its limits. On the practical side, we examine the behavior of well-known
search strategies (depth- and breadth-first search) for the solution space traversal
and we also present our new, complex strategy combining the advantages of
BFS and DFS (Section 5). We prove the efficiency of our new approaches with
measurements on traditional benchmark models and on our special nets as well
(Section 6). Finally, we conclude our work in Section 7.

2 Background

In this section we introduce the theoretical background of our work. First, we
present Petri nets (Section 2.1), then we introduce reachability analysis (Sec-
tion 2.2).

2.1 Petri Nets

Petri nets [13] are graphical models for concurrent and asynchronous systems,
providing both structural and dynamical analysis. A discrete Petri net is a tuple
PN = (P, T,E,W ), where P is the set of places, T is the set of transitions,
with P 6= ∅ 6= T and P ∩ T = ∅, E ⊆ (P × T ) ∪ (T × P ) is the set of arcs
and W :E 7→ Z+ is the weight function assigning weights w−(pj , ti) to the edge
(pj , ti) ∈ E and w+(pj , ti) to the edge (ti, pj) ∈ E. Places and transitions are
numbered from zero in our work.

A marking of a Petri net is a mapping m:P 7→ N. If a place p contains k
tokens in a marking m then m(p) = k. The initial marking is denoted by m0.



Dynamic Behavior. A transition t ∈ T is enabled in a marking m, if m(pj) ≥
w−(pj , t) holds for each pj ∈ P with (pj , t) ∈ E. An enabled transition t can fire,
consuming w−(pj , t) tokens from places pj ∈ P with (pj , t) ∈ E and producing
w+(pj , t) tokens on places pj ∈ P with (t, pj) ∈ E. The firing of a transition t
in a marking m is denoted by m[t〉m′ where m′ is the marking after firing t.

A word σ = t1t2 . . . tn ∈ T ∗ is a firing sequence. A firing sequence is realizable
in a marking m and leads to m′ (denoted by m[σ〉m′), if m[t1〉 . . . [tn〉m′. The
Parikh image of a firing sequence σ is a vector ℘(σ):T 7→ N, where ℘(σ)(ti) is
the number of the occurrences of ti in σ. The empty firing sequence is denoted
by ε.

2.2 Reachability Problem

A marking m′ is reachable from m if a realizable firing sequence σ ∈ T ∗ exists for
which m[σ〉m′ holds. The set of all reachable markings from the initial marking
m0 of a Petri net PN is denoted by R(PN,m0). The reachability problem is
to decide if m′ ∈ R(PN,m0) holds for a given marking m′. The aim of reacha-
bility analysis is to solve the reachability problem by finding a realizable firing
sequence m0[σ〉m′. The reachability problem is decidable [12], but it is at least
EXPSPACE-hard [11] and no upper bound is known yet.

State Equation. The incidence matrix of a Petri net is a matrix C|P |×|T |, where
C(i, j) = w+(pi, tj) − w−(pi, tj). The element C(i, j) represents the change in
the number of tokens in pi after firing tj . Let m and m′ be markings of the Petri
net, then the state equation takes the form m + Cx = m′. Any vector x ∈ N|T |
fulfilling the state equation is called a solution. Note, that for any realizable
firing sequence σ leading from m to m′, the Parikh image of the firing sequence
fulfills the equation m + C℘(σ) = m′. On the other hand, not all solutions of
the state equation are Parikh images of a realizable firing sequence. Therefore,
the existence of a solution for the state equation is a necessary but not sufficient
criterion for reachability. A solution x is called realizable if a realizable firing
sequence σ exists with ℘(σ) = x.

T-invariants. A vector y ∈ N|T | is called a T-invariant if Cy = 0 holds. A real-
izable T-invariant represents the possibility of a cyclic behavior in the modeled
system, since its complete occurrence does not change the marking. However,
during firing the transitions of the T-invariant, some intermediate markings can
be of interest. If each component of the T-invariant y is either zero or one we
also denote y by enumerating the components with value one, e.g., y = (1, 0, 1, 0)
can be denoted by y = {t0, t2}.

Solution Space. The solution space of the state equation m + Cx = m′ is
semi-linear. Each solution x can be written as the sum of a base solution and
the linear combination of T-invariants [18], which can formally be written as



x = b+
∑

i niyi, where b ∈ N|T | is the base solution and ni ∈ N is the coefficient
of the T-invariant yi ∈ N|T |.

3 CEGAR Approach on Petri Nets

In this section we introduce the CEGAR approach generally (Section 3.1) and
we present an algorithm published by Wimmel and Wolf [18], which applies the
CEGAR approach to the reachability problem of Petri nets (Section 3.2). After
its publication, we examined the correctness and completeness of their algorithm
[8]. These findings form a basis for our current work, so we introduce them briefly
in Section 3.3.

3.1 CEGAR Approach

Abstraction is a general mathematical approach for solving hard problems. It
hides the irrelevant details, so the abstract model can be handled easier. One
such technique is existential abstraction [5], which means that the abstract model
over-approximates the original one. Therefore, if an invariant holds in the ab-
stract model, it also holds in the original model. However, if there is a coun-
terexample for which the invariant does not hold, it might be caused by the
over-approximation. Thus, every counterexample must be examined whether it
has a corresponding concrete counterexample in the original model. If a con-
crete counterexample exists, the invariant does not hold in the original model.
Otherwise, the abstract counterexample is spurious and the abstraction has to
be refined using the information from the examination. This technique is called
the “counterexample guided abstraction refinement” (CEGAR) and it is widely
used in model checking [1], [4], [9].

3.2 Reachability Analysis of Petri Nets Using CEGAR

Wimmel and Wolf published an algorithm [18], which applies the CEGAR ap-
proach to the reachability analysis of Petri nets, using the state equation. Fig-
ure 1 shows an overview of their algorithm, while each step is detailed in this
section.

Create initial
abstraction

Solve the
abstract model

Examine the
solution

Refine the
abstraction

Stop

Reachability
problem

State
equation

No solution

Solution

Realizable

Not realizableConstraints

Fig. 1. Petri net CEGAR algorithm flowchart



Initial Abstraction. The input of the algorithm is a reachability problem
m′ ∈ R(PN,m0), which is transformed into the initial abstraction, namely the
state equation of the form m0 + Cx = m′.

Solving the Abstract Model. Solving the abstract model (i.e., the state
equation) is an integer linear programming problem [6]. The ILP solver yields a
minimal solution with respect to the cost function. In the algorithm of Wimmel
and Wolf [18], the sum of the firing count of transitions is minimized in order to
obtain trajectories with the shortest length.

The state equation is an over-approximation of the set of reachable markings,
since its feasibility is a necessary, but not sufficient condition for reachability.
Therefore, if no abstract solution exists, the target marking cannot be reached
in the Petri net either. However, a solution of the abstract model may or may
not be realizable by a firing sequence. Thus, further examinations are needed.

Examining the Solution. The solution of the state equation is a vector x ∈
N|T |, where x(t) denotes the number of times a transition t ∈ T has to fire
in order to reach m′ from m0. However, x does not include any information
about the order of the transition firings and whether they are enabled. Thus,
the algorithm has to explore the state space of the Petri net with the limitation
that each transition t can fire at most x(t) times. If the target marking m′ can be
reached with this limit (i.e., x is realizable), it is a sufficient proof for reachability.
Otherwise, x is a counterexample and the abstraction has to be refined.

Abstraction Refinement. If a solution x is not realizable, the ILP solver has to
be forced to generate a different solution. This can be done by adding additional
constraints (i.e., linear inequalities over transitions) to the state equation. The
following two types of constraints were defined by Wimmel and Wolf [18].

– Jump constraints have the form |ti| < n, where n ∈ N, ti ∈ T and |ti|
represents the firing count of the transition ti. Jump constraints can be used
to obtain different base solutions, exploiting their pairwise incomparability.

– Increment constraints have the form
∑k

i=1 ni|ti| ≥ n, where ni ∈ Z, n ∈ N,
and ti ∈ T . Increment constraints can be used to reach non-base solutions,
i.e., T-invariants are added in some linear combination.

After adding the new constraint, the state equation may become infeasible,
or a new solution is obtained. Figure 2 presents the solution space. The bottom
dots represent base solutions, while the cones represent the linear space formed
by the T-invariants. The upper dots correspond to non-base solutions. Jumps
are denoted by dashed arrows and increments by continuous arrows. The precise
method for generating constraints and traversing the solution space is presented
later in this section, but first, partial solutions are introduced.



Fig. 2. Solution space of the state equation [18]

Partial Solutions. Given a Petri net PN = (P, T,E,W ) and a reachability
problem m′ ∈ R(PN,m0), a partial solution is a tuple ps = (C, x, σ, r), where:

– C is the set of (jump and increment) constraints, together with the state
equation they define the ILP problem,

– x is the minimal solution satisfying the state equation and the constraints
belonging to the set C,

– σ ∈ T ∗ is a maximal realizable firing sequence, with ℘(σ) ≤ x, i.e., each
transition t ∈ T can fire at most x(t) times and enabled transitions must fire
in some order,

– r = x− ℘(σ) is the remainder vector.

Partial solutions are generated during the examination of the solution x by
exploring the state space of the Petri net. For this purpose, Wimmel and Wolf
use a “brute force” method with some optimization. The algorithm builds a tree
with markings as nodes and occurrences of transitions as edges. The root of the
tree is the initial marking m0, and there is an edge labeled by t between nodes
m1 and m2 if m1[t〉m2 holds. On each path leading from the root of the tree
to a leaf, each transition ti can occur at most x(ti) times. Each path to a leaf
represents a maximal firing sequence, thus a new partial solution. The marking
reached is referred to as the final marking of the partial solution.

A partial solution is called a full solution if r = 0 holds, thus ℘(σ) = x,
which means that σ realizes the solution vector x. Wimmel and Wolf proved
that for each realizable solution of the state equation a full solution exists. This
full solution can be reached by continuously expanding the minimal solution of
the state equation with constraints [18].

Consider now a partial solution ps = (C, x, σ, r), which is not a full solution,
i.e., r 6= 0. This means that some transitions could not fire enough times. There
are three possible situations in this case:

1. x may be realizable by another firing sequence σ′, thus a full solution ps′ =
(C, x, σ′, 0) can be found in the tree.

2. By adding jump constraints, greater, but pairwise incomparable solutions
can be obtained.



3. For transitions t ∈ T with r(t) > 0 increment constraints can be added to
increase the token count in the input places of t, while the final marking
m′ must be unchanged. This can be achieved by adding new T-invariants to
the solution. These T-invariants can “borrow” tokens for transitions in the
remainder vector.

Generating Constraints. When a partial solution is not a full solution, both
jump and increment constraints can be added, but they are applied on a different
level:

– Jump constraints are generated from solution vectors of the state equation.
– Increment constraints are generated from partial solutions (which are ob-

tained from solution vectors).

Jump Constraints. Given a solution vector x, for each transition ti ∈ T with
x(ti) > 0 a jump constraint ci of the form |ti| < x(ti) can be added to the
state equation. If a new solution vector yi is obtained after adding one of the
constraints ci, this process can be recursively repeated for yi. Wimmel and Wolf
proved that every base solution can be obtained using jump constraints [18].

Increment Constraints. Let ps = (C, x, σ, r) be a partial solution with r > 0.
This means that some transitions could not fire enough times. Wimmel and
Wolf use a heuristic to find the places and number of tokens needed to enable
these transitions. If a set of places actually needs n (n > 0) tokens, the heuristic
estimates a number from 1 to n. If the estimate is too low, this method can be
applied again, converging to the actual number of required tokens. The heuristic
consists of the following three steps:

1. First, it builds a dependency graph to collect the transitions and places
that are of interest. These are transitions that could not fire, and places
that disable these transitions under the final marking of ps. An edge from a
place p to a transition t means that p disables t, while an edge in the opposite
direction means that firing t would increase the token count in p. Each source
SCC3 of the dependency graph has to be investigated, because it cannot get
tokens from other components. Therefore, an increment constraint is needed.

2. The second step is to calculate the minimal number of missing tokens for
each source SCC. There are two sets of transitions, Ti ⊆ T and Xi ⊆ T . If
one transition in Ti becomes fireable, it may enable all the other transitions
of the SCC, while transitions in Xi cannot activate each other, therefore
their token shortage must be fulfilled at once.

3. The third step is to construct an increment constraint c for each source SCC
from the information about the places and their token requirements. These
constraints will force transitions (with r(t) = 0) to produce tokens in the
given places. Since the final marking is left unchanged, a T-invariant is added
to the solution vector.

3 Source strongly connected component, i.e., one without incoming edges from other
components.



When applying the new constraint c, three situations are possible depending
on the T-invariants in the Petri net:

– If the state equation and the set of constraints become infeasible, this partial
solution cannot be extended to a full solution, therefore it is no longer of
interest.

– If the ILP solver can produce a solution x+ y (with y being a T-invariant),
new partial solutions can be found for y. If none of them helps getting closer
to a full solution, the algorithm can get into an infinite loop, but no full
solution is lost. A method to avoid this non-termination phenomenon will
be discussed later in this section.

– If there is a new partial solution ps′ where some transitions in the remainder
vector could fire, this method can be repeated.

The following theorem of Wimmel and Wolf [18] states that if the reachability
problem has a solution, it can be reached by the CEGAR approach:

Theorem 1. If the reachability problem has a solution, a realizable solution of
the state equation can be reached by continuously expanding the minimal solution
with jump and increment constraints.

Optimizations. Wimmel and Wolf also presented some methods for opti-
mization [18]. In our current work, only the following T-invariant filtering op-
timization is important. After adding a T-invariant y to the partial solution
ps = (C, x, σ, r), all the transitions of y may fire without enabling any transition
in r, yielding a partial solution ps′ = (C′, x + y, σ′, r) with ℘(σ′) = ℘(σ) + y.
The final marking and remainder vector of ps′ is the same as in ps, therefore the
same T-invariant y is added to the solution by the heuristic again, which can
prevent termination. Thus, the algorithm cuts the search space at ps′. However,
during firing the transitions of y, the algorithm could get closer to enabling a
transition in r (without reaching the limit where it becomes enabled). These
“better” intermediate markings should be detected, and be used as new partial
solutions. Wimmel and Wolf gave a definition for better intermediate markings,
which we generalized it in our former work [8]. Our definition is as follows.

Definition 1 (Better intermediate marking). An intermediate marking mi

is considered better than the final marking m′ of the firing sequence σ if there
exists a transition t with r(t) > 0 and a place p with (p, t) ∈ E for which
m′(p) < w−(p, t) ∧ mi(p) > m′(p) holds.

This means that t is disabled by p and p had more tokens in the intermediate
marking mi than in the final marking m′.

3.3 Correctness and Completeness of the Algorithm

After Wimmel and Wolf published their algorithm, we examined the correctness
and completeness properties and we published our findings in [8]. This section
summarizes these results.



Correctness. We proved by a counterexample that the algorithm is incorrect
due to an over-estimation in the increment constraint generating heuristic. In
this case, incorrectness resulted in an answer “not reachable” for a reachable
marking. We suggested a method to detect such situations giving the answer
“not decidable”. We also presented a new algorithm that tries to find the solution
in such cases.

Completeness. We presented several subclasses of Petri nets for which the
algorithm could not decide reachability and we suggested solutions to most of
them. However, we proved that the improved algorithm is still incomplete due
to its iteration strategy. In our current work we present a similar, but simpler
proof (Section 4.1) and we propose a new iteration strategy to extend the set of
decidable problems (Section 4.2).

4 New Iteration Strategy to Explore the Invariant Space

In this section we show that the algorithm of Wimmel and Wolf cannot decide
reachability for relatively simple examples, because not every necessary invariant
is explored (Section 4.1). We propose a new iteration strategy to traverse the
invariant space by involving so-called “distant” invariants (Section 4.2). We show
that this new approach extends the set of decidable problems and we also give
theoretical results on its limitations. We also present a new filtering criterion
(Section 4.3), which can avoid non-termination of the algorithm.

4.1 Proof of the Incompleteness

We prove the incompleteness of the algorithm published by Wimmel and Wolf
[18] with the following example. Consider the Petri net PN in Figure 3 with
the reachability problem (1, 1, 0) ∈ R(PN, (0, 1, 0)), i.e., producing a token in
p0. The vector xs = (1, 1, 1, 1, 1) is a solution, realized by the firing sequence
σs = t3t1t0t2t4.

p0 p1 p2t0

t1

t2

t3

t4

2

2

Fig. 3. A counterexample of completeness

The algorithm does the following steps. The minimal solution vector is x0 =
(1, 0, 0, 0, 0), i.e., firing t0. Since t0 is not enabled, the only partial solution is
ps0 = (∅, x0, σ0 = ε, r0 = (1, 0, 0, 0, 0)). The algorithm finds that an additional



token is required in p1 and only t1 can satisfy this need. With an increment
constraint c1: |t1| ≥ 1, the T-invariant {t1, t2} is added to the new solution vector
x1 = (1, 1, 1, 0, 0). Only t2 and t1 can fire (in this order), thus the only partial
solution for x1 is ps1 = ({c1}, x1, σ1 = t2t1, r1 = r0). This partial solution
is skipped by the T-invariant filtering optimization, since the only difference
from ps0 is that all transitions of a T-invariant were fired. Furthermore, there
are no better intermediate markings, since no additional token was “borrowed”
from the T-invariant {t1, t2}. The algorithm terminates at this point, leaving
the problem undecided. Without the filtering optimization, the algorithm would
add the T-invariant {t1, t2} again and again, preventing termination.

The problem is that the original algorithm does not recognize that although
{t1, t2} can fire, it only circulates the same token, instead of “lending” a new
one. An extra token could be produced in p2 (and then moved in p1) using the
T-invariant {t3, t4}. However, {t3, t4} is not connected directly to p1 (where the
tokens are missing), so the iteration strategy of the algorithm does not try to
involve it. We propose an extension to the iteration strategy in Section 4.2 in
order to involve such “distant” invariants into the solution vector.

4.2 Involving Distant Invariants

Let y and z be T-invariants. We say that z is a distant invariant for y if z can
produce tokens in a place connected to y. This can be written formally as follows.

Definition 2 (Distant invariant). The T-invariant z is a distant invariant
for the T-invariant y if a place p and transitions t1, t2 exist with y(t1) > 0,
z(t2) > 0, ((t1, p) ∈ E ∨ (p, t1) ∈ E), w+(p, t2)− w−(p, t2) > 0 and y(t2) = 0.

The definition states that y includes t1, z includes t2 and t1 is connected to p,
where the firing of t2 increases the number of tokens. This way z can “borrow”
tokens for y. The extra criterion y(t2) = 0 is needed to ensure that we do not
produce tokens for y by itself. In the example in Figure 3, {t3, t4} is a distant
invariant for {t1, t2} because t3 can produce tokens in p2, which is connected to
t1 (and t2).

When a transition in the remainder could not fire, the original algorithm
tried to increase the token count on its input places. Our definition of distant
invariants generalizes this concept the following way. When a partial solution is
skipped by the T-invariant filtering optimization, it means that a T-invariant
was fired, but could not “lend” enough tokens to enable a transition in the
remainder. The basic idea of involving distant invariants is to try to increase the
token count in any place connected to the filtered T-invariant. If some tokens can
be produced, the filtered invariant will then be able to transfer them indirectly
to the place that lacks tokens. There are two problems to be solved:

– How many tokens should be produced for the invariant that caused filtering?
– Termination criterion: if the distant invariant cannot help, adding it again

can lead to non-termination.



Number of Tokens Produced in the Invariant. Estimating the required
number of tokens is a hard problem, since the sum of the tokens in the places of
a T-invariant may change during firing. Over-estimation can also be a problem:
the final marking of the invariant may not be the “best” state regarding the
number of tokens. Therefore, we produce only one token at a time and repeat
this process if it was not enough.

Termination Criterion. When a distant invariant does not help, there are two
possible cases. The distant invariant z could either not lend any tokens to the
filtered invariant y or it could lend some, but not enough to enable a transition
in the remainder.

The first case means that not only y lacks tokens, but z as well. Thus, we
can now apply our strategy again, i.e., involving a distant invariant for y + z.
This way we form a “chain” of distant invariants, which is defined formally as
follows.

Definition 3 (Chain of distant invariants). Let y1, y2, . . . , yn (n ∈ N) be T-
invariants. We say that y1 + y2 + . . .+ yn, n ∈ N is a chain of distant invariants
if yi+1 is a distant invariant for yi (for 1 ≤ i < n). A subchain of a chain
y1 + y2 + . . .+ yn is a chain y1 + y2 + . . .+ yk, with k ≤ n.

The definition of distant invariants ensures termination for such chains, since
the newly involved distant invariant must have at least one transition that is not
included in the previous ones and the number of transitions in a Petri net is
finite.

The second case indicates that z could lend some tokens, but not enough.
Therefore, we can involve distant invariants again for y. If z is the only distant
invariant for y, this simply results in adding z again, but in general any distant
invariant can be involved. However, if y = y1 + y2 + . . . + yn is a chain, this
would only produce tokens in places connected to yn. Thus, we have to involve
a distant invariant for every subchain in order to transfer the tokens to the
originally filtered invariant (y1).

Our new ideas above are formulated in Algorithm 1. The input of the algo-
rithm is a partial solution ps′ that was skipped due to ps and the number of
better intermediate markings during the firing sequence of ps′. Partial solutions
are extended to store a chain of distant invariants, which is initially 0.

At first we calculate the difference between the solution vectors of ps and ps′

and we initialize the list of constraints with the constraints of ps′. The following
two cases are possible.

– If the chain of ps 6= 0, some distant invariants were already involved. If there
are better intermediate markings (nb > 0), then these invariants helped (but
not enough) to enable a transition in the remainder. In this case we can
involve them again, so the chain of ps′ is the same as in ps and we involve a
distant invariant for every subchain.



Algorithm 1: Distant invariant algorithm

Input : ps′: Partial solution skipped
ps: Partial solution that caused skipping ps′

nb: Number of better intermediate markings for ps′

Output : x: New solution vector found by involving distant invariants
1 z ← difference invariant between ps and ps′ ;
2 C∗ ← constraints of ps′;
3 if the chain of ps 6= 0 ∧ nb > 0 then
4 Chain of ps′ ← Chain of ps;
5 for each subchain of ps′ do
6 C∗ ← C∗∪ {constraint to involve a distant invariant for the subchain};
7 end

8 end
9 else if z is a distant invariant for the chain of ps then

10 Chain of ps′ ← Chain of ps + z;
11 C∗ ← C∗∪ {constraint to involve a distant invariant for the chain of ps′};
12 end
13 x← solve the state equation with C∗;
14 return x;

– Otherwise we extend the chain of ps with z and involve distant invariants
only for the whole chain. However, we have to first check if z is really an
extension to the chain of ps, since ps′ can be a solution obtained by the
original increment constraints.

Finding a constraint to involve a distant invariant for a chain (or subchain) y
is quite straightforward. We get the places connected to the transitions of y and
we create a constraint using the third step of the increment constraint generating
heuristic to produce a token in these places. If no constraint can be found, the
algorithm returns no new solution. If there are multiple distant invariants for
y, all of them can be found using jump constraints from the original algorithm.
Finally, we solve the state equation extended with C∗ and return the solution (if
found).

This new strategy can solve the example in Figure 3 trivially. As a complex
example, consider the Petri net PN in Figure 4 with the reachability problem
(1, 1, 0, 0, 2) ∈ R(PN, (0, 1, 0, 0, 2)), i.e., producing a token in p0.

p0 p1 p2 p3 p4t0

t1

t2

t3

t4

t5

t6

3

3

Fig. 4. Distant invariant example



The minimal solution of the abstract model is firing t0, which is not enabled.
Thus, the T-invariant {t1, t2} is added twice in order to get two additional tokens
in p1. This invariant can fire but it does not help getting closer to enabling t0 so
the partial solution is skipped. At this point, our new algorithm tries to produce
a token in any of the places connected to {t1, t2}, i.e., p1 and p2 by distant
invariants. Therefore, the T-invariant {t3, t4} is added once to the new solution.
This invariant can also fire but does not help enabling t0. The partial solution is
skipped, and since {t3, t4} is a distant invariant for {t1, t2}, the algorithm now
tries to produce a token in places connected to the chain {t1, t2}∪{t3, t4}, i.e., in
p1, p2, and p3. This implies that the invariant {t5, t6} is added once. Firing this
invariant does not enable t0, but yields an extra token in p1, which is a better
intermediate marking. Thus, the partial solution is skipped but the algorithm
now tries to involve distant invariants for every subchain, namely for {t1, t2}
and {t1, t2, t3, t4}, resulting in the addition of {t3, t4} and {t5, t6}. The solution
vector is now (1, 2, 2, 2, 2, 2, 2), which can be realized by the firing sequence
t5t5t3t3t1t1t0t2t2t4t4t6t6.

Limitations. Although our new approach can solve a new range of problems,
it also has some limitations. As an example consider the Petri net PN in Fig-
ure 5(a) with the reachability problem (1, 1, 0) ∈ R(PN, (0, 1, 0)), i.e., producing
a token in p0.

p0 p1 p2t0

t1

t2

t3

t4

2

2
2

2

(a) Not decidable example

p0 p1 p2

p3p4p5

t0

t1

t2

t3

t4

2

2
2

2

(b) Example on non-termination

Fig. 5. Example nets for the limitation of distant invariants

The minimal solution is firing t0, which is not enabled. Thus, the T-invariant
{t1, t2} is added once in order to get an additional token in p1. This invariant
can fire, but it does not help getting closer to enabling t0 so the partial solution
is filtered. At this point the algorithm tries to produce tokens for {t1, t2} using
distant invariants, which implies adding {t3, t4} once. This invariant can fire,
lending a token in p2. However, t1 requires two tokens to fire and produce one
in p1. This partial solution is also filtered and there are no better intermediate
markings, since we only count the tokens in places connected to the disabled



transition t0, which is p1. The algorithm terminates at this point leaving the
problem undecided.

A trivial idea for this example would be to extend the definition of better
intermediate markings (Definition 1) to count tokens not only in places connected
to the transition that cannot fire, but in places connected to the filtered T-
invariant as well. This can be formalized as follows. Let ps = (C, x + y, σ, r)
be a partial solution that was skipped due to the invariant y. Suppose that we
obtained ps′ = (C′, x + y + z, σ′, r) by involving the distant invariant z for y,
which could not enable any transition in the remainder, thus ps′ is skipped as
well. Furthermore, suppose that no better intermediate marking was found using
Definition 1 (as in the example in Figure 5(a)). Given a partial solution ps and a
place p let max(ps, p) be max(m(p)) during firing σ of ps from the initial marking
m0. Then the definition of better intermediate markings can be generalized in
the following way.

Definition 4. Given the partial solutions ps and ps′ as described above, an
intermediate marking mi of σ′ is considered better than the final marking m′ if
Definition 1 holds or a transition t with y(t) > 0 and a place p with (p, t) ∈
E ∨ (t, p) ∈ E exists for which mi(p) > max(ps, p) holds.

The generalized definition states that the intermediate marking is also con-
sidered better if there is a place connected to the filtered T-invariant, which
contains more tokens than in any marking in the firing sequence of the previous
partial solution. If a better intermediate marking exists for ps′ using this defini-
tion, then we can involve z again. However, this definition would often lead to
non-termination since the filtered T-invariant (y) is already enabled (otherwise
it would not have been filtered). Thus, we cannot give an upper bound on the
number of tokens in p, as opposed to our original definition, where we produce
tokens in p until the transition that is disabled by p gets enabled.

As an example consider the Petri net PN in Figure 5(b) with the reachability
problem (1, 1, 0, 0, 0, 1) ∈ R(PN, (0, 1, 0, 1, 0, 0)), i.e., producing a token in p0 and
moving the token from p3 to p5. This net works similarly to the net in Figure 5(a),
but occurrences of the transitions t3, t4, and t1 can only appear in this order,
due to the upper part (places p3, p4, p5) of the net. As in the previous example,
{t1, t2} is added first, then {t3, t4}. Suppose now, that we consider it a better
intermediate marking when t3 produced a token in p2. This implies that {t3, t4}
is added again. Now t4 can fire two times, producing two tokens in p2. There are
two possible sequels. If t1 fires, it produces an extra token in p1 and enables t0.
However, the extra tokens must be consumed in order to reach the final marking,
but t4 cannot fire after t1. The search terminates on this path, since no more
solutions can be found. The second case is that t4 fires, which consumes the
tokens from p2 so t1 cannot transfer them to p1. Thus, t0 is still not enabled, but
we had a better intermediate state, since we had two tokens in p2. Therefore,
{t3, t4} is added again and this process repeats avoiding termination.

The examples in Figure 5 show that the generalized definition (Definition 4)
may help to decide reachability for some instances, but it may also yield non-
termination.



4.3 New Filtering Criterion

Although a partial solution is skipped using the T-invariant filtering optimiza-
tion, we may obtain new solutions from it through intermediate markings or
distant invariants. This yields a new branch in the search space, which can also
lead to non-termination.

There are special cases where T-invariants can either fire or not, both being
a maximal firing sequence. As an example, consider the Petri net in Figure 4
and suppose that t1, t2, t3, and t4 each has to fire once. A possible maximal
firing sequence is t2t4t3t1, but t2t1 is also maximal, since neither t4 nor t3 is
enabled afterwards. When such invariants exist, it is possible that the following
two partial solutions are obtained from ps = (C, x, σ, r) after adding the invariant
y:

– ps′ = (C′, x+ y, σ′, r), with ℘(σ′) = ℘(σ) + y, and
– ps′′ = (C′, x+ y, σ, r + y).

In the first case, the invariant was fired (i.e., added to the firing sequence),
while in the second case it was not fired (i.e., added to the remainder). The
first case can be detected by the T-invariant filtering optimization. However, we
found that the second case can also lead to non-termination if there are at least
two T-invariants with this property.

To overcome this problem, we detect when a T-invariant is added to the
remainder, i.e., we get ps′′ = (C′, x+ y, σ, r + y) from ps = (C, x, σ, r). However,
ps′′ cannot be filtered immediately because the remainder is different so the
abstraction refinement may add new invariants that can help. We only skip
ps′′ if ps was skipped by the original T-invariant filtering optimization, which
also means that ps′′ was obtained through intermediate markings or distant
invariants.

5 Search Strategies

As already mentioned in Section 3.2, the algorithm of Wimmel and Wolf traverses
the semi-linear solution space of the state equation. At each non-realizable solu-
tion, multiple (jump and/or increment) constraints can be applied, each yield-
ing a new path in the solution space. However, the authors did not publish the
strategy for the solution space traversal in [18]. An overview pseudo-code was
published later in [19]. In this section we present three different search strategies:
depth-first search (Section 5.1), breadth-first search (Section 5.2) and our new
approach, a complex strategy (Section 5.3), which combines the advantages of
DFS and BFS. Measurement results supporting our statements in this section
can be found in Section 6.2.

5.1 Depth-First Search

Depth-first search (DFS) can be very effective regarding memory usage and
computation time as well. It only stores one path of the solution space in memory



at a time for backtracking purposes and it has a fast convergence if several
invariants have to be added to reach a realizable solution. However, DFS has
some disadvantages as well:

– It may not find the minimal solution by choosing a path, which contains a
solution but not the minimal one.

– It may fail to terminate in an infinite solution space by choosing a path,
where T-invariants can be added infinitely many times without finding a
realizable solution.

The T-invariant filtering optimization (Section 3.2) and our new filtering
criterion (Section 4.3) cuts the search space, but does not always detect infinite
loops. We tried to give stronger criteria for cutting, but then realizable solutions
were lost, reducing the set of decidable problems.

5.2 Breadth-First Search

Due to the problems of DFS, we implemented a breadth-first search (BFS) ver-
sion of the algorithm as well. The number of base solutions can grow exponen-
tially, but it is always finite so we still use DFS between the base solutions and
only use BFS in the linear space of invariants. As opposed to DFS, it is less
efficient, but always finds the minimal solution if the target marking is reach-
able. When the target marking is not reachable, BFS may fail to terminate in an
infinite solution space. The T-invariant filtering optimization can prevent this in
some cases and can also make the computational time shorter.

5.3 Complex Search

We also developed a new, complex search strategy, which combines the advan-
tages of DFS and BFS. We traverse the base solutions using DFS as previously.
When exploring the invariant space over a base solution our main strategy is
DFS, but with a little BFS extension: at each solution x, we generate all partial
solutions belonging to x, instead of continuing the search with the first one and
filter them based on a partial order.

Ordering of Partial Solutions. We define an ordering over vectors and partial
solutions as follows.

Definition 5 (Ordering of vectors). A vector x is less than a vector y (de-
noted by x < y), if and only if x(i) ≤ y(i) for each index i and x 6= y.

Definition 6 (Ordering of partial solutions). A partial solution ps1 =
(C, x, σ1, r1) is less than a partial solution ps2 = (C, x, σ2, r2) (denoted by ps1 <
ps2), if and only if r2 < r1.

A partial solution ps1 is less than a partial solution ps2 if the remainder r2 is
less than r1. This means that ps2 is closer to realization, since every transition
fired in the sequence of ps1 was also fired in ps2, but ps2 may have more fired
transitions. Note that this is a partial order, since partial solutions ps1, ps2 may
exist with ps1 ≮ ps2 and ps2 ≮ ps1, e.g., if r1 = (1, 0) and r2 = (0, 1).



Filtering Partial Solutions. For our filtering criterion we define maximal and
minimal partial solutions.

Definition 7 (Maximal partial solution). A partial solution ps of a solution
x is maximal, if and only if no other partial solution ps′ exists for x with ps < ps′.

Definition 8 (Minimal partial solution). A partial solution ps of a solution
x is minimal, if and only if no other partial solution ps′ exists for x with ps′ < ps.

The filtering criterion is quite simple, we only keep minimal and maximal par-
tial solutions. Since the ordering is partial, there can be more than one minimal
and maximal partial solutions.

We keep the maximal partial solution because it has a minimal remainder,
i.e., it is the closest to realizing the solution vector. Also, the T-invariant filtering
optimization works well for maximal partial solutions, since every T-invariant
that can fire, must also fire (i.e., it is added to the firing sequence). A minimal
partial solution has maximal remainder, i.e., not every enabled T-invariant was
fired. This yields a slower convergence to a realizable solution. However, since
the remainder is different from the remainder of the maximal partial solution,
the abstraction refinement may involve different invariants.

6 Evaluation

We implemented our algorithm as a plug-in for the PetriDotNet [15] framework
to evaluate its performance. We compared our approach to other tools and al-
gorithms (Section 6.1) and we also measured the performance of the different
search strategies (Section 6.2).

6.1 Comparison to Other Tools and Algorithms

We compared our algorithm to the implementation of Wimmel and Wolf, which
is called the SARA tool [17]. We also compared our approach to the well-known
saturation-based model checking algorithm [2], [14]. The results can be seen in
Table 1, where TO refers to an unacceptable run-time (> 600 seconds), ERR
means a run-time exception and NS implies that the algorithm terminated, but
could not solve the problem.

The FMS model [3] represents a flexible manufacturing system. The parame-
ter of the model determines the size of the state space, while the structure of the
net is fixed. The results show that our algorithm outperforms both saturation
and the SARA tool. The Kanban model [3] illustrates a production scheduling
method. The parameter determines the size of the state space. We experienced
that our algorithm can find a realizable solution quickly, but it examines many
partial solutions before finding the full solution. The Dining philosophers model
[7] is often used to show the problems of parallel programming and mutual ex-
clusion. As the parameter grows, both the structure of the net and the state
space becomes larger. Saturation and SARA performs better for these models.



Table 1. Comparison of our algorithm to SARA and saturation

Model Our algorithm SARA Saturation

FMS-10 0,041 s 0,001 s 0,06 s
FMS-50 0,048 s 0,018 s 1,09 s
FMS-100 0,056 s 0,059 s 8,03 s
FMS-200 0,071 s 0,278 s 69,7 s
FMS-400 0,105 s 0,868 s TO
FMS-800 0,226 s 3,537 s TO
FMS-1600 0,317 s ERR TO
FMS-3200 0,65 s ERR TO
FMS-6400 1,274 s ERR TO
FMS-12800 2,54 s ERR TO

Kanban-10 0,032 s 0,03 s 0,002 s
Kanban-13 1,074 s 0,05 s 0,003 s
Kanban-16 3,055 s 0,09 s 0,01 s
Kanban-19 7,128 s 0,134 s 0,03 s
Kanban-22 16,039 s 0,2 s 0,03 s
Kanban-25 31,181 s 0,268 s 0,05 s

Dphil-10 0,078 s 0,005 s 0,01 s
Dphil-20 0,204 s 0,012 s 0,02 s
Dphil-30 0,399 s 0,021 s 0,03 s
Dphil-50 1,156 s 0,037 s 0,03 s
Dphil-100 6,989 s 0,094 s 0,04 s
Dphil-200 67,603 s 0,33 s 0,05 s

Distant1 0,027 s 0,001 s -
Distant2 0,068 s NS -
Distant3 0,083 s NS -
Distant4 0,116 s NS -
Distant5 0,078 s NS -
Distant6 0,063 s NS -
Distant7 0,137 s NS -

The Distant models are built by us [16] to test our new iteration strategy,
which involves distant invariants. The Distant1 and Distant3 models can also be
seen in Fig. 3 and Fig. 4. After publishing our former proof of incompleteness
[8], we contacted Wimmel and Wolf and they extended their implementation to
be able to solve Distant1. However, the original algorithm cannot solve complex
examples on distant invariants. As the state space of these models are infinite,
saturation cannot handle these problems.

Due to the complexity of the models, further examination is required to
determine how the structure and behavior of the models affect the performance
of the algorithms and which algorithm is the most effective for a given type of
models. This is an interesting future research direction.



6.2 Comparison of Search Strategies

The solution space (i.e., the abstract model) is usually small for the examples
presented in Table 1, so every search strategy has a similar performance. We
created models with many T-invariants (i.e., a large solution space) to evaluate
the different search strategies. The results can be seen in Table 2, where the cost
corresponds to the size of the solution, i.e.,

∑
t∈T x(t). The two parameters in

the model name determine the number of invariants. The asterisk indicates a
different ordering of places and transitions.

Table 2. Measurement results for different search strategies

DFS BFS Complex

Model Time Cost Time Cost Time Cost

Chain 1+2 0,04 s 7 0,055 s 7 0,039 s 7
Chain 1+3 0,095 s 13 0,828 s 13 0,1 s 13
Chain 1+4 0,291 s 21 85,24 s 21 0,288 s 21
Chain 1+4* 24,2 s 35 55,28 s 21 1,498 s 29
Chain 1+5 54,59 s 39 TO 31 56,36 s 39
Chain 2+2 0,076 s 11 0,277 s 11 0,074 s 11
Chain 2+3 0,197 s 19 12,768 s 19 0,288 s 23
Chain 2+3* 2,28 s 29 5,288 s 19 1,387 s 23

It is clear that DFS is more efficient than BFS regarding computational time.
However, it often fails to find the minimal solution. Our combined strategy often
outperforms DFS, while also being closer to the minimal solution.

7 Conclusions

In our paper we examined an abstraction-based algorithm for the reachabil-
ity problem of Petri nets. From the theoretical point of view, we showed that
the original algorithm cannot decide reachability for relatively simple nets. We
presented a new iteration strategy based on distant invariants in order to over-
come this deficiency. We also gave theoretical results on the limits of our new
approach. From the practical point of view, we examined the behavior of the so-
lution space traversal with DFS and BFS strategies and we also proposed a new,
complex strategy based on a partial order between solutions. We demonstrated
the efficiency of our new approaches with measurements.
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