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Abstract—Sequence sets with good periodic correlation proper- [4], the Kasami sequences [5] and many others [6][7][8][9].
ties can be used in many areas, including communications, de  Some of the sequence sets asymptotically meet the Welch
ical imaging, radar (such as over-the-horizon radar) and soar.  p,,,,nq which is a theoretical lower bound of correlations
Practical hardware constraints, such as power amplifiers, gually L . .
require the transmitted waveforms be unimodular. We presen derived in [1_0]' [1.1] extends the Welch bound t9 t_he S't_uat'o
herein new computationally efficient algorithms that can beused that correlation sidelobes can be made zero within a time lag
for the design of unimodular sequence sets with essentialgero zone (here and after, correlation sidelobes denote both aut
auto-correlation sidelobes and cross-correlations in a ggified correlation sidelobes and cross-correlations); thesaesamgs
time lag zone, as well as of sequence sets with good cormetlits 50 yeferred to as the zero-correlation zone (ZCZ) seqsence

over all time lags. The proposed algorithms start from randan Adai lentv of literat . ilabl 2C7
phase initializations and can generate many different seqgnce gain, plenty ot literature is available on sequences, S

sets (including very long sequence sets) possessing simjlggood  €-9. [12][13][14][15] and the references therein.
correlation properties. In this paper we extend our earlier works [16][17][18]

and propose two new cyclic algorithms for the design of
unimodular sequence sets with low periodic correlatiore T
Let {z;n(n)} (m = 1,...,M andn = 1,...,N) denote first algorithm can be used to generate sequence sets with
a set of M sequences, each of which is of length Every almost zero correlation sidelobes in a specified time lag
element of the sequence set is a complex-valued number tind¢rval; these designed sequence sets are essentially ZCZ
is unimodular:|z,,(n)] = 1. The periodic cross-correlationsequence sets. The second algorithm aims at achieving good
between then] andm$ sequence at time lag is defined by correlations for all time lags; it is based on FFT computaio
and thus can efficiently generate sequence sets of large size

I. INTRODUCTION

N
X Unlike most existing sequence construction methods whieh a
e (K) = " . —k mod NV 1 . .
Pimama (K) 7; Ty (W), (1 ) @ algebraic and deterministic in nature, both proposed élgos
—rt o (=k) =7, (N — k) start from random initializations and then proceed to cgly

minimize the desired metrics. In this way we can generate
my,mz =1,...,Mandk =0,...,N — 1. many different sequence sets bearing similarly good corre-
When m; = ms, the correlation above becomes the autdation properties; these randomly distributed sequences a
correlation. especially useful in applications such as to counter cattere
Sequence sets having low (or even zero) auto- and crofgPeater jamming in radar systems (see, e.g., [19][20]).
correlations are useful in many application areas. In radarNotations: We use bold lowercase and uppercase letters to
range compression, low auto-correlations improve thecdetélénote vectors and matrices, respectlvélyf_q denotes the
tion of weak targets [1]; in code division multiple acces§°Mplex conjugate transpoge/|» the Frobenius matrix norm
(CDMA) systems, low auto-correlation helps with synchrc@ndI, then x n identity matrix.
nization and low cross-correlation reduces interferemoenf
] S Y Il. PECA
other users [2]; and the situation is similar in many other
applications like ultra-sonic imaging [3]. Let X,,, denote the right circulant matrix related to the
Since the early research on maximum-length sequences §adquence:
sequence) in the 1950s, many sequence families with goo

correlations have been proposed, such as the Gold sequences” (2)
Zm (1) Tm(2) - T (V)
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that is, every row ofX,,, is a cyclically-shifted version of the
sequence{z,,(n)}Y_; and X,, hasP rows 0 < P < N).
We stack all{X,,,} together:

X1
X=1"1 3
X prpun
and the outer-product X brings in the correlations:
R11 R12 RlM
u Rs1  Roo Roar
XX =1 . 4
Ry R Ry yrpsrp
where
Rm1m2 (5)
rmlm2(0) Tm1m2(1) rmlm2(P_ 1)
Tm1m2(_1) :
. Tm1m2(1)
Tm1m2(_P+ 1) T'mima (O)

Note thatr,,,m,(k) (k = —P+1,...,P — 1) appearsP —
|k| times in the above Toeplitz matrix, so more emphasis

given to the correlations of smaller time lags. Moreovel, al

diagonal elements in thé/P x M P matrix in (4) are the
in-phase auto-correlations and are equalMo(a constant).

sequences. Then (7) is iteratively minimized by fixiXgto
computeU, then fixing U to computeX and so on, until a
given stop criterion is satisfied. During this iterative gess,
both U andX have closed-form updating formulae. We refer
the readers to the cyclic algorithm (CA) proposed in [16] for
details. Because we consider the periodic correlation is th
paper rather than the aperiodic one in [16], the algorithm in
this section is named PeCA (periodic CA).

1. PECAN

Although it is not possible to make all off-diagonal elensent
of XX*H zero for P = N, we can still try to make them
small without any emphasis on certain time lags, as required
by many applications such as radar range compression. To be
clear, we try to minimize the criterion in (6) witk replaced
by N:

Cn = |XXH = NTyn[5.. ®)

Note that here and from now on in this section, the matrix
X, in (2) becomedV x N, X becomesM N x N and thus
the correlations of all time lags are incorporatedXiX .

It is well-known that the right circulant matriX,,, can be
thagonalized by the FFT matrix (see, e.g., a proof in [18]):

Therefore we can minimize all cross-correlations and dut-o

phase auto-correlations within the time lags by minimizing
the following criterion:

Cp = | XXH = NTyp|5 6)

(Although not explicit in notation, the size of the mat is
also dependent oR).

A close scrutiny of the criterio®'r leads to the fact that
only for P < N/M s it possible to minimize”p to zero. If
MP > N, the matrixX in (3) will be “tall” and the rank of
XXH will be at mostN. In this case the rank aKX* is

always smaller than the rank bf; » no matter what sequences

we choose, which means th@p cannot be minimized to zero.
As a matter of fact, the conditio® < N/M coincides with
the theoretical bound shown in [11].

When P < N/M, it is easy to observe tha'r becomes

zero if X is a semi-unitary matrix. Therefore, instead of min-

imizing Cp directly, we consider the following minimization
problem:

2
min HX—VNUH @)
{zm(n)}, U F
st.lz,m(n)=1, m=1,...,.Mandn=1,...,N

UUf =1

whereU is anM P x N semi-unitary matrix that serves as an

auxiliary matrix.
Eq. (7) can be solved in the following cyclic waX is

first initialized by a set of randomly generated unimodular

X, = F¥D,F (9)
where

1 - 27
[Fli =—=ed ¥ DD =1, N (10)

VN

Ym(1)
D,, =

Ym(IN)

N
ym (k) = Z T (n)e IR E-DO=D N
n=1

To simplify notations, define

F D,

F= ., D= (11)
L Fl unxun Du] pyivsn
[y1(p)

Vp = , p=1,...,N.

Ly (P)] apon

Then we proceed to write the criteridaryy in (8) as follows:
~ ~ 2
CN:{MFHDFXFHDFVf—AHMNH (12)

:%@HDDHF—Nﬂr:HDDH—NWQ

N 2
=2 llyeyy' = N
p=1



which can be further written as Correspondingly the “correlation level” at ldgis defined to

be:
N
Cn = Z r{(y»y, — ND(ypy, —ND"} (13) correlation level = 20 log;, 1P~ (17)
p=1 v/ MN?2
N ) ) , k=-N+1,...,0,...,N — 1.
=Y (lypll* = 2Nlly, | + N*M) o , ,
=1 The above normalization factaf M/ N2 is the Frobenius norm
N 2 2 of P(0) when all sequences in the set are orthogonal to each
—N2 Yo |l 1) £ N3 —1). other (i.e.,P(0) = NT,,).
o (FE YRR

A. Minimization of Cp in (6)
Similarly to the relation between (6) and (7), we consider th Suppose that there a/ = 4 transmitters (users), each
fO”OWing related problem instead Of m|n|m|Z|r@N direCtly: transmit Sequence is Of |engm = 512 and we are main'y
interested in the correlations of the fir&t = 60 time lags.
(14) The PeCA algorithm is used to design such a set of sequences.
Fig. 1 shows the correlation level of the so-generated serpie
set, from which we observe that the correlation levels withi
the P time lags are all below-80 dB. The corresponding

1 2

N
min —Yyp—
{wm ()} {00} Z; NPT
st.lz,m(n)=1, m=1,...,.Mandn=1,...,N

lopl?=1, p=1,....,N (a,is M x1) minimization criterionCp is only 0.23, while the Cp of a
B randomly generated unimodular sequence set of the same size
where{a,} are auxiliary vectors. is usually on the order of03.

Although derived in the case of periodic correlations, Note that in Fig. 1, the correlations within the region of
Eq. (14) bears the same structure as the minimization pmoblghterest go up as the time lag (its absolute value) increases

of aperiodic correlations in [21] and thus can be solved bphis coincides with the “implicit weighting” discussiongtit
the CAN (CA new) algorithm there. The CAN algorithmafter (5).

also starts from a random phase initialization, minimizes
the criterion in (14) cyclically and has closed-form updgti
formulae during iteration. We call the algorithm in this e
PeCAN (periodic CAN). As shown in [21], the computation i
is based on FFT and thus is very efficient. Indeed, the PeCANM o}
algorithm can be used to design sequence sets with the siz
NM ~ 10°. Also note that the PeCAN algorithm is an
extension of the one proposed in [18], which only deals with
the auto-correlation of a single sequence.

A PeCA Sequence Set
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IV. NUMERICAL EXAMPLES lagk

We first introduce more definitions to facilitate our discusFig. 1. The correlation level of a PeCA sequence 8&t= 512, M = 4 and
sions. Making use of the goal is to minimize correlations of the firBt= 60 time lags. (The dotted
vertical lines signify the boundaries of the time lag zondenconsideration.)

x1£2; :CMEQ; 0 1 An alternative way to minimizeCp is as follows. We
X = ) i ,J = [1 ]\61} first generate a single sequence of lengéhwhose auto-
: : NxN  correlations are zero for all time lags. Such a sequence is

z1(N) - 2Ny called a perfect sequence, such as the Frank or Chu se-
(15) quence [22]. Actually the PeCAN algorithm in Section Il
can be used to generate many perfect sequences of the

the auto- and cross—correlations{@fm(n)}f‘f,’flv:1 at lagk can same length (see [18]). Denote this lendihperfect se-
be expressed in a matrix form as guence asx. Then the desired sequence set is constructed
as K = {x,77(x),...,T™M=DP(x)}, where the operator
rin(k) - ran(k) T*(x) denotes thé-element right cyclic-shift of the sequence
P(k) L xHIkY — : : =PH(—k) x (considered as a row vector). In this way, the correlations
of the sequences K within P time lags can only take values
TlM(k) TjuM(k)

(16) from the auto-correlations ot within M P time lags, which
are all zero. As an example, we still choa¥e= 512, M = 4

_ - 0_ ) 2
k=0,...,N—1. (assuming thal” =In)  and p = 60 which are used in Fig. 1. We use the PeCAN



algorithm to generate a perfect sequescand construct the The maximum correlation sidelobe is defined as
sequence sét, whose correlation levels are shown in Fig. 2.

We observe that the correlations within the region of irgere Pmax = MAX{[Tmm (K)], [rmam, (D]} (19)
(time lags less tha®) are all zero. The tradeoff is the high m=1,....M k=1,...,.N—-1
sidelobes outside the region of interest, because the-cross my,ms =1,...,M (m; #my) 1=0,...,N —1.

correlation at a certain time lag between any two sequencﬁésere have been manv discussions in the literature
in I can be as large as the in-phase auto-correlation. y 79ldx X

The well-known Welch bound [10] states that for a set of
sequencesgz,, (n)} ', the maximum correlation sidelobe

satisfies the following lower bound:

] M -1
max Z B=N —. 20
- " VN —1 (20)

Usually people consider the asymptotic boufty;,,., = v'N,

ol ] which is close toB when N > 1. A set of sequences is

called optimal if itsry,.x asymptotically meets th®,,., i.e.

HmMpy oo Tmax = VN Interestingly, there exist many optimal
B I T T T eI sequence sets (see e.g. [7][9]) and we choose the Kasami

ok sequence set [5] as an example to compare with the PeCAN

Fig. 2. The correlation level of alN = 512, M = 4 sequence set, .Sec]uence set proposed in thls.paper. A Kasami sequence set

constructed from a single perfect PeCAN sequence. is constructed from the exclusive-or of m-sequences. It has

M = +/N + 1 sequences of lengtlv, where N is restricted

For the “shift and construct” approach outlined in the lad® be2* — 1 andk is even (note that the PeCAN sequence set
paragraph, an extreme situation is the optimal ZCZ sequeri@ b€ of any length). Its maximum correlation sidelebg.
set, whose correlation sidelobes are zero within the fipgt/ ~ €dualsl + VN +1.
lags; see e.g. [13][15] (het¥/}M is assumed to be an integer), We chooseN = 1023 and M = 4. We generate the
More specifically, we construct the sequence/Sewith P = Kasam! sequence set and the PeCAN sequence set. (The full
N/M. Fig. 3 shows the correlation level of an optimal zcZZK@sami sequence set hag sequences and we choose the
sequence set oN = 512 and M = 4. It is interesting to first four sequences; other four-sequence combinatiomnktea

observe that the correlations are either zero or as higheas Y'Y Similar results.) Fig. 4 shows their correlation levahd

A Sequence Set Constructed From a Single PeCAN Sequence

Correlation Level
|
Y
S

in-phase auto-correlation. Tab_le | shows _their ISL andh,.x values. Compared to the_
optimal Kasami sequence set, the PeCAN sequence set gives
n Optimal Sequence set higher . but lower ISL; this can be expected since ISL
' T T is precisely the criterion that the PeCAN algorithm aims to
20 1 minimize.

Another point worth mentioning is that different initiadiz
tions lead to different PeCAN sequence sets. As far as we
T 1 have tested, all these PeCAN sequence sets have the same
ek ] ISL and similarr,,,, values. Therefore the PeCAN algorithm
is able to generate many sequence sets that have similarly lo
correlation sidelobes.

Correlation Level

s s s s s s s s s s
-500 -400 -300 -200 -100 o 100 200 300 400 500 TABLE |

lag k
’ KAsamMI AND PECAN, N = 1023, M =4

Fig. 3. The correlation level of an optimal ZCZ sequence $eNo= 512
_ ISL/N Tmax

and M = 4. _

Kasami | 15035.2 | 33.0

PeCAN | 12276.0| 81.3

B. Minimization of Cx in (8)

Following the criterionC'y in (8), we define the integrated C. Phase Quantization Effect

sidelobe level (ISL) as We do not constrain the phases of sequence sets we design
1 to be on a finite constellation grid. The sidelobes will irage
ISL = NCN (18) when the phases are quantized. As an example, we quantize
M N_1 M M N-1 the phases of the PeCA sequence set shown in Fig. 16ihto
= Z |7 (B)|* + Z Z Z Ir (k)| levels and then show its correlations again in Fig. 5, aloitly w
mm mim2 * . .
el k1 el maml k=0 the correlations of a unimodular sequence set whose phases a

maF#my randomly generated. Compared to Fig. 1, the PeCA correlatio



A Kasami Sequence Set

The PeCAN algorithm is computationally very efficient and

d can be used to design large sequence sets. The so-generated
sequence sets can be widely used in many areas such as

= 1 communications and radar.
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