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Abstract . Very short-term probabilistic forecasts, which are essential for an optimal manage-
ment of wind generation, ought to account for the nonlinear and double-bounded nature of that
stochastic process. They take here the form of discrete-continuous mixtures of generalised
logit-Normal distributions and probability masses at the bounds. Both autoregressive and con-
ditional parametric autoregressive models are considered for the dynamics of their location and
scale parameters. Estimation is performed in a recursive least-squares framework with expo-
nential forgetting. The superiority of this proposal over classical assumptions about the shape
of predictive densities e.g. Normal and Beta, is demonstrated based on 10-minute ahead point
and probabilistic forecasting at the Horns Rev wind farm in Denmark.
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1. Introduction

In different areas of forecasting, both theoretical and practical developments are pointing
towards various forms of probabilistic forecasting. This has been the case in economics
and finance (Tay and Wallis 2000, Timmermann 2000), earthquake prediction (Kagan and
Jackson 2000), meteorology (Leutbecher and Palmer 2008), as well as for weather-related
processes like renewable energy production (Bacher et al. 2009, Pinson et al. 2007b) or
floods (Clocke and Pappenberger 2009). When considering continuous variables such as
wind power, they optimally take the form of predictive densities—equivalently referred to
as predictive distributions or density forecasts, giving the full probability density function of
the power random variable for a set of lead times. The optimal management and trading of
wind power calls for probabilistic forecasts (Pinson et al. 2007). This follows from a more
general result: for a large class of decision-making problems, optimal decisions directly
relate to quantiles of conditional predictive distributions (Gneiting 2011).

Lead times in the range of hours to days correspond to the needs of decision-makers
in view of the structure and operation of European electricity markets (Giebel et al. 2011,
Costa et al. 2008). They have thus attracted the most attention so far. Density forecasts
for these horizons are commonly based on statistical models for the “dressing” of point
predictions, conditional to weather conditions (Bremnes 2006, Møller et al. 2008, Pinson and
Kariniotakis 2010). Alternatively, they result from the dynamic post-processing of ensemble
forecasts of meteorological variables (Nielsen et al. 2006, Pinson and Madsen 2009, Taylor et
al. 2009). When wind power penetration reaches a certain level, and with large-scale wind
farms injecting power at a single point of the electricity network, it becomes crucial to also
have forecasts for horizons of a few minutes ahead. Characterising and modelling the power
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fluctuations at these time scales is recognised as a current challenge. Firstly, this is required
by the Transmission System Operator (TSO) in order to optimally operate reserves for the
continuous balance of the power system. In that case, the relevant horizons are defined as
1, 10 and 30 minutes (Sørensen et al. 2007). More specifically for the case of Denmark,
the TSO Energinet.dk has defined the 10-minute lead time as the most important one since
power fluctuations at this time scale are those that most seriously affect the balance in
the power system (Akhmatov 2007). This aspect directly motivates our choice to focus
on 10-minute ahead forecasts only. Secondly, very short-term predictions are needed as
input to the (offshore) wind farm controllers themselves with typical time steps between 5
and 15 minutes (Kristoffersen and Christiansen 2003, Sørensen et al. 2005). Finally, the
operation of wind-storage systems at temporal scales consistent with the temporal resolution
at which regulation is carried out in practise in some electricity markets e.g. 15 minutes
in the Netherlands, or 5 minutes in New Zealand and Australia, calls for very short-term
forecasts. Even though emphasis is placed on the 10-minute lead time only, extension to
further horizons can be the topic of future work. This may be based on the same predictive
distributions but with different input data and dynamics models.

For such short lead times, statistical models based on historical measurements only,
though taking advantage of meteorological and physical expertise on the problem at hand,
should be preferred. Running Numerical Weather Prediction (NWP) models for these tem-
poral resolutions with frequent updates would be clearly too expensive if not impossible
today. Also statistical approaches are known to outperform NWP-based ones for the fore-
casting of the power output of a wind farm at lead times less than a few hours (Giebel et
al. 2011). Examples of recent works on improving such statistical approaches, focusing on
the wind (speed and potentially direction) variable, include the regime-switching space-time
method introduced by Gneiting et al. (2006), and the multivariate wind vector models of
Hering and Genton (2009). Some other works have been focusing on capturing changes in
the wind field dynamics using e.g. Markov-switching approaches (Ailliot et al. 2006). In
parallel, Pinson and Madsen (2011) discuss the benefits of Markov-switching autoregressive
models for point and probabilistic forecasting of wind power generation at forecast horizons
of 10-minutes ahead.

We place ourselves in a parametric probabilistic forecasting framework, for which very
few proposals exist in the literature, especially at these lead times. Our core objective is to
discuss how wind power characteristics motivate the choice for specific types of predictive
distributions. A first crucial feature of the wind power variable is that it is double-bounded
between a minimum production of zero and a maximum one being equal to the nominal
capacity (denoted Pn) of the wind turbine, wind farm, or wind energy portfolio considered.
It is in parallel a nonlinear function of wind speed in the form of a sigmoid. Wind power
measurements and forecasts are normalised by Pn in the following. They then take values
in the unit interval [0, 1]. The time variations of Pn, if any, are commonly recorded for re-
cent wind farms. They can be used for an adaptive scaling of measurements and forecasts.
A consequence of the above is that predictive densities cannot be Gaussian. This is valid
whatever the temporal resolution of wind power time-series or the forecast horizon consid-
ered. Their higher-order moments are also directly related to their mean, and potentially
to some external signal. These two points have already been discussed in a number of pub-
lications (Lange 2005, Pinson 2006, Bludszuweit et al. 2008). To our knowledge however,
no work exists in the literature where these aspects have been appropriately taken into
consideration in a probabilistic forecasting framework. For illustrative purposes, Figure 1
depicts an episode with 2 days of successive 10-minute average power output at the Horns
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Rev offshore wind farm which will be the focus of the application and results part of the
paper.
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Figure 1. Episode of 2 days (288 time-steps, with a temporal resolution of 10 minutes) with wind
power measurements at the Horns Rev wind farm in Denmark.

We propose here a methodology for the probabilistic forecasting of wind power time-
series that account for these characteristics. Predictive densities take the form of discrete-
continuous mixtures consisting of a generalised logit-Normal (GL-Normal) distribution with
potential concentration of probability mass at the bounds of the unit interval [0, 1]. Given a
shape parameter, these predictive densities are fully characterised by a location and a scale
parameter only. By employing the related generalised logit transform for variance stabili-
sation, the obtained variable can be modelled with censored Gaussian distributions. After
preliminary definitions in Section 2, the forecasting methodology is described in Section 3.
Both model building and estimation aspects are subsequently dealt with in Section 4, with
focus on simple autoregressive (AR) models or more advanced conditional parametric au-
toregressive (CP-AR) models. These models are considered for the sake of example only and
could be further improved in the future. In the case of further lead times, say up to a few
days ahead, it should be envisaged to build models additionally accounting for the weather
dynamics as given by meteorological forecasts. The methodology is applied in Section 5
for the probabilistic forecasting of wind power generation at the Horns Rev wind farm in
Denmark, at lead times of 10 minutes. It is evaluated against some simple benchmarks,
as well as against other assumptions that could be made regarding the shape of predictive
densities e.g. Normal or Beta. The paper ends with concluding remarks in Section 6.

2. Preliminary definitions

Transformations are commonly employed for variance stabilisation, and to work in a Gaus-
sian framework. Besides the general class of power or Box-Cox transformations (Box and
Cox 1964), Johnson (1949) originally introduced the so-called logistic (or logit) transform,
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subsequently used for e.g. bounded economic variables (Wallis 1987). It directly relates to
using logit-Normal distributions for modelling the original effect (Aitchison and Shen 1980).
A generalisation of both the logit transform and of logit-Normal distributions is given below,
being appropriate for the case of wind power modelling and forecasting applications.

Wind power generation is a double-bounded process, thus making the logistic trans-
formation appealing. Owing to the different inflection in power curves for low and high
power values, a suitable transformation should allow for asymmetry. The generalised logit
(GL) transformation inspired by Mead (1965) hence comprises an ideal candidate. For an
original time-series {xt}, the generalised logit transform yt is given by

yt = γ(xt; ν) = ln

(

xν
t

1− xν
t

)

, ν > 0, xt ∈ (0, 1) (1)

while the inverse transformation, referred to as inverse generalised logit (IGL), is defined as

xt = γ−1(yt; ν) =

{

1 +
1

exp(yt)

}−1/ν

, ν > 0, yt ∈ R (2)

The GL transformation generalises the logistic one with an additional shape parameter ν
only. Its purpose is to influence the evolution of variance and skewness of these distributions
as a function of their mean. For ν = 1, one retrieves the more classical logit transforma-
tion, recently used by Lau and McSharry (2010) for wind power prediction. The aim of
employing such transformation is to work with a time-series {yt} for which the assumption
that conditional densities may be Gaussian is more appropriate. In parallel, in view of the
known relationship between conditional expectation and variance of wind power densities
(Pinson 2006, Bludszuweit et al. 2008), it is expected that the conditional variance of the
predictive densities for the transformed variable will be independent of their mean.

We introduce the generalised logit-Normal distribution (GL-Normal) based on the afore-
mentioned GL transform. It is denoted by Lν(µ, σ

2), where µ and σ are the location and
scale parameters, respectively. For a Gaussian variable Y ∼ N (µ, σ2), the transformed
variable X = γ(Y ; ν) is such that X ∼ Lν(µ, σ

2). By generalising the probability density
function of a univariate logit-Normal variable given by Aitchison and Shen (1980) and
Frederic and Lad (2008), we obtain that for the GL-Normal variable,

f(x) =
1

σ
√
2π

(

ν

x(1− xν)

)

exp

{

−1

2

[

γ(x; ν)− µ

σ

]2
}

, x ∈ (0, 1) (3)

We do not discuss here the moments of a variable that would be distributed GL-Normal.
One could carry out theoretical developments in the spirit of Aitchison and Shen (1980) to
derive some properties and perform comparisons with the class of logit-Normal and Dirichlet
distributions. It could also be envisaged to perform similar numerical developments as in
Frederic and Lad (2008) in order to visualize the moments of GL-Normal distributions as
a function of their location and scale parameters.

3. Forecasting methodology based on generalised logit-Nor mal distributions

Several authors e.g. Lange (2005) and Pinson (2006), have observed that the standard
deviation of the distributions of forecast errors was directly linked to its conditional expec-
tation, whatever the time of the year, horizon and forecast model. Appropriate predictive
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densities of wind power generation should account for and reproduce this observed feature.
Recently, some models for this relationship have been proposed (Pinson and Madsen 2009,
Bludszuweit et al. 2008, Usaola 2009). More precisely, Bludszuweit et al. (2008) looked at
second-order polynomial mean-variance models for obtaining the parameters of Beta distri-
butions when analysing the uncertainty of wind power forecasts, a posteriori. The models
they obtained had the general form of asymmetric logistic models. Based on a similar ob-
servation, Usaola (2009) modeled moments and cumulants of forecast error distributions
as a function of the level of predicted power, as input to power flow models. Finally Pinson
and Madsen (2009) introduced a logistic mean-variance model for the Gaussian kernels
used in the dressing of ensemble forecasts of wind power generation. Applying an appro-
priate GL-transform to wind power data allows dampening the effect: the variance of the
predictive densities for the transformed variable can then be assumed to be independent of
its mean.

Write {Xt} and {Yt} the stochastic processes whose realisations define the time-series
{xt} and {yt}, following the preliminary definitions of Section 2. Wind power generation is
null for wind speed values below cut-in speed, while being equal to nominal capacity when
wind speed is above the rated speed. The values for cut-in and rated wind speeds may well
vary depending upon the turbines and wind power portfolio considered. We consequently
propose to write the predictive density for the wind power generation Xt+k at time t+ k as

Xt+k ∼ ω0
t+kδ0 + (1− ω0

t+k − ω1
t+k)Lν(µt+k, σ

2
t+k) + ω1

t+kδ1 (4)

with δ0 and δ1 Dirac delta functions at 0 and 1, respectively, representing the potential
concentration of probability mass at the bounds of the unit interval. To be consistent, one
has

ω0
t+k, ω

1
t+k ∈ [0, 1], ω0

t+k + ω1
t+k ∈ [0, 1]

The main reason for the introduction of this concentration of probability mass at the
bounds is that the original variable to be GL-transformed must take values in (0, 1) only
(as expressed in (1)). For the case of wind power, these bounds are obviously reached on a
regular basis. Consider for instance issuing 10-minute ahead point forecasts of wind power
generation at Horns Rev (the test case site of Section 5). Point forecasts correspond to
the 1-step ahead conditional expectation of wind power production based on an AR model.
The distributions of observed wind power generation conditioned upon the prediction level
are depicted in Figure 2, for various power classes close to the natural generation bounds
for that wind farm. The non-negligible concentration of probability mass at these bounds is
visible from this Figure. In a general manner, other forms of distributions e.g. exponential
ones, could be used in (4) instead of probability masses at the bounds. This would reflect
that even if predicting zero (or nominal) power, there still may be some uncertainty.

Based on (4), but now considering Yt+k the GL-transform of Xt+k, the form of its
predictive density is given by

Yt+k ∼ ω0
t+kδ−∞ + (1− ω0

t+k − ω1
t+k)N (µt+k, σ

2
t+k) + ω1

t+kδ+∞ (5)

Similarly to the coarsening approach of Lesaffre et al. (2007) for the modelling of
outcome scores in [0, 1] using classical logit-Normal distributions, we define a threshold
value ǫ, being in the order of measurement precision, say ǫ ≤ 10−2. Wind power values
below or equal to ǫ (resp. above or equal to 1 − ǫ) are considered to be 0 (resp. 1). This
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Figure 2. Distributions of observed power conditional to the predicted expected power (within [0,2]
% of Pn, [2,4], [4,6], [94,96], [96,98], [98,100]). The same scale is used for the x axis in all bar plots.

translates to constraining the range of potential variations of the GL-transformed variable,
i.e. yt ∈ Dy = [γ(ǫ; ν), γ(1− ǫ; ν)]. One can consequently rewrite (5) as

Yt+k ∼ ω0
t+kδγ(ǫ;ν) +N (µt+k, σ

2
t+k)1D̄y

+ ω1
t+kδγ(1−ǫ;ν) (6)

where D̄y is the complement of Dy and 1D̄y
the indicator function for this open interval,

i.e.

1D̄y
=

{

1, y ∈ D̄y

0, otherwise
(7)

The weight (1 − ω0
t+k − ω1

t+k) does not appear anymore in (6). This is because the pre-
dictive density for Yt+k takes the form of a censored Normal instead. This permits to
straightforwardly derive the expressions for the weights ω0

t+k and ω1
t+k,

ω0
t+k = Φ

(

γ(ǫ; ν)− µt+k

σt+k

)

, ω1
t+k = 1− Φ

(

γ(1− ǫ; ν)− µt+k

σt+k

)

(8)

with Φ the cumulative distribution function of a standard Normal variable. Predictive
densities are then fully characterised by their location (µt+k) and scale (σt+k) parameters
only.

4. Dynamic models for the location and scale parameters

We aim to show the advantages of modelling and forecasting wind power time-series with
GL-Normal variables, not to discuss the superiority of certain dynamic models. Therefore
the developments gathered below concentrate on fairly simple dynamic models only. They
could however be extended to account for additional effects e.g. conditional heteroskesdatic-
ity or regime-switching dynamics. It would clearly call for modification of the estimation
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methods described. GL-Normal densities could also be envisaged for further lead times
(i.e. from a few hours to a few days ahead), for which appropriate statistical approaches
should account for the nonlinear transformation of the dynamic information provided by
meteorological predictions.

To give a brief overview of our approach, AR and CP-AR models are proposed for the
location parameter. In parallel, the scale parameter is viewed as constant in the former
case, or as a nonlinear function of the covariate conditioning the AR dynamics in the
latter one. Only AR types of dynamics are considered, as earlier results on similar offshore
data suggested that such dynamics for the mean are appropriate when considering short
lead times (Pinson and Madsen 2011). Extensive data analysis reported by Vincent et al.
(2010) and Vincent et al. (2011) showed that seasonalities were not observed at the Horns
Rev wind farm considered as a case study in the following. They are thus not accounted for
in the various models below. Model coefficients are adaptively and recursively estimated
based on an exponential forgetting of past observations. This proposal follows from various
results reported in the literature (Gneiting et al. 2006, Pinson and Madsen 2011, Sanchez
2006, Vincent et al. 2010, e.g. ) showing that parameters in dynamic models should be seen
as slowly changing over time. This is because the dynamics of the processes involved may
well vary at time scales of months, seasons and years, with features that cannot easily be
accounted for in the models themselves in a parametric framework.

4.1. Autoregressive dynamics
In the case of AR dynamics, the expression relating the location parameter µt+k to previous
observations writes

µt+k = θ
⊤
ỹt (9)

where θ = [θ0 θ1 . . . θl]
⊤ and ỹt = [1 yt . . . yt−l+1]

⊤. This is while the scale parameter
is defined as a constant, i.e. σ2

t+k = β.

The maximum lag l can be determined after examining the autocorrelation and par-
tial autocorrelation functions of the {yt} time-series, by minimisation of either Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), or finally through a
cross-validation exercise. Note that in the case of censored Normal variables, the location
parameter may take values outside of the range within which yt is constrained.

The {yt} time-series corresponds to realisations of censored Normal variables. It may
be argued that the vector of AR parameters θ can be estimated with either Least-Squares
(LS) or Maximum-Likelihood (ML) techniques. In the case of censored Normal variables,
the LS-estimator for the location parameter is certainly more subject to estimation bias
than the ML-estimator. Experiments on wind power generation data showed that the LS-
estimator of the location parameter was acceptable, while having the advantage of simplicity
of implementation if compared with the ML-estimator. This is the reason why we only
consider and describe the LS-estimator below.

The parameters θ are estimated within a Recursive Least Squares (RLS) framework
(Ljung and Söderström 1983, Madsen 2007). The scale parameter σt+k can similarly be
tracked accordingly. Recursive estimation offers the advantage that only the last available
measurements are used at each time step for updating the model parameters. This contrasts
with the more computationally-intensive idea of employing a sliding window, as done by
Gneiting et al. (2006) and Hering and Genton (2009), for which estimation is performed
on a bulk of data at each time step.
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The estimate of the parameters θt at time t is defined as

θ̂t = argmin
θ

t
∑

i=1

λt−i
(

yi − θ
⊤
ỹi−k

)2

(10)

where λ is the forgetting factor, λ ∈ (0, 1), allowing for the exponential forgetting of past
observations, for which the corresponding effective number of observations is defined as
nλ = (1− λ)−1. The value of the forgetting factor is typically slightly below 1.

In a recursive framework, the formulae for updating the LS-estimate of θt based on the
newly available information at time t summarises to

R̂t = λR̂t−1 + ỹt−kỹ
⊤

t−k (11)

θ̂t = θ̂t−1 + R̂−1
t ỹt−kεt (12)

where εt is defined as εt = yt − θ
⊤

t−1ỹt−k. Note that there is a direct correspondence of

the RLS estimator in the above with what would be the Kalman filter estimator of θ̂t in a
state-space framework. These aspects are extensively discussed by e.g. Madsen (2007) and
Li (2008). Consequently, it is interesting to note that the posterior distribution of the true

parameter θt given the available information up to time t− 1 is Gaussian with mean θ̂t−1

and covariance R̂−1
t−1 (Ljung and Söderström 1983, pp. 55-56).

The update (12) of the parameter estimates does not ensure that they will remain within
the stationary region. This does not appear to be a problem for the 1-step ahead forecasting
application. It would be more problematic if aiming at simulating the process over a period
of time or at issuing multi-step ahead forecasts. With time-varying parameters, it may also
well be that the parameter estimates cross into the nonstationary region and then get back
into the stationary one after few time steps.

Since the scale parameter is given by a constant only, its adaptive estimation at time
t can be performed thanks to an exponential smoothing scheme, being consistent with the
way we update the parameters of the dynamic model for µt+k. Owing to the sensitivity of
the GL transform close to the bounds of the unit interval, we have noticed that it would
be beneficial to robustify the exponential smoothing of the scale parameter. This can be
carried out by down-weighting observations when the location parameter gets closer to the
bounds. Our proposal for this weight is given by

wt = 4θ⊤

t ỹt−k

(

1− θ
⊤

t ỹt−k

)

, wt ∈ [0, 1] (13)

And the resulting exponential smoothing scheme writes

β̂t = λ∗

t β̂t−1 + (1− λ∗

t )
(

yt − θ
⊤

t ỹt−k

)2

(14)

with λ∗
t = 1− (1− λ)wt.

It appears appropriate to initialise θt with a vector of zeros, the resulting model hence
corresponding to white noise. βt may be initialised with a small value or alternatively
with an expert guess. In parallel, the inverse covariance matrix R̂t can be initialised as
an identity matrix times a small constant, yielding a small load on its diagonal. Only
the updating formula (11) is used for the first steps of the recursive estimation procedure
in order to gather sufficient information on the process characteristics. When that point
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is reached (say, for t > 50), both (12) and (14) are also employed at each time step for

updating the models for the location and scale parameters. Note that R̂t is necessarily
invertible in view of the updating performed in (11), as long as the underlying model is not
over-parametrized.

4.2. Conditional parametric autoregressive dynamics
If considering CP-AR dynamics instead, the constant parameters in (9) are replaced by
coefficient functions of some covariate, these functions being of unknown form,

µt+k = θ(ω)⊤ỹt (15)

where θ(ω) = [θ0(ω) θ1(ω) . . . θl(ω)]
⊤, while ỹt is defined as in (9). In parallel the model for

the scale parameter becomes an unknown function of this same covariate, i.e. σ2
t+k = β(ω).

The maximum lag l in the dynamic model above can be chosen similarly to that for the
more simple AR dynamics. Recent developments on conditional parametric and the more
general varying-coefficient models are reported in Fan and Zhang (2008).

The most obvious choice for ω is wind direction, since it directly induces shadowing
effects within a wind park, thus affecting the dynamic response of that wind park to mete-
orological conditions. Wind direction might also influence the wind speed dynamics them-
selves, as is the case at Horns Rev for instance (Vincent et al. 2010). We denote by ωt

the wind direction measurement at time t, ωt ∈ [0, 2π]. In view of the short lead times
considered in the test case application, conditioning the AR dynamics upon the wind direc-
tion measurement available at time t can be seen as reasonable. If focusing on further lead
times, it would certainly be beneficial to use wind direction forecasts instead.

The coefficient functions θ(ω) and β(ω) are estimated in a nonparametric framework,
i.e. without assuming a shape for these functions. The method for their adaptive and
recursive estimation combines local kernel regression and RLS with exponential forgetting.
The estimation procedure described below is in the spirit of Nielsen et al. (2000) and Pinson
et al. (2008), to which the reader is referred to for more details. The only assumption about
the coefficient functions is that they are sufficiently smooth to be locally approximated with
constants. The estimation problem reduces to locally fitting linear models at a number m
of fitting points ω(j). Defining these fitting points is best done by using information on the
distribution of ω.

Let us focus on a single fitting point ω(j) only. The objective function to be minimised
at each time t consists of a modified version of that used for adaptive estimation of the
AR-dynamic model considered above. The estimate of the set of local coefficients at ω(j)

and at time t is defined as

θ̂(j),t = argmin
θ(j)

t
∑

i=1

Λ(j),t(i)c(j),i

(

yi − θ
⊤

(j)ỹi−k

)2

(16)

where the weights c(j),i to be assigned to past observations are given by a Kernel function
of the form

c(j),i = T

( |ωi − ω(j)|
~(j)

)

(17)

In the above, |.| denotes a polar distance, being consistent with ω being a circular variable.
~(j) is the bandwidth of the kernel assigned to ω(j). T may for instance be chosen as a
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tricube function,

T (v) =

{
(

1− v3
)3
, v ∈ [0, 1]

0 , v > 1
(18)

In parallel in (16), Λ(j),t is the function that permits the exponential forgetting of past
observations, i.e.

Λ(j),t(i) =

{

λeff
(j),tΛ(j),t−1(i), 1 ≤ i ≤ t− 1

1 , i = t
(19)

λeff
(j),t is the effective forgetting factor for the fitting point ω(j). It follows the definition

given by Nielsen et al. (2000), which links λeff
(j),t and c(j),t so that

λeff
(j),t = 1− (1− λ)c(j),t (20)

where λ is the classical user-defined forgetting factor, λ ∈ (0, 1). This effective forget-
ting factor ensures that old observations are down-weighted only when new information is
available.

A little algebra, which is skipped here since extensively covered by Nielsen et al. (2000)
and Pinson et al. (2008), yields the set of recursive formulae for the adaptive estimation of

the local coefficients θ̂(j),t,

ε(j),t = yt − θ̂
⊤

(j),t−1ỹt−k (21)

R(j),t = λeff
(i),tR(j),t−1 + c(j),tỹt−kỹ

⊤

t−k (22)

θ̂(j),t = θ̂(j),t−1 + c(j),tR
−1
(j),tỹt−kε(j),t (23)

One sees that when the weight c(j),t equals 0 (thus meaning that the local estimates should

not be affected by new information), then one has θ̂(j),t = θ̂(j),t−1 and R(j),t = R(j),t−1.
This confirms the role of the effective forgetting factor, i.e. to down-weight old observations,
but only when new information is available.

In parallel, one has to estimate β̂(j),t, the local constant that defines the scale parameter
at time t and at ω(j). As an extension to (14), it is given by

β̂(j),t = λ∗

(j),tβ̂(j),t−1 + (1− λ∗

(j),t)
(

yt − θ
⊤

(j),tỹt−k

)2

(24)

with λ∗

(j),t = 1− (1− λ)wtc(j),t, wt still being defined by (13).
When starting the recursive process, the local inverse covariance matrices R(j),t, as well

as the local parameter estimates θ̂(j),t and β̂(j),t, can be initialised for all fitting points as

in Section 4.1 for the case of AR dynamics. The value of the parameter estimates θ̂t(ω)

and β̂t(ω) for any ω can then be obtained by interpolation through the estimated local
parameters at the various fitting points ω(j) (j = 1, . . . ,m).

5. Application and results

Focus is given here to the application of the methodology and models described above to the
test case of an offshore wind farm, for 10-minute ahead forecasting of wind power production.
Such lead time corresponds to one-step ahead forecasts in view of the temporal resolution
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of the time series considered. Note though that the methodology has been introduced for
general direct k-step ahead forecasting. Indeed, one could work along the lines of Gneiting
et al. (2006) for instance, and build models for direct 2-step ahead forecasting. Statistical
models based only on historical measurements are in order for forecast horizons up to 6-8
hours ahead. However for horizons further than one hour ahead, dynamic information from
meteorological forecasts permits to significantly improve forecast accuracy (Giebel et al.

2011, Costa et al. 2008).
The test case and available data are introduced in the first stage, followed by a detailed

description of the model configuration and estimation setup employed. The paper also
discusses the way forecasts are evaluated, as well as the benchmarks considered. Application
results and related comments are gathered at the end.

5.1. Test case and available data
We consider the case of the offshore wind farm located at Horns Rev, off the west coast of
Jutland in Denmark. This wind farm has a nominal capacity Pn of 160 MW. The original
wind and power measurement data includes raw one-second measurements for each wind
turbine. Focus is given to the total power output, normalised by Pn, and to the average wind
direction for the wind farm. An averaging procedure has been developed in order to obtain
time-series of 10-minute wind direction and power averages. This averaging rate makes
the very fast fluctuations related to the turbulent nature of the wind disappear and reveal
slower fluctuations at the minute scale. Because there may be some erroneous or suspicious
data in the raw measurements, the averaging procedure has a threshold parameter τv, which
corresponds to the minimum percentage of data needed to be considered as valid within a
given time interval, so that the related power (or wind direction) average is also considered
as valid. Choosing a sufficiently high value for τv permits to avoid sampling effects in
the averaging procedure that would impact the representativeness of the average values
obtained. The threshold chosen is τv = 75%. The available raw data is from 16th February
2005 to 25th January 2006, consisting of 49536 data points. As a result of the averaging
procedure, the wind direction and power generation dataset consists of 41651 valid data
points.

5.2. Model configuration, estimation setup and benchmarking
From the available data, two periods are defined, the first one being used for identification
(and initial training) of the statistical models, and the second one for evaluating what the
performance of these models may be in operational conditions. The first 15120 data points
(with 11968 valid ones) are employed as the learning set, exactly covering the months from
February to May 2005. The remainder of the dataset, covering a period from June 2005
to January 2006, is used for out-of-sample evaluation of 1-step ahead forecast performance.
This evaluation set contains 34536 data points, including 29683 valid ones.

Over the learning period, a part of the data is used for one-fold cross validation (the last
9000 points) in order to select an optimal autoregressive order for the dynamic models, the
values of the forgetting factors, the shape parameter of the GL-transformation, as well as the
fitting points and bandwidths for the case of the conditional parametric models. Actually,
instead of considering the forgetting factor itself, it is preferred to use the corresponding
effective number of observations nλ. It allows one to better appraise the size of the equivalent
‘sliding window’ in the adaptive estimation of the dynamic model parameters, such as that
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considered by Gneiting et al. (2006) and Hering and Genton (2009). In parallel, the
censoring parameter ǫ is arbitrarily set to ǫ = 0.001, corresponding to the resolution of the
power measurements. Selection of optimal values for the model structure and parameters
nλ and ν is done in a trial-and-error manner, by evaluating the results obtained from a set
of different setups. For more information on cross validation, we refer to Stone (1974). The
criterion to be minimised over the cross-validation set is the Continuous Rank Probability
Score (CRPS) of 1-step ahead density forecasts. The CRPS is a common proper skill score
used for the evaluation of density forecasts (Gneiting et al. 2007). For the CP-AR dynamics,
the bandwidth values are selected similarly.

Focusing on the order of the various models first, results from Pinson and Madsen
(2011) suggest that a maximum lag l = 3 is sufficient for capturing the dynamics in offshore
wind power fluctuations with a 10-minute resolution, at the Horns Rev wind farm. We
verified that for all models considered, a significant decrease in 1-step ahead CRPS values
can be observed when augmenting l up to l = 3, and that no further benefit is obtained by
further increasing the value of l. Applying a parsimonious model principle, we then decide
to concentrate on models of order l = 3 only. In all cases, the AR models are initialised as
simple random walk models, with very low variance of predictive densities.

In the case of the GL-Normal densities and AR dynamics, one may consider the selection
of nλ and ν to be performed simultaneously or iteratively. It has been observed for the
data of the present case-study that both ways yielded similar results. We thus present
them below in Figure 3 after nλ and ν were optimised one after the other, iteratively.
More precisely, Figure 3(a) depicts the variations in 1-step-ahead CRPS for ν fixed to its
optimal value, and with nλ varying between 100 and 10.000, with steps of 100 observations.
Similarly, Figure 3(b) shows the evaluation of the 1-step-ahead CRPS for nλ fixed to its
optimal value, and with ν varying between 0.2 and 5, with increments of 0.2. The overall
minimum 1-step-ahead CRPS value on the cross-validation set is obtained for nλ = 2500
(corresponding to approximately 17.5 days) and ν = 3.2. This optimal value for nλ is
smaller than the 45 days deemed optimal for the sliding estimation windows of Gneiting et

al. (2006) and Hering and Genton (2009) when considering lead times of 2 hours. The
speed of change in the characteristics of wind and power dynamics certainly depends upon
the temporal resolution of the time-series. It may also be related to the local wind climate:
the offshore wind farm at Horns Rev is known for particular characteristics of its wind and
power dynamics (Pinson and Madsen 2011, Vincent et al. 2011).

Figure 3(b) demonstrates the interest of introducing the generalised form of the logit
transformation and hence to generalise the use of the more classical logistic transform by
Lau and McSharry (2010): a significant decrease in CRPS is seen for ν > 1, i.e. when
considering negatively-skewed mean-variance relationships for the GL-Normal predictive
densities. Our proposal probabilistic forecasting methodology seems to be fairly robust
with respect to the choice of nλ and ν values, as the 1-step-ahead CRPS of predictive
densities does not vary much for nλ ∈ [2000, 4000] and for ν ∈ [2.5, 3.5].

Turning our attention to the GL-Normal predictive densities with CP-AR dynamics, an
exercise similar to that performed above led to the same values for nλ and ν, i.e. nλ = 2500
and ν = 3.2. In addition, the location of the fitting points and related bandwidth values for
the local fitting of coefficient functions have to be selected. It has been arbitrarily decided
to use 16 fitting points, as such a number allows a fairly good coverage of potential wind
directions values, while limiting the computational power needed. The spreading of these
fitting points has been performed in view of the distribution of wind direction values over
the learning period, i.e. such that there is the same frequency of data between any two
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Figure 3. Evolution of the 1-step-ahead CRPS of GL-Normal density forecasts of wind power gen-
eration based on simple AR-dynamics. These results are obtained on the cross-validation set, as a
function of the parameters nλ and ν.

successive fitting points. Regarding the Kernel bandwidth in (17), both fixed and nearest-
neighbour bandwidths have been envisaged. The latter concept was preferred, in order to
be consistent with the idea introduced above, so it would be more consistent to respect the
distribution of wind direction data when defining the fitting points. Following Nielsen et

al. (2000), the nearest-neighbour bandwidth is defined by the share of the (wind direction)
data that should be covered by the Kernel attached to any single fitting point. This share
is chosen here to be 60% in order to obtain sufficiently smooth variations of the coefficient
functions in the CP-AR model. Smaller values have been tested, though not improving
the forecast performance of the model over the cross-validation set. The resulting setup
for the fitting points and related bandwidth values is depicted in Figure 4, along with the
corresponding wind rose at Horns Rev. In the polar representation of Figure 4(b), the polar
coordinates give the location of the fitting points, while the bandwidths values are given
by the ordinate of the various points. It is visually straightforward to recognise that less
fitting points and higher bandwidth values are present in areas with less data available.

As a basis for the evaluation of the forecast performance of the methodology introduced
in the paper, different types of benchmark methods are considered, some of them being
reviewed by Giebel et al. (2011), Costa et al. (2008) and Pinson and Madsen (2011). First
of all for point forecasting the persistence forecast method, for which the forecast at time
t+k is given by the measurement available at time t, is known to be difficult to outperform
for short lead times. Another basic benchmark is an extension of persistence based on the
average of the last few measurements. To be consistent with the autoregressive orders of
the models employed here, this moving average benchmark consists of the average of the
last 3 measurements. In parallel the most common benchmark for probabilistic forecasts of
meteorological or weather-related processes is climatology, which is based on always issuing
the same unconditional predictive density built from all historical observations available.
Since climatology is fairly easy to outperform for short lead times, we also consider the
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Figure 4. Wind rose, fitting points and related bandwidths values based on the distribution of wind di-
rection values over the learning set. All values are in degrees, following the trigonometric convention.

probabilistic generalization of persistence based on a random walk model as a benchmark.
At a given time this probabilistic forecast takes the form of a Gaussian predictive density
with its mean given by the last available power measurement and its variance resulting
from exponential smoothing of past squared residuals. For consistency, this exponential
smoothing uses the same forgetting factor as for the more advanced approaches considered,
i.e. with nλ = 2500.

The main objective of the present paper is to demonstrate the interest of considering
GL-Normal distributions for wind power prediction. As a basis for comparison, we there-
fore consider similar forecasting methodologies based on more classical assumptions about
the shape of predictive densities, but with the same dynamical models for their location
and shape parameters. For point forecasting the common assumption is that of a Normal
distribution, while in a probabilistic forecasting framework, the most common ones are (cen-
sored) Normal or Beta distributions (Bludszuweit et al. 2008, Pinson and Madsen 2011).
Additional point and probabilistic forecasts based on these assumptions will be seen as a
benchmark. Results will be given for AR models only, and labelled as ‘Normal AR’ and
‘Beta AR’. The optimal value found for the effective number of observations nλ is nλ = 2000
(corresponding to approximately 14 days) for the case of both assumptions on predictive
densities.

5.3. Results and comments
A fully probabilistic approach to forecast evaluation is employed. This means that focus is
given to evaluating the quality of predictive densities, including their reliability and overall
skill, as well as to assessing the quality of some point forecasts that can be extracted from
such predictive densities. Following the point of Gneiting (2011) among others, one should
extract the optimal point forecasts from predictive densities based on the target evaluation
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Table 1. Monthly results for the evaluation of point forecasts extracted from density forecasts:
focus on the NMAE for the median (in % of the nominal capacity Pn). Best score values are
highlighted using bold fonts.

Month Jun. Jul. Aug. Sept. Oct. Nov. Dec. Jan. All

Moving average 3.44 3.28 3.47 3.62 3.47 3.57 3.60 3.62 3.50
Persistence 2.40 2.43 2.50 2.50 2.40 2.59 2.61 2.47 2.48
Normal AR 2.34 2.42 2.48 2.43 2.33 2.64 2.63 2.45 2.45

GL-Normal AR 2.32 2.35 2.43 2.38 2.28 2.47 2.54 2.40 2.38
GL-Normal CP-AR 2.31 2.34 2.42 2.37 2.26 2.47 2.53 2.36 2.36

Table 2. Monthly results for the evaluation of point forecasts extracted from density forecasts:
focus on the NRMSE for the expectation (in % of the nominal capacity Pn). Best score values
are highlighted using bold fonts.

Month Jun. Jul. Aug. Sept. Oct. Nov. Dec. Jan. All

Moving average 5.70 6.06 5.93 6.35 5.79 8.06 6.35 5.88 6.31
Persistence 3.98 4.68 4.47 4.66 4.17 6.23 4.76 4.28 4.70
Normal AR 3.80 4.56 4.36 4.46 3.97 6.00 4.62 4.20 4.54

GL-Normal AR 3.81 4.57 4.32 4.43 3.96 5.87 4.55 4.12 4.50
GL-Normal CP-AR 3.79 4.53 4.30 4.42 3.93 5.87 4.56 4.08 4.47

score. Indeed, the median of predictive densities should be selected if the target evaluation
score is of the Mean Average Error type (abbreviated MAE, or NMAE for its normalised
version). Similarly, if the target score is of quadratic nature like the Root Mean Square
Error (RMSE, or NRMSE for its normalized version), the optimal point forecast to be
extracted is the expectation of predictive densities.

In view of these aspects, we focus first on the quality of point forecasts related to
the median and expectation of predictive densities, since the corresponding NMAE and
NRMSE scores appear to be the most employed in the wind power forecasting literature
(Giebel et al. 2011, Costa et al. 2008, Madsen et al. 2005). Owing to the length of the
evaluation set (approximately 8 months), it has been chosen to study these scores overall
and on a monthly basis. The evaluation results for point forecasts based on the persistence
and moving-average benchmarks, as well as for the Normal-AR, and the proposed GL-
Normal AR and CP-AR predictive densities, are collated in Tables 1 and 2. Whatever the
score considered, the persistence benchmark indeed seems competitive: the more advanced
approaches only propose overall improvements up to 5%. This is due to the inertia in local
atmospheric processes at such temporal scales. Persistence has a clear advantage over the
other moving-average benchmark, for which all score values are much higher. Even though
monthly fluctuations can be observed in the NMAE and NRMSE scores, it appears that the
Normal AR benchmark almost consistently outperforms the persistence and moving-average
benchmarks, while being outperformed by the point forecasts extracted from GL-Normal
predictive densities. A slight gain in point forecast accuracy is also seen if considering that
the moments of GL-Normal predictive densities may vary as a function of wind direction,
as is the case with the CP-AR dynamic model. The recent work of Gallego et al. (2011),
where it was shown that for short lead times wind direction influences power dynamics
in a smooth manner and that this should be accounted for in statistical approaches to
forecasting, confirms our results.

In the second stage, we look at the quality of predictive densities, concentrating first on
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Table 3. Monthly results for the evaluation of density forecasts with a CRPS criterion (in % of the
nominal capacity Pn). Best score values are highlighted using bold fonts.

Month Jun. Jul. Aug. Sept. Oct. Nov. Dec. Jan. All

Climatology 18.67 19.75 20.07 18.61 19.79 24.65 21.81 21.63 20.47
Persistence 2.30 2.06 2.03 2.06 1.96 2.35 2.29 2.02 2.12
Normal AR 1.85 2.01 1.99 1.98 1.87 2.31 2.23 1.97 2.01
Beta AR 1.81 1.91 1.96 1.93 1.78 2.08 2.08 1.90 1.92

GL-Normal AR 1.76 1.80 1.86 1.86 1.81 1.93 1.92 2.03 1.86
GL-Normal CP-AR 1.73 1.78 1.82 1.81 1.71 1.94 1.88 1.79 1.80

their overall skill by employing the CRPS criterion, being a proper skill score. Extensive
discussion about the evaluation of probabilistic forecasts through the use of proper scoring
rules can be found in Gneiting et al. (2007). Similar to the above, the CRPS criterion is
calculated on a monthly basis as well as globally. Evaluation results are gathered in Table 3,
for the two basic benchmarks (climatology and the probabilistic extension of persistence),
Normal-AR and Beta-AR predictive densities, and finally for the proposed GL-Normal AR
and CP-AR probabilistic forecasts.

The improvements in terms of the CRPS criterion are significant when going from the
Normal predictive densities to GL-Normal predictive densities, in the order of 7.5%, and
consistent over the evaluation period. The fact that Beta predictive distributions have a
varying shape consistent with the double-bounded nature of wind power is reflected by
the CRPS values for the Beta-AR predictive densities. The additional feature of GL-
Normal distributions consisting of their natural mean-variance relationship still gives them
an advantage though. Like for the case of point forecasts in the above, an additional
improvement is observed if considering that the parameters of GL-Normal densities should
be made a function of wind direction. The overall decrease in the CRPS criterion when going
from Normal predictive densities with AR dynamics to GL-Normal predictive densities with
CP-AR dynamics is of 10.5%. The climatology benchmark is dramatically outperformed
in all cases, while the probabilistic extension of persistence still appears as a competitive
benchmark. Overall, non-negligible benefits may be achieved by proposing adequate models
for the wind power dynamics combined with an improved assumption about the shape of
predictive densities.

We somehow expect that such improvement comes from the fact that GL-Normal pre-
dictive densities are more probabilistically reliable (or in other words, calibrated) than the
Normal ones. Calibration of predictive densities can be assessed through the use of e.g.
Probability Integral Transform (PIT) histograms, as carried out by Gneiting et al. (2006),
or with reliability diagrams in the form of quantile-quantile plots, as in Figure 5. Such re-
liability diagrams depict the observed proportions of a set of quantile composing predictive
densities of wind power generation against the nominal ones (Pinson et al. 2007b). Here
the set of quantiles is defined with a step of 5% in their nominal proportions. This assess-
ment of the reliability of calibration of the quantiles composing predictive densities directly
builds on their very definition: a quantile forecast with nominal proportion α should cover
the actual observation α% of the time. Climatology is not represented since it has perfect
marginal calibration.

Normal-AR predictive densities introduce a systematic and significant probabilistic bias
in the probabilistic forecasts they provide. Predictive densities seem to be too wide on
average, since observed proportions are larger than the nominal ones for nominal proportions
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Figure 5. Evaluation of the reliability of predictive densities with reliability diagrams in the form of
quantile-quantile plots.

above 0.5, and inversely for nominal proportions below 0.5. A simple explanation is that
the variance of predictive densities is not conditional to the level of wind generation. Since
wind generation is quite often at a medium level, the exponentially smoothed error variance
used for the variance of predictive densities is fairly high. The variance is consequently
over-predicted when wind generation is at a low and high level. The calibration results for
the persistence benchmark are very close to that of Normal-AR predictive densities owing
to the similarity in their definition. In contrast when employing GL-Normal distributions
for probabilistic forecasting, predictive densities do not tend to be systematically over- or
under-dispersive due to their natural mean-variance relationship. This appears to be valid
for both types of dynamics considered for the mean of predictive densities. Similarly to GL-
Normal predictive densities, the Beta-AR densities have an acceptable level of reliability
due to their natural shape variations as a function of their location parameter.

It was argued that the doubled-bounded nature of wind power generation causes the fact
that the shape of predictive densities ought to vary depending upon the power level. This
motivated the proposal of GL-Normal predictive densities. In parallel following Gneiting et

al. (2007) and other authors, the correspondence of predicted probabilities and observed
frequencies should be verified for the evaluation set as a whole but potentially also for any
subset. The calibration of predictive densities is hence further investigated as a function of
the level of power, in a spirit similar to that of Pinson et al. (2007b). Mutually exclusive
subsets of the evaluation set are defined based on measurements, so that they are the same
for all probabilistic forecasting approaches, following the proposal for calibration assessment
based on forecast strata introduced and extensively discussed by Bröcker (2008). The
criterion employed for quantifying the lack of calibration of predictive densities is the Mean
Absolute Deviation from Calibration (MADC), defined as the integrated absolute difference
between the reference case of perfectly calibrated forecast and the observed proportions of
the quantiles of predictive densities. It then represents the area between the reliability



18 P. Pinson

Table 4. Results for the evaluation of the calibration of predictive densities conditional
to the level of measured power and overall, with the MADC criterion (in %).

Level [0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,1] Overall

Climatology 38.86 26.64 20.03 23.33 34.91 0
Persistence 7.85 6.92 5.99 5.78 5.99 5.82
Normal AR 19.38 10.71 2.99 2.70 11.61 7.91
Beta AR 21.71 10.56 3.28 2.26 16.75 2.41

GL-Normal AR 6.50 3.43 6.34 5.80 6.85 2.85
GL-Normal CP-AR 9.19 1.78 3.45 3.17 11.15 2.22

curves and the diagonal as in the case of the reliability diagram of Figure 5. Lower MADC
values indicate more reliable predictive densities. It is calculated in the case of the whole
evaluation set and over subsets defined by various ranges of measured wind power, e.g.
when normalized wind power generation is between 0 and 0.2. The corresponding results
are summarised in Table 4, with the “overall” column giving the MADC values for the
reliability assessment presented in Figure 5.

Climatology has perfect reliability when evaluated over the whole evaluation set since
predictive densities are unconditional and directly derived from the collected measurements.
This unconditional nature is clearly affecting its reliability when assessed over the various
subsets defined by the level of observed wind power owing to the level-varying characteristics
of the stochastic process. A similar result can be observed for the case of Normal-AR and
Beta-AR predictive densities for low and high power values. For medium power values,
the low MADC values indicate that both Normal and Beta assumptions, as well as the
related variance estimation, are fairly acceptable. When looking across the various levels of
measured power and at overall results, both persistence and GL-Normal predictive densities
seem to be better calibrated. One remembers, however, that calibration is only one aspect
of probabilistic forecasting skill (Gneiting et al. 2007). Appropriate ranking of competing
approaches can only be carried out based on the skill score values of Table 3. Based on all the
results presented, GL-Normal predictive densities appear to be best, with a fair advantage to
the CP-AR dynamics for their location and scale parameters. And even if persistence seems
to have an acceptable calibration, this does not translate to these benchmark probabilistic
forecasts having a competitive skill level (as seen from Table 3).

For illustrative purposes, Figure 6 depicts an episode with 375 successive time-steps
of quantile forecasts (with nominal proportions 0.05 and 0.95) extracted from GL-Normal
predictive densities with CP-AR dynamics, along with the corresponding measurements.
One can easily observe that the predictive densities are naturally bounded between 0 and 1,
and that the variance of GL-Normal densities is larger when the conditional expectation of
the process is at a medium level. It is harder though to see that both dynamics and variance
of the predictive densities are a function of the wind direction onsite. Let us have a look at
some of the parameters of the CP-AR dynamic model, more specifically the coefficient for
the first autoregressive lag, as well as the variance of the GL-Normal predictive densities, at
the end of the evaluation set. These various quantities are represented in polar coordinates
in Figure 7. Variations as a function of the wind direction ω can be observed. The variance
of predictive densities appears to be significantly higher for Westerly and North-Westerly
winds, and lower for the other sectors. This is in line with the extensive wind data analysis
performed by Vincent et al. (2010) and Vincent et al. (2011) based on meteorological
measurements obtained at Horns Rev. It was observed that wind fluctuations (and by
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extension wind power fluctuations) tend to have a higher variance for winds coming from
the North Sea, thus from Westerly and North-Westerly directions, than for winds coming
from land.
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Figure 6. Episode of 375 time-steps (with a time resolution of 10 minutes), with quantile forecasts of
nominal proportions 0.05 and 0.95, along with related normalised wind power measurements. These
quantile forecasts are extracted from the predictive densities with CP-AR dynamics.
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Figure 7. Some of the CP-AR model parameters as a function of the wind direction ω at the end of
the evaluation set.
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6. Concluding remarks

A generalization of the logit-Normal distribution was introduced in order to properly ac-
count for the nonlinear and double-bounded nature of wind power generation in short-term
probabilistic forecasting. It was observed that its characteristics make it more appropri-
ate than the more commonly assumed Normal and Beta distributions. We believe that
GL-Normal distributions could be viewed as a basic feature of parametric probabilistic
forecasting methodologies for lead times between a few minutes and a few days ahead. Be-
ing fully characterised by a location and a scale parameter only (assuming that the shape
parameter is a meta-parameter estimated once and for all from available data), fairly simple
models can be employed for the description of its dynamics.

In our proposal forecasting methodology, predictive densities of wind power take the
form of discrete-continuous mixtures consisting of these GL-Normal distributions with po-
tential concentration of probability mass at the bounds of the unit interval [0, 1]. These
mixtures could be rethought in the future based on further data analysis and if looking
at longer lead times. Since forecast uncertainty may not be null when predicting zero or
nominal power, probability masses should be replaced by exponential distributions, the pa-
rameters of which would then also have to be estimated. For these more general mixtures,
it will certainly be beneficial to develop estimation methods in a dynamic (Bayesian) model
averaging framework, as in Raftery et al. (2010).

The models employed for the location and scale parameters of the predictive densities
account for the autoregressive nature of the wind power generation process, as well as
the non-linear influence of wind direction. For further lead times and multi-step ahead
forecasting some of the numerous models described in the literature could be employed
for the dynamics of GL-Normal distribution parameters. They could for instance account
for additional effects and covariates, like meteorological measurements which are known
to be important for short lead times (Gallego et al. 2011), or meteorological forecasts for
lead times further than 6 hours ahead. More particularly for very short-term forecasts, the
proposal of new dynamic models should be supported by some of the recent and extensive
data analysis studies performed based on wind, wind power and other meteorological data.
For the case of this offshore site, the results from Pinson and Madsen (2011) suggest
that regime-switching may be present in the time-series of wind power generation. This is
confirmed by the results of Vincent et al. (2011) explaining that these switches relate to
local thermal effects, atmospheric stability and to the presence of convective cells in the
vicinity or over this site. Regime-switching approaches are also relevant for onshore sites
especially in complex terrain environments, as investigated by Gneiting et al. (2006) when
focusing on wind channelling effects.

GL-Normal distributions should also be considered for the modelling and forecasting of
other nonlinear and bounded processes where it is expected or known that the effects of
the bounds are not symmetrical, as for bounded economic variables (Wallis 1987). For the
wind power application, the shape parameter ν of GL-Normal distributions will surely vary
from site to site. In a more general manner, this parameter will depend upon the process
considered and should be estimated from data. The cross-validation approach employed
here yielded acceptable results. It may however be envisaged to develop a more rigorous
framework based on e.g. maximum likelihood estimation for selecting ν.
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