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Abstract—Sequence sets with good periodic correlation proper-
ties can be used in many areas, including communications, med-
ical imaging, radar (such as over-the-horizon radar) and sonar.
Practical hardware constraints, such as power amplifiers, usually
require the transmitted waveforms be unimodular. We present
herein new computationally efficient algorithms that can beused
for the design of unimodular sequence sets with essentiallyzero
auto-correlation sidelobes and cross-correlations in a specified
time lag zone, as well as of sequence sets with good correlations
over all time lags. The proposed algorithms start from random
phase initializations and can generate many different sequence
sets (including very long sequence sets) possessing similarly good
correlation properties.

I. I NTRODUCTION

Let {xm(n)} (m = 1, . . . ,M and n = 1, . . . , N ) denote
a set ofM sequences, each of which is of lengthN . Every
element of the sequence set is a complex-valued number that
is unimodular:|xm(n)| = 1. The periodic cross-correlation
between themth

1 andmth
2 sequence at time lagk is defined by

rm1m2
(k) =

N
∑

n=1

xm1
(n)x∗

m2
(n− k modN) (1)

=r∗m2m1
(−k) = r∗m2m1

(N − k)

m1,m2 = 1, . . . ,M andk = 0, . . . , N − 1.

When m1 = m2, the correlation above becomes the auto-
correlation.

Sequence sets having low (or even zero) auto- and cross-
correlations are useful in many application areas. In radar
range compression, low auto-correlations improve the detec-
tion of weak targets [1]; in code division multiple access
(CDMA) systems, low auto-correlation helps with synchro-
nization and low cross-correlation reduces interference from
other users [2]; and the situation is similar in many other
applications like ultra-sonic imaging [3].

Since the early research on maximum-length sequences (m-
sequence) in the 1950s, many sequence families with good
correlations have been proposed, such as the Gold sequences
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[4], the Kasami sequences [5] and many others [6][7][8][9].
Some of the sequence sets asymptotically meet the Welch
bound, which is a theoretical lower bound of correlations
derived in [10]. [11] extends the Welch bound to the situation
that correlation sidelobes can be made zero within a time lag
zone (here and after, correlation sidelobes denote both auto-
correlation sidelobes and cross-correlations); these sequences
are referred to as the zero-correlation zone (ZCZ) sequences.
Again, plenty of literature is available on ZCZ sequences, see,
e.g. [12][13][14][15] and the references therein.

In this paper we extend our earlier works [16][17][18]
and propose two new cyclic algorithms for the design of
unimodular sequence sets with low periodic correlations. The
first algorithm can be used to generate sequence sets with
almost zero correlation sidelobes in a specified time lag
interval; these designed sequence sets are essentially ZCZ
sequence sets. The second algorithm aims at achieving good
correlations for all time lags; it is based on FFT computations
and thus can efficiently generate sequence sets of large sizes.
Unlike most existing sequence construction methods which are
algebraic and deterministic in nature, both proposed algorithms
start from random initializations and then proceed to cyclically
minimize the desired metrics. In this way we can generate
many different sequence sets bearing similarly good corre-
lation properties; these randomly distributed sequences are
especially useful in applications such as to counter coherent
repeater jamming in radar systems (see, e.g., [19][20]).

Notations: We use bold lowercase and uppercase letters to
denote vectors and matrices, respectively.(·)H denotes the
complex conjugate transpose,‖·‖F the Frobenius matrix norm
andIn the n× n identity matrix.

II. PECA

Let Xm denote the right circulant matrix related to themth

sequence:

Xm (2)

=











xm(1) xm(2) · · · xm(N)
xm(N) xm(1) · · · xm(N − 1)

...
...

xm(N − P + 2) · · · xm(N − P + 1)











P×N

,



that is, every row ofXm is a cyclically-shifted version of the
sequence{xm(n)}Nn=1 andXm hasP rows (0 < P ≤ N ).
We stack all{Xm} together:

X =







X1

...
XM







MP×N

(3)

and the outer-product ofX brings in the correlations:

XXH =











R11 R12 · · · R1M

R21 R22 · · · R2M

...
...

RM1 RM2 · · · RMM











MP×MP

(4)

where

Rm1m2
(5)

=













rm1m2
(0) rm1m2

(1) · · · rm1m2
(P − 1)

rm1m2
(−1)

. . .
. . .

...
... rm1m2

(1)
rm1m2

(−P + 1) · · · rm1m2
(0)













.

Note thatrm1m2
(k) (k = −P + 1, . . . , P − 1) appearsP −

|k| times in the above Toeplitz matrix, so more emphasis is
given to the correlations of smaller time lags. Moreover, all
diagonal elements in theMP × MP matrix in (4) are the
in-phase auto-correlations and are equal toN (a constant).
Therefore we can minimize all cross-correlations and out-of-
phase auto-correlations within theP time lags by minimizing
the following criterion:

CP =
∥

∥XXH −NIMP

∥

∥

2

F
. (6)

(Although not explicit in notation, the size of the matrixX is
also dependent onP ).

A close scrutiny of the criterionCP leads to the fact that
only for P ≤ N/M is it possible to minimizeCP to zero. If
MP > N , the matrixX in (3) will be “tall” and the rank of
XXH will be at mostN . In this case the rank ofXXH is
always smaller than the rank ofIMP no matter what sequences
we choose, which means thatCP cannot be minimized to zero.
As a matter of fact, the conditionP ≤ N/M coincides with
the theoretical bound shown in [11].

WhenP ≤ N/M , it is easy to observe thatCP becomes
zero if X is a semi-unitary matrix. Therefore, instead of min-
imizing CP directly, we consider the following minimization
problem:

min
{xm(n)},U

∥

∥

∥
X−

√
NU

∥

∥

∥

2

F
(7)

s.t. |xm(n)| = 1, m = 1, . . . ,M andn = 1, . . . , N

UUH = I

whereU is anMP ×N semi-unitary matrix that serves as an
auxiliary matrix.

Eq. (7) can be solved in the following cyclic way.X is
first initialized by a set of randomly generated unimodular

sequences. Then (7) is iteratively minimized by fixingX to
computeU, then fixingU to computeX and so on, until a
given stop criterion is satisfied. During this iterative process,
bothU andX have closed-form updating formulae. We refer
the readers to the cyclic algorithm (CA) proposed in [16] for
details. Because we consider the periodic correlation in this
paper rather than the aperiodic one in [16], the algorithm in
this section is named PeCA (periodic CA).

III. PECAN

Although it is not possible to make all off-diagonal elements
of XXH zero for P = N , we can still try to make them
small without any emphasis on certain time lags, as required
by many applications such as radar range compression. To be
clear, we try to minimize the criterion in (6) withP replaced
by N :

CN =
∥

∥XXH −NIMN

∥

∥

2

F
. (8)

Note that here and from now on in this section, the matrix
Xm in (2) becomesN ×N , X becomesMN ×N and thus
the correlations of all time lags are incorporated inXXH .

It is well-known that the right circulant matrixXm can be
diagonalized by the FFT matrix (see, e.g., a proof in [18]):

Xm = FHDmF (9)

where

[F]kl =
1√
N

ej
2π
N

(k−1)(l−1), k, l = 1, . . . , N (10)

Dm =







ym(1)
. . .

ym(N)







ym(k) =

N
∑

n=1

xm(n)e−j 2π
N

(k−1)(n−1), k = 1, . . . , N.

To simplify notations, define

F̃ =







F

. . .
F







MN×MN

, D =







D1

...
DM







MN×N

(11)

yp =







y1(p)
...

yM (p)







M×1

, p = 1, . . . , N.

Then we proceed to write the criterionCN in (8) as follows:

CN =
∥

∥

∥
(F̃HDF)(F̃HDF)H −NIMN

∥

∥

∥

2

(12)

=
∥

∥

∥
F̃HDDHF̃−NI

∥

∥

∥

2

=
∥

∥DDH −NI
∥

∥

2

=

N
∑

p=1

∥

∥ypy
H
p −NIM

∥

∥

2



which can be further written as

CN =

N
∑

p=1

tr
{

(ypy
H
p −NI)(ypy

H
p −NI)H

}

(13)

=

N
∑

p=1

(

‖yp‖4 − 2N‖yp‖2 +N2M
)

=N2
N
∑

p=1

(

∥

∥

∥

∥

yp√
N

∥

∥

∥

∥

2

− 1

)2

+N3(M − 1).

Similarly to the relation between (6) and (7), we consider the
following related problem instead of minimizingCN directly:

min
{xm(n)},{αp}

N
∑

p=1

∥

∥

∥

∥

1√
N

yp −αp

∥

∥

∥

∥

2

(14)

s.t. |xm(n)| = 1, m = 1, . . . ,M andn = 1, . . . , N

‖αp‖2 = 1, p = 1, . . . , N (αp is M × 1)

where{αp} are auxiliary vectors.
Although derived in the case of periodic correlations,

Eq. (14) bears the same structure as the minimization problem
of aperiodic correlations in [21] and thus can be solved by
the CAN (CA new) algorithm there. The CAN algorithm
also starts from a random phase initialization, minimizes
the criterion in (14) cyclically and has closed-form updating
formulae during iteration. We call the algorithm in this section
PeCAN (periodic CAN). As shown in [21], the computation
is based on FFT and thus is very efficient. Indeed, the PeCAN
algorithm can be used to design sequence sets with the size
NM ∼ 105. Also note that the PeCAN algorithm is an
extension of the one proposed in [18], which only deals with
the auto-correlation of a single sequence.

IV. N UMERICAL EXAMPLES

We first introduce more definitions to facilitate our discus-
sions. Making use of

X̃ =











x1(1) · · · xM (1)
x1(2) xM (2)

...
...

x1(N) · · · xM (N)











N×M

, J =

[

0 IN−1

1 0

]

N×N

(15)

the auto- and cross-correlations of{xm(n)}M,N
m,n=1 at lagk can

be expressed in a matrix form as

P(k)
4
= X̃HJkX̃ =







r11(k) · · · rM1(k)
...

...
r1M (k) · · · rMM (k)






= PH(−k)

(16)

k = 0, . . . , N − 1. (assuming thatJ0 = IN )

Correspondingly the “correlation level” at lagk is defined to
be:

correlation level= 20 log10
‖P(k)‖F√

MN2
(17)

k = −N + 1, . . . , 0, . . . , N − 1.

The above normalization factor
√
MN2 is the Frobenius norm

of P(0) when all sequences in the set are orthogonal to each
other (i.e.,P(0) = NIM ).

A. Minimization of CP in (6)

Suppose that there areM = 4 transmitters (users), each
transmit sequence is of lengthN = 512 and we are mainly
interested in the correlations of the firstP = 60 time lags.
The PeCA algorithm is used to design such a set of sequences.
Fig. 1 shows the correlation level of the so-generated sequence
set, from which we observe that the correlation levels within
the P time lags are all below−80 dB. The corresponding
minimization criterionCP is only 0.23, while the CP of a
randomly generated unimodular sequence set of the same size
is usually on the order of103.

Note that in Fig. 1, the correlations within the region of
interest go up as the time lag (its absolute value) increases.
This coincides with the “implicit weighting” discussion right
after (5).
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A PeCA Sequence Set

Fig. 1. The correlation level of a PeCA sequence set.N = 512, M = 4 and
the goal is to minimize correlations of the firstP = 60 time lags. (The dotted
vertical lines signify the boundaries of the time lag zone under consideration.)

An alternative way to minimizeCP is as follows. We
first generate a single sequence of lengthN whose auto-
correlations are zero for all time lags. Such a sequence is
called a perfect sequence, such as the Frank or Chu se-
quence [22]. Actually the PeCAN algorithm in Section III
can be used to generate many perfect sequences of the
same length (see [18]). Denote this length-N perfect se-
quence asx. Then the desired sequence set is constructed
as K = {x, TP (x), . . . , T (M−1)P (x)}, where the operator
T k(x) denotes thek-element right cyclic-shift of the sequence
x (considered as a row vector). In this way, the correlations
of the sequences inK within P time lags can only take values
from the auto-correlations ofx within MP time lags, which
are all zero. As an example, we still chooseN = 512, M = 4
and P = 60 which are used in Fig. 1. We use the PeCAN



algorithm to generate a perfect sequencex and construct the
sequence setK, whose correlation levels are shown in Fig. 2.
We observe that the correlations within the region of interest
(time lags less thanP ) are all zero. The tradeoff is the high
sidelobes outside the region of interest, because the cross-
correlation at a certain time lag between any two sequences
in K can be as large as the in-phase auto-correlation.
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A Sequence Set Constructed From a Single PeCAN Sequence

Fig. 2. The correlation level of anN = 512,M = 4 sequence set,
constructed from a single perfect PeCAN sequence.

For the “shift and construct” approach outlined in the last
paragraph, an extreme situation is the optimal ZCZ sequence
set, whose correlation sidelobes are zero within the firstN/M
lags; see e.g. [13][15] (hereN/M is assumed to be an integer).
More specifically, we construct the sequence setK with P =
N/M . Fig. 3 shows the correlation level of an optimal ZCZ
sequence set ofN = 512 and M = 4. It is interesting to
observe that the correlations are either zero or as high as the
in-phase auto-correlation.
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An Optimal Sequence set

Fig. 3. The correlation level of an optimal ZCZ sequence set of N = 512

andM = 4.

B. Minimization of CN in (8)

Following the criterionCN in (8), we define the integrated
sidelobe level (ISL) as

ISL =
1

N
CN (18)

=
M
∑

m=1

N−1
∑

k=1

|rmm(k)|2 +
M
∑

m1=1

M
∑

m2=1
m2 6=m1

N−1
∑

k=0

|rm1m2
(k)|2.

The maximum correlation sidelobe is defined as

rmax =max{|rmm(k)|, |rm1m2
(l)|} (19)

m =1, . . . ,M k = 1, . . . , N − 1

m1,m2 =1, . . . ,M (m1 6= m2) l = 0, . . . , N − 1.

There have been many discussions onrmax in the literature.
The well-known Welch bound [10] states that for a set of
sequences{xm(n)}M,N

m,n=1, the maximum correlation sidelobe
satisfies the following lower bound:

rmax ≥ B = N

√

M − 1

NM − 1
. (20)

Usually people consider the asymptotic bound:Basymp =
√
N ,

which is close toB when N � 1. A set of sequences is
called optimal if itsrmax asymptotically meets theBasymp, i.e.
limN→∞ rmax =

√
N . Interestingly, there exist many optimal

sequence sets (see e.g. [7][9]) and we choose the Kasami
sequence set [5] as an example to compare with the PeCAN
sequence set proposed in this paper. A Kasami sequence set
is constructed from the exclusive-or of m-sequences. It has
M =

√
N + 1 sequences of lengthN , whereN is restricted

to be2k − 1 andk is even (note that the PeCAN sequence set
can be of any length). Its maximum correlation sidelobermax

equals1 +
√
N + 1.

We chooseN = 1023 and M = 4. We generate the
Kasami sequence set and the PeCAN sequence set. (The full
Kasami sequence set has32 sequences and we choose the
first four sequences; other four-sequence combinations lead to
very similar results.) Fig. 4 shows their correlation levels and
Table I shows their ISL andrmax values. Compared to the
optimal Kasami sequence set, the PeCAN sequence set gives
higher rmax but lower ISL; this can be expected since ISL
is precisely the criterion that the PeCAN algorithm aims to
minimize.

Another point worth mentioning is that different initializa-
tions lead to different PeCAN sequence sets. As far as we
have tested, all these PeCAN sequence sets have the same
ISL and similarrmax values. Therefore the PeCAN algorithm
is able to generate many sequence sets that have similarly low
correlation sidelobes.

TABLE I
KASAMI AND PECAN, N = 1023,M = 4

ISL/N rmax

Kasami 15035.2 33.0
PeCAN 12276.0 81.3

C. Phase Quantization Effect

We do not constrain the phases of sequence sets we design
to be on a finite constellation grid. The sidelobes will increase
when the phases are quantized. As an example, we quantize
the phases of the PeCA sequence set shown in Fig. 1 into64
levels and then show its correlations again in Fig. 5, along with
the correlations of a unimodular sequence set whose phases are
randomly generated. Compared to Fig. 1, the PeCA correlation
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Fig. 4. The correlation level of a sequence set ofM = 4 sequences, each
with length N = 1023. (a) The Kasami sequence set and (b) the PeCAN
sequence set.

sidelobes in Fig. 5 are higher but the sidelobes inside the
region of interest are still much lower than those of a random
sequence set. A similar situation happens when the PeCAN
sequence set is quantized.
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Quantized PeCA
Random

Fig. 5. The solid line is the correlation level of the PeCA sequence set
shown in Figure 1, with the phases quantized into64 levels. The dotted line
is that of a randomly generated sequence set.

V. CONCLUSIONS

In this paper we have presented two new cyclic algorithms
that can be used to generate a set of unimodular sequences
with low periodic correlation sidelobes (i.e. auto-correlation
sidelobes and cross-correlations). The PeCA algorithm is able
to generate sequence sets that have almost zero correlation
sidelobes within a time lag interval, while the PeCAN algo-
rithm aims at minimizing correlation sidelobes of all time lags.

The PeCAN algorithm is computationally very efficient and
can be used to design large sequence sets. The so-generated
sequence sets can be widely used in many areas such as
communications and radar.
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