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Designing Unimodular Sequence Sets With
Good Correlations—Including an
Application to MIMO Radar
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Abstract—A multiple-input multiple-output (MIMQO) radar
system that transmits orthogonal waveforms via its antennas
can achieve a greatly increased virtual aperture compared with
its phased-array counterpart. This increased virtual aperture
enables many of the MIMO radar advantages, including enhanced
parameter identifiability and improved resolution. Practical radar
requirements such as unit peak-to-average power ratio and range
compression dictate that we use MIMO radar waveforms that
have constant modulus and good auto- and cross-correlation
properties. We present in this paper new computationally efficient
cyclic algorithms for MIMO radar waveform synthesis. These
algorithms can be used for the design of unimodular MIMO
sequences that have very low auto- and cross-correlation sidelobes
in a specified lag interval, and of very long sequences that could
hardly be handled by other algorithms previously suggested in the
literature. A number of examples are provided to demonstrate the
performances of the new waveform synthesis algorithms.

Index Terms—Autocorrelation, cross-correlation, MIMO radar,
range compression, unimodular sequences, waveform design.

I. INTRODUCTION

NLIKE a traditional phased-array radar system which
U only transmits scaled versions of a single waveform, a
multiple-input multiple-output (MIMO) radar system transmits
via its antennas multiple probing signals that can be chosen
at will. Particularly, when transmitting orthogonal waveforms,
a MIMO radar system can achieve a greatly increased vir-
tual aperture compared to its phased-array counterpart. This
increased virtual aperture enables many of the MIMO radar
advantages, such as better detection performance [1], improved
parameter identifiability [2], refined resolution [3], and direct
applicability of adaptive array techniques [4]. Two recent
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reviews about MIMO radar systems can be found in [5] (for
colocated antennas) and [6] (for widely separated antennas);
see also the edited book [7].

Besides orthogonality, good auto- and cross-correlation
properties of the transmitted waveforms are also often required
such as in range compression applications [8]-[10]. In such a
case, good auto-correlation means that a transmitted waveform
is nearly uncorrelated with its own time-shifted versions, while
good cross-correlation indicates that any one of the transmitted
waveforms is nearly uncorrelated with other time-shifted trans-
mitted waveforms. Good correlation properties in the above
sense ensure that matched filters at the receiver end can easily
extract the signals backscattered from the range bin of interest
while attenuating signals backscattered from other range bins.
Additionally, practical hardware constraints (amplifiers and
A/D converters) require that the synthesized waveforms be
unimodular, i.e., constant modulus.

There is an extensive literature about MIMO radar waveform
design. In [11] and [12] the covariance matrix of the transmitted
waveforms is optimized to achieve a given transmit beampat-
tern, while in [13] the waveforms are designed directly to ap-
proximate a given covariance matrix. In [14]-[16], on the other
hand, some prior information is assumed known (e.g., the target
impulse response) and the waveforms are designed to optimize
a statistical criterion (e.g., the mutual information between the
target impulse response and the reflected signals). More related
to our work, [17] and [18] focus on orthogonal waveform design
with good auto- and cross-correlation properties, and [19] aims
at reducing the sidelobes of the MIMO radar ambiguity function
(i.e., both the range and Doppler resolution are considered). We
also note that in the area of multiple access wireless communi-
cations, the spreading sequence design basically addresses the
same problem of synthesizing waveforms with good auto- and
cross-correlation properties (see, e.g., [20]).

Extending the approaches in [9] and [21] and detailing the
discussions in [22], we present in this paper several new cyclic
algorithms (CA) for unimodular MIMO radar waveform design.
More specifically, we design MIMO phase codes that have good
correlation properties (from now on, we use “correlation” to
denote both auto- and cross-correlation). We first formulate
the problem in Section II. In Sections III and IV, we extend
the CA-new (CAN) and weighted-CAN (WeCAN) algorithms
proposed in [21] to the MIMO case; we will still call them CAN
and WeCAN for brevity. Both CAN and WeCAN can be used
to design good MIMO sequences; the difference is that CAN
considers the correlation for all time lags while WeCAN can
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TABLE 1
NOTATIONS

the complex conjugate of a scalar a

Re{a}: the real part of a scalar a

lla|: the Euclidean norm of a vector a

A*: the complex conjugate of a matrix A

AT: the transpose of a matrix A

AH: the conjugate transpose of a matrix A

tr(A): the trace of a matrix A

A the Frobenius norm of a matrix A

A O B: the Hadamard product of two matrices A and B
of the same dimension

On: the Kronecker delta function: 6, = 1if n =0
and §,, = O otherwise

In: the identity matrix of dimension M x M

f(z) x g(x):  the convolution of the functions f(z) and g(x)
lz]: the biggest integer < z (real-valued)
arg(x): the phase angle (in radians) of x

consider selected lags by imposing weights. In Section V, we
present an algorithm named CAD (CA-direct) which is a more
direct approach to sequence design than the CA algorithm in
[9] (see also [13] and [23]). As will be shown in Section VI,
CAN can be used to design very long sequences because of
its FFT-based operation, and WeCAN and CAD can be used
to design sequences that have very low correlation at certain
desired lags.

Notation: We use boldface lowercase and uppercase letters to
denote vectors and matrices, respectively. See Table I for other
notations used throughout this paper.

II. PROBLEM FORMULATION

Consider a MIMO radar system with M transmit antennas.
Each antenna transmits a phase-coded pulse which is composed
of N subpulses and can be written in the baseband as (see, e.g.,
[24])

L& t—(n— 1)t B

where

xm(n):ej‘j)'“(") m=1,...,.M and n=1,...,N

2

is the phase code to be designed (it is assumed that the phases
{¢m(n)} can be arbitrary values from [—m,7]), p(t) is the
shaping subpulse, e.g., a rectangular pulse with amplitude 1
from time O to 1, ¢; is the time duration of one subpluse and
T = Nt is the time duration of the whole pulse. The main
waveform design problem for such a system is to synthesize
the discrete waveform set {xm(n)}ﬁ{:]\{nzl with desired
correlation properties.

The (aperiodic) cross-correlation of {z,,, (k)}_, and
{@m, (k)}2_, atlag n is defined as

?

Py (1) =D oy (K, (k= 1) = 77, (—10)

k=n+1
mi,me=1,.... M, n=0,.... N—-1. (3)
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When m; = mso, (3) becomes the auto-correlation of
{@m, (k)}Y_,. We can design MIMO radar waveforms with
good correlation properties by minimizing the following
criterion:

=S Y )P

m=1n=—N+1,n#0
M M N-1
2
2 ) P @
mi=1mo=1,mo#m; n=—N+1

To facilitate the following discussion, denote the matrix of the
transmitted waveforms by

X=[x1 X2 - Xumlyum ©)
where

Xm = [Tm(1) Zm(2) - 2z (N)]T (6)

is the waveform transmitted by the m'" antenna. The waveform

covariance matrices for different time lags are given by

ri(n)  riz(n) oo riv(n)
R, = ra1(n)  rea(n) - ram(n)
ra(n) e < rarv(n)

n=-N+1,...,0,....N—1. (7)

By using the following “shifting matrix”

n+1
—
0---01 0
J. =
1
0 NXN
=J' n=0,...,N-1 (8)

the R, in (7) can be rewritten as

R, = (X713, X)T =R"

—n?

n=0,...,N—1. (9

With the above notation, the criterion in (4) can be written more
compactly as

N-—-1
£=|Ro—NIy|*+2 > |R.|* (10)

n=1

In some radar applications like synthetic aperture
radar (SAR) imaging, the transmitted pulse is relatively long
(i.e., IV is large) so that the signals backscattered from objects
in the near and far range bins overlap significantly (see e.g.,
[9] and the references therein). In this case, only the waveform
correlation properties in a certain lag interval around n = 0 are
relevant to range resolution and a more proper minimization
criterion than (10) is given by

P-1
£=|Ro— NLy[?+2 > |R.|? (11)

n=1
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where P — 1 is the maximum lag that we are interested in.
More specifically, (P — 1)t [t is as defined in (1)] should be
chosen no smaller than the maximum round trip delay of signals
backscattered from near and far range bins.

In the subsequent sections, we will first consider minimizing
correlation metrics related to the criterion £ in (10) and then to
the criterion € in (11). We will show that £ cannot be made very
small whereas £ can be made practically zero if P and M are
sufficiently small relative to V.

II. CAN

The CAN (CA-new) algorithm is associated with the criterion
£ in (10), which can be written as

N-1

2

n=—(N-1)

&= IR, — NTp6,]%. (12)

The following Parseval-type equality holds true (the proof is
similar to that for the case of M = 1 in [21]):

N-1 1 2N
2 2
> IR — NIy, = ﬁZH‘I’(%)—NIMH
n=—(N-1) p=1
(13)
where
N-1 )
dw)E > Ryeivn (14)
n=—N+1

is the spectral density matrix of the vector sequence
[21(n) z37(n)]" and
27
wp = va
The ®(w) defined in (14) can be written in the following “peri-
odogram-like” form (see, e.g., [25]):

®(w)

p=1,...,2N. (15)

~H(

y(w)y" (w) (16)

where

7)

:E]\,[.(’IL>

It follows from (13) and (16) that (12) can be rewritten as
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Remark: The £ in (18) cannot be made very small, even
without the unit-modulus constraint on the elements of X, be-
cause the rank 1 matrix ypygf cannot approximate well a full
rank matrix VI. Another way to understand this problem is to
examine, instead, the criterion € defined in (11) where only
Ro,R1,...,Rp_1 (which are complex-valued M x M ma-
trices) are considered. Ry is Hermitian with all diagonal ele-
ments equal to N, so setting Ry = NI leads to M (M — 1)
(real-valued) equations. R;,...,Rp_; do not have any spe-
cial structure; and thus setting them to zero adds 2M? equa-
tions for each of them. Thus, the total number of equations
is K = M(M — 1) + (P — 1)2M?. Compared to this, the
number of variables that we can manipulate is M (N — 1) (for
each of the M waveforms there are N — 1 free phases, as the
initial phase does not matter). Therefore, a basic requirement
for good performance is that K < M(N — 1), which can be
simplified to: P < (N + M)/2M. Put differently, only when
P < (N + M)/2M is it possible to design unimodular wave-
forms X that make & zero; in other cases € or € cannot be made
equal to zero. ]

Equation (18) is a Mquartic (i.e., fourth-order) function of the
unknowns {a:m(n)}m’:]\lf’nzl. To get a simpler quadratic crite-

rion function of {zp, (n) 25N

m—1 n—1, DOte that

2N
1 - -H - -H H
SZﬁ;tr (35, — NI)(y,y, — ND"]

2N
1 N 3
= 5N > (IFl1* = 2N 1§, |1* + N*M)
p=1
oN 5 2 2
zzNz <H Ll — —) + N2(M —1). (19)
—\llvanll 2

Instead of minimizing (19) with respect to X, we consider
the following minimization problem: see equation (20) at the
bottom of the page, where “s.t.” stands for “subject to”, and
{a,} are auxiliary variables. Evidently, if (19) (without the
constant term N2(M — 1)) can be made equal to zero (or
“small”) by choosing X, so can (20), and vice versa. Thus, the
criterion in (19) and (20) are “almost equivalent” in the sense
that their minimization is likely to lead to signals with similar
correlation properties, provided that good such properties are
achievable (see Appendix B for a discussion on this aspect).
Note also that, while we use the original criterion £ in (19) to
motivate (20), the latter criterion could have been introduced
directly as a correlation metric in its own right.

2N
1 .
E= I Z “5’1)5’]{{ - NIMHQ. (¥» S V(wp)). (18) Remark: Itis clegrfrom(19) that€ > N2(M—1) éjbound.
p=1 In general, Epoung 18 a loose bound. As an example, £ can be
2N 1 2
min —Yy, —«
X {a,}2N, I)Z::l V2N* P
st. |zmn)|=1, m=1,....M and n=1,...,N
1
||ap||2:§7 p=1,....,2N (a,is M x 1) (20)
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TABLE II
THE CAN ALGORITHM

Step 0: Initialize X by a randomly generated /N X M matrix or by some
good existing sequences.

Step 1: Fix X and compute V according to (23).

Step 2: Fix V and compute X according to (25).

Step 3: Reg)eat Steps 1 and 2 until a pre-specified stop criterion is satisfied,
e.g., | X@® — XE+D|| < 1073, where X( is the waveform matrix
obtained at the 3*" iteration.

made zero for M = 1 only if P < (N + 1)/2 (see the previous

Remark); this implies that £ cannot be made zero when M = 1,

whereas Epouna = 0 when M = 1. Thus, £poung indicates the

difficulty of making £ “small” rather than give a tight perfor-

mance bound. [ ]
To solve the minimization problem in (20), define

a]I){ — [e_jwp e_j2NWp]7
1

A=——|a a ,

\/W[ 1 o |
X = [)ﬂ 1)

INx M
and
V=[m 0!2N]T

Then it is not difficult to observe that

2N

>

p=1

2

1 - -
—IATX - V|2 = |X - AV (22)

—y, —
VaNTr T

(The second equality in (22) follows from the fact that A is
unitary.) The criterion in (22) can be minimized by means of
two iterative (cyclic) steps. For given X (ie., X is given), the
minimizer {ay, }2Y; of (22) is given by

1 ¢,
a,=——2_ p=1,....2N (23)
V2 el
where
c. = the p™ row of (AFX). (24)

For given V (i.e., {a, }2X, are given), the minimizer {,,(n)}
of (22) is given by

m=1,...,Mandn=1,...,N
(25)

Tm(n) = exp(j arg(dnm)),

where

dpm = the (n,m)"" element of (AV). (26)

The CAN algorithm thus obtained is summarized in Table IL
_ Note that the AHX in (24) is the FFT of each column of
X and that the AV in (26) is the IFFT of each column of V.
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Because of these (I)FFT-based computations, the CAN algo-
rithm is quite fast. Indeed, it can be used to design very long
sequences, e.g., sequences with N ~ 105 and M ~ 10, which
can hardly be handled by other algorithms suggested in the pre-
vious literature.

As explained in the Remarks in this section, the criterion &£
defined in (10) is lower bounded by N?(M — 1) and therefore
it cannot be made equal to a “small” value. This unveils the fact
that it is not possible to design a set of sequences which are
orthogonal to each other and for which all time-shifted correla-
tions are zero. Fortunately, in some application it is desired to
minimize the correlations only within a certain time lag interval
[e.g., to minimize the € defined in (11)] and, provided that this
interval is not too large [see the Remark following (18)], it is
possible to make these correlations very small. The WeCAN al-
gorithm presented in the next section is derived to achieve such
a goal by introducing different weights for different correlation
lags.

IV. WECAN
The WeCAN (weighted-CAN) algorithm aims at minimizing

the following criterion:

N-1
€ =5IRo — NIn|* +2 ) 72lIRq|?

n=1

27)

where {7, } = are real-valued weights. For instance, if we

choose v, = 1forn =0,...,P —1and~, = 0 otherwise, £

becomes the £ defined in (11).
Similarly to the proof of (13), we can show that

L1 2N L 2
£ =50 2 ||@wy) — 20Ny (28)
p=1
where {w, }2%, is given by (15) and
} N-1
Bw)E Y R (29)
n=—(N— 1)
and where v,, = v_,, forn = 1,..., N — 1. To facilitate later
developments, 7 is chosen such that the matrix
Yo 71 YN-1
r=| m (30)
. : Y1
IN-1 N Yo

is positive semi-definite (denoted as~I‘ > 0). (7o can be de-
termined in the following way. Let I' be the matrix I' with all
diagonal elements set to 0, and let Ay, denote the minimum
eigenvalue of I'; then I' > 0 if and only if g + Amin > 0, a
condition that can always be satisfied by selecting 7g.) The con-
dition T’ > 0 is necessary because the matrix square root of I" is
needed later on [see (34)].

Authorized licensed use limited to: University of Florida. Downloaded on November 18, 2009 at 14:51 from IEEE Xplore. Restrictions apply.
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Similarly to (16), it can be shown that (the proof is similar to
that in [21] for the case of M = 1):

®(w) = Z7 (w)T'Z*(w) (31)

where

Z" (w) = [y(1)e™?* y(N)e 7o (32)

]J\IXN .

By combining (28) and (31), the criterion function becomes

) 1 2N
£ = W; |1ZETZ, — NIy ||” (2, 2 Z(w,)). (33)

Instead of minimizing (33) with respect to X, we consider the
following minimization problem [see the discussion following
(20)]:

2N 9
v 3len v,
p:

st. |zm(n)| =1,
Ul'u, =1, p=1,...,

where the N x N matrix C is a square root of I" (i.e., cHC =
D).

The minimization problem in (34) can be solved in a cyclic
way as follows. For given {Zl,}igl (i.e., X is given), (34) de-
couples into 2N independent problems, each of which can be
written as

HCZP - \/%—NUP

—9Re {tr [\/%_NUPZ{;’CH] } . p=1,....2N

where “const” denotes a term that is independent of the variable
U,. Let

2
= const

(35)

zl'c? =u,nul (36)
denote the singular value decomposition (SVD) of ZFCH,
where Uy is M x M, ¥ is M x M and Uy is N x M. Then
the minimizer U,, of (35), for fixed Z,, is given by (see, e.g.,
[13] and [26]):

U, = U,UL. (37)
Note that the computation of {CZ,, }f)]:vl can be done by means
of the FFT. To see this, let

Xm:CTQ[xm Xm Xm gy, m=1,...,.M
(38)
and
F = V2NAPF, F = Xi o Xy
Onxn

Onxn 2NxNz\g3

where A has been defined in (21). Then it is not difficult to
observe that the N x M matrix CZ, is given by reshaping the

4395
TABLE 1III
THE WECAN ALGORITHM
Step 0: Initialize X and select the desired weights {wn}g;()l such that

the matrix I' in (30) is positive semi-definite.

Step 1: Fix {Z,}2N, (i.e., X is given) and compute {Up}2V, according
to (37).

Step 2: Fix {U, }Zi’ 1 and compute X according to (43).

Step 3: Repeat Steps 1 and 2 until a pre-specified stop criterion is satisfied,
e.g., | X® —X(+1)|| < ¢, where X9 is the waveform matrix obtained
at the " iteration. (See the Remark in Section VI-D for a brief discussion
about how to choose the value of €.)

N M x 1 vector f, into each column (from left to right) of CZ,,
where 7 denotes the p™ row of F.

For given {U,}2Y,, the minimization problem in (34) also
has a closed-form solution with respect to X. Let

Gonxnm = [81 82 gan 1" (40)

where g, denotes the NM X 1 vector given by the columns of
V0 NU, stacked on top of each other. Then the criterion in
(34) can be written as equation

'~ fvaane -

2N
3 chp — V/7%NU,
p=1

. 1 2
=2N |[F - —=AG]|| .41)
I~
Equation (41) can be minimized with respect to each element of
{a:m(n)}n]\f’:]\{m:l separately. Let 2 denote a generic element of
{Zm(n)}. Then the corresponding problem is to minimize the
following criterion with respect to z:

N

Z lurz — vi|” = const — 2 Re
k=1

N
<Z /LZI/k) x*] (42)
k=1

where { /i }fc\’:l are given by the elements of F which contain z,
and {v} }1_, are given by the elements of 1/v/2N AG whose
positions are the same as those of {s, }2_, in F. (More specif-
ically, for k = 1,..., N, u is given by the (k,n)*™® element
of C and vy, is given by the (n, (m — 1)N + k)'! element of
1/ V2N AG.) Under the unimodular constraint, the minimizer
z of the criterion in (42) is given by

N
z=e? ¢=arg (Z uZ%) :
k=1

The WeCAN algorithm follows naturally from the above dis-
cussions and it is summarized in Table III.

Like CAN, the WeCAN algorithm also makes use of (I)FFT
operations (see the A F in (39) and AG in (41)). However,
compared to CAN, which needs 2 computations of 2N -point
(DFFT’s in one iteration, WeCAN requires 2M N computations
of 2N -point (I)FFT’s. Moreover, WeCAN requires 2N com-
putations of the SVD of an M x N matrix [see (36)]. Thus,
WeCAN is not so computationally efficient as CAN, but it can
still be used for relatively large values of N and M,upto N ~
10% and M ~ 10.

(43)
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V. CAD

The CAD (CA-direct) algorithm aims at minimizing a partic-
ular form of the criterion £ in (27):

P-1
cap = P|Ro — NTy|> +2 ) (P = n)||Ry||?

n=1

(44)

which can be obtained from (27) by choosing weights 72 =
P—nforn=0,...,P—1and 2 = 0 otherwise. The above
choice of {7, }" = results from the following problem formu-
lation that is simple and direct. Consider the following matrix:

X=[X X ](N+P—1)><MP 45)
where
-wm(l) -
_ m(1
Xm,: v ( ) m:L .,M.
T (N)
L Tm(N) (N+P-1)xP
(46)

Then it is easy to observe that the c‘fc AD defined in (44) can be
expressed as

Ecap = ||XHX_NIMP||2- 47)

Remark: The papers [9], [13], and [21] have considered the
following problem, instead of minimizing (47):

min  ||X — VNU|]?,

X,U

st |zm(n)| =1,
vufu=1,

m=1,....M and n=1,...,N,

(Uis(N+P—1)x MP) (48)
and the cyclic algorithm corresponding to (48) was named CA;
see Section VI for some examples that involve CA. [ |

Next we show how to minimize (47) with respect to a generic
waveform element z,, (n) = e/®» . Let X,,,, denote the matrix
X with all elements comprising z.,,(n) set to 0 (x,,(n) appears
P times in X), and let I,,,,, denote an (N + P — 1) x M P matrix
whose elements are all 0 except those elements whose positions
are the same as the positions of x,,,(n) in X, which are 1. Then
we have

XHX = (f(mn + ejd)mnimn)H():(mn + I%mn L)
H = . ~ H _ N =H =
o e]¢mnanImn + e~ Jibmn 2 X,

(49)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 11, NOVEMBER 2009

TABLE 1V
THE CAD ALGORITHM

Step 0: Initialize X in (45).

Step 1: Minimize the criterion in (47) with respect to z1(1) (by solving
the generic problem in (53)), then with respect to z1(2), ..., and so on
up to zpr(N).

Step 2: Repeat Step 1 until a pre-specified stop criterion is satisfied (see
the last step of the WeCAN algorithm in Table III).

Thus, the critegion iP (47) can be written as (below the
dependence of X, I, and ¢y, on m and n is omitted for
brevity)

2
HXHX—NI

. :H, . — ~
X T+ e ITHX

2

[

:H: —
—(NI—X X 1%

)

. = H_ . — =
tr [(e”’X I+ 7°THX

- S)H
. = H_ .= = —_
x(e?X T4 e I?THX — S)}
. = H__
= const — 4 Re [e”’tr(X IS)}

. ~H_~H_
+2 Re [eZWtr(X IX I)} (50)

— iy H ) — —
where S = NI — X X — I”T and “const” denotes a term that
is independent of the variable ¢. To write (50) more compactly,
we let

tr IS) = a1, (a1 >0)
~H_=~H_
tr(X IX I) =aqxe’™ (ag >0) (629
which leads to
|X2X - NT||”

=const —4 Re [e/?a1e’”] +2 Re [e¥?aze’”]
=const — 4aj cos(¢p + 01) + 2az cos(2¢ + 62).  (52)

The discussion above shows that the minimization of (47)
with respect to a single waveform element x,,(n) = e/®m" is
equivalent to the following problem:

min

_juin__ —2aq cos(¢ + 01) + as cos(2¢ + 62)

(53)
which can be easily solved numerically (see Appendix A).
Then we propose that (47) be minimized with respect to each
{xm(n)}f\f,ivzl in a one by one manner, and the process be
repeated iteratively. The resulting algorithm is called CAD
(CA-direct) and is summarized in Table IV. (The adjective
“direct” attached to the name of this algorithm is motivated by
the fact that the algorithm deals directly with the criterion in
(44), and not with the related one in (48).)
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Fig. 1. Correlations of the 40-by-3 CE and CAN sequences.

VI. NUMERICAL EXAMPLES

A. The Minimization of £ in (10)

Consider minimizing the criterion £ in (10), i.e., minimizing
all correlation sidelobes: 7, (n) for all m and n # 0, and
Tm,ms, (1) for all gy # mo and n. Suppose that the number
of transmit antennas is M = 3 and the number of samples is
N = 40. We compare the CAN sequence with the CE (cross
entropy) sequence in [18]. (From here on, “sequence” will be
short for “an N-by-M set of sequences”.) We use a randomly
generated sequence to initialize CAN (see Step O in Table II).
100 Monte Carlo trials are run (i.e., 100 random initializations)
and the sequence with the lowest correlation sidelobe peak is
kept. The 40-by-3 CE sequence is given in Table I of [18].

Fig. 1 shows the correlations (r11,712, . .., 733, normalized
by V) of the CAN sequence and CE sequence. The CE sequence

is slightly better than the CAN sequence in terms of correlation
sidelobe peaks. However, our goal is to minimize £ or equiva-
lently the following normalized fitting error:

N-1
_ g — 2 2 2
gnorm - MN?2 - ”RO - NI” +2 ;:1 ||Rn|| /(MN )

(54)
The CAN sequence gives a fitting error of 2.00, whereas the CE
sequence has a bigger fitting error equal to 2.23.

Note that although the CAN and CE sequences show com-
parable performances (also comparable to the performance of
other sequences like the ones in [17]), the CAN algorithm works
much faster than other existing algorithms, because CAN is
based on FFT computations. For the above parameter set (N =
40 and M = 3), the CAN algorithm consumes less than one
second on an ordinary PC to complete one Monte Carlo trial.
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The overall computation time is still short if we run plenty of
Monte Carlo trials and pick up the best sequence. Moreover, the
computation time of CAN grows roughly as O(M N log N) so
that CAN can handle very large values of N, up to N ~ 10°.
In contrast, the cross entropy [18] or simulated annealing based
methods [17] are relatively involved and become impractical for
large values of N. In fact, we were unable to find in the literature
any MIMO code that is designed for good (aperiodic) correla-
tions and at the same time is sufficiently long to be comparable
with the CAN sequence.

For relatively large values of N, we decided to employ the
Hadamard sequence (see, e.g., [27]), which is easy to generate
(for virtually any length that is a power of 2) and is frequently
used in wireless communications, for comparison. We also
scrambled the Hadamard sequence with a PN (pseudo-noise)
sequence to lower its correlation sidelobes. We compare the
CAN sequence (100 Monte Carlo trials are run for each NV
and the result with the lowest correlation sidelobe peak is
shown) and the QPSK Hadamard+PN sequence for M = 3 and
N = 27,...,2'3. Fig. 2 compares the sequences in terms of
three criteria: the auto-correlation sidelobe peak, the cross-cor-
relation peak and the normalized fitting error [defined in (54)].
The CAN sequence outperforms the Hadamard 4 PN sequence
with respect to each criterion. In fact, the advantage of the
CAN algorithm lies not only in the significant length and the
low correlation sidelobes of the designed sequences, but also in
the easy generation (using different initial conditions) of many
sequences which are of the same N-by-M dimension and all
have reasonably low correlation sidelobes. These randomly
distributed waveform sets are useful to some application areas,
like to countering the coherent repeater jamming in radar
systems (see, e.g., [8] and [17]).

Remark: In the derivation of the CAN algorithm (as well as
those of the WeCAN and CAD algorithms), we have assumed
that the phases [{ ¢, (n)}22 . see (2)] can take on arbitrary
values from — to 7. Interestingly, if we quantize the phases, the
performance of the designed sequences will not degrade signif-
icantly if the quantization is not too rough. See Appendix C for
an example. ]

B. The Minimization of € in (11)

Consider minimizing the criterion Ein (11), i.e., minimizing
the correlation sidelobes for lags not larger than P — 1: 7, (1)
forallmand 1 <n < P — 1, and 7y, m, (n) for all my # mo
and 0 < n < P — 1. Suppose that the number of transmit
antennas is M = 4, the number of samples is N = 256 and
the number of correlation lags we want to consider is P = 50.
Similarly to (54), the normalized fitting error for this scenario is
defined as

5 P-1
5 &
gnorm: T Ao R_N12 2 Rn 2 MN2
T <|| o= NIP +23 | ||>/< )
(55)
We also define the correlation level as
. IR, — NI6,||
correlation level = 20log,) ————,
glO \/W ’
n=-N+1,...,0,...,.N —1 (56)

which measures the “total” correlation for a certain lag.
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Fig. 2. Comparison between the CAN sequence and the Hadamard + PN se-
quence with M = 3 and N = 27,...,2" in terms of (a) the auto-correlation
sidelobe peak, (b) the cross-correlation peak, and (c) the normalized fitting error
as defined in (54).

We compare the WeCAN algorithm and the previously sug-
gested CA algorithm (see (48) and also [9] and [13]). We use
a randomly generated unimodular sequence to initialize both
WeCAN and CA. To construct the matrix I in (30) that is needed
in WeCAN, we choose

1
2 )
’Yn_{[]?

and g is chosen to ensure that ' > 0 [more exactly we choose
Yo = 25.5 following the discussion right after (30)].

n€[l,P—1]

nelP,N—1] 7
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Fig. 3. Correlation levels of the CA sequence and the WeCAN sequence for N = 256, M = 4 and P = 50. (The dotted vertical lines signify the boundary of
the time lag interval under consideration.) (a) The CA sequence and (b) the WeCAN sequence.

TABLE V
COMPARISON BETWEEN CAN, CA AND WECAN UNDER
E(N =256, M =4, P =50)

Auto-cor sidelobe peak | Cross-cor peak Enorm

CAN —20.54 —18.19 0.91
CA —21.08 —20.77 0.088
WeCAN —31.10 —29.09 0.072

Table V compares the CA sequence and the WeCAN se-
quence in terms of the auto-correlation sidelobe peak (in the
considered lag interval), the cross-correlation peak (in the con-
sidered lag interval) and the c‘fnorm defined in (55). (The 256 x 4
CAN sequence is also added in Table V for comparison.) The
WeCAN sequence gives the lowest correlation sidelobe peak
and fitting error. Fig. 3 shows the correlation level of the
CA and WeCAN sequences. We observe from Fig. 3 that the
WeCAN sequence provides a “uniformly low” correlation level
in the required lag interval [1, P — 1], while the correlation
level of the CA sequence increases as the lag increases from 1
to P — 1. This behavior is attributed to the fact that WeCAN
makes use of uniform weights {7, = 1}/, =} in (57) whereas
CA implicitly assumes “uneven” weights {v, = P — n}._}
[see (44)], so the bigger the lag, the smaller the weight. We
also note that the correlation level at n = 0 for the WeCAN
sequence is very low [around —85 dB, although in Fig. 3(b) we
limit it to —50 dB for easier comparison with Fig. 3(a)]. The
reason is that we chose 7y = 25.5, which is much larger than
the other weights (see the last paragraph) and thus the “0-lag”
correlation fitting error ||Ro — N1J| is emphasized the most in
the criterion of & in 27).

C. The Minimization ofc‘f in (27)

Consider using the WeCAN algorithm to minimize the crite-
rion £ in (27) with N = 256, M = 4 and the following weights:

1,
2 __ )
Vn_{o/

[as before, 7 is chosen to ensure the positive semi-definiteness
of I' in (30)]. We still use a randomly generated sequence to
initialize WeCAN. In this scenario, the normalized fitting error
is defined as &g = EA/(MNQ)

n € [1,19] U [236, 255

n € [20, 235] (58)

TABLE VI )
COMPARISON BETWEEN CAN AND WECAN UNDER S(N =256, M =4)
Auto-cor sidelobe peak | Cross-cor peak Enorm
CAN —20.53 —17.68 0.40
WeCAN —45.17 —45.81 9.54 x 10~

Table VI compares the WeCAN sequence and the 256 x 4
CAN sequence. The WeCAN sequence provides much lower
correlation sidelobe peaks and much smaller fitting error. Fig. 4
shows the corresponding correlation levels of the CAN and
WeCAN sequences, from which we see that WeCAN succeeds
much better in suppressing the correlations at the required lags.
Note that because |7y, m, (N — 1)| = 1 for all 4 and me, the
correlation level corresponding to the maximum lag N — 1 is
always equal to 20 log,,(vV/M? /v/M N?), which is —42.14 dB
in this case [see the end points in both Fig. 4(a) and (b)].

D. CAD Versus CA

Consider again minimizing the criterion £ in (11), with
N = 256, M = 4 and P 30. Note that in this case
P < (N + M)/2M is satisfied and therefore it is in principle
possible to make £ equal to zero (see the Remark following
(18) in Section III).

We use the CA and CAD algorithms (with random initial-
ization) to design the sequence. Fig. 5 shows the correlation
levels of the CA and CAD sequences. Both of them give almost
zero (—300 dB can be considered as zero in practice) correla-
tion sidelobes in the required lag interval. The normalized fit-
ting error &,opmm [defined in (55)] is 3.05 x 10~2* for CA and
2.93 x 10726 for CAD, which indicates an almost exact covari-
ance matrix match. Thus, both the CA and CAD sequences can
be considered as nearly globally-optimal in terms of minimizing
the criterion €. (The WeCAN algorithm is also able to give an
almost zero émrm in this case, but we do not show its results
here for brevity.)

In all cases that we have tested, CAD and CA always per-
formed very similarly to each other in terms of correlation level
and fitting error. (For instance, if we replaced Fig. 3(a) by the
plot of the CAD sequence with the same dimension, there would
be little visual difference.) This fact provides empirical evi-
dence that the “almost equivalence” between (47) and (48) holds

Authorized licensed use limited to: University of Florida. Downloaded on November 18, 2009 at 14:51 from IEEE Xplore. Restrictions apply.



4400

CAN

=50 ]
-60 - ]

correlation level (dB)

=70 4

—80 1 1 1 L L
=250 -200 -150 -100 -50 0 50

100 150 200 250

(a)

Fig. 4. Correlation levels of the CAN sequence and the WeCAN sequence for NV
lines signify the boundaries of the time lag interval under consideration.) (a) The

0 . ; ; ; ; ; ; ‘ ; ;

=50 | 4

=100 1

=150 1

=200 1

correlation level (dB)

=250

- L L L L L L L

0
=250 -200 -150 -100 -50 0

100 150 200 250

(a)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 11, NOVEMBER 2009

WeCAN
-

-0} ]
@
T -2 1
g 30} .
2
c 40| :
] | {
F -so I |
g
g &0r | 1
o i |

-0} ‘ ]

-go L . . . . . . . .
=250 -200 -150 -100 -50 50 100 150 200 250

-3

(b)

N=0

= 256, M = 4 and weights {7,, } Y= as specified in (58). (The dotted vertical
CAN sequence and (b) the WeCAN sequence.

CAD
0 T T T T T T T T T T
o =50 1
i
o -—100F 1
>
K
c -150 ]
o
k] .
S 200f : ]
= |
8 -250} ; i ]
-250 -200 -150 -100 -50 0 50 100 150 200 250
(b)

Fig. 5. Correlation levels of the CA and CAN sequence and the WeCAN sequence for N = 256, M = 4 and P = 30. (The dotted vertical lines signify the
boundary of the time lag interval under consideration.) (a) The CA sequence and (b) the CAD sequence.

true at least from the viewpoint of algorithm performance. See
Appendix B for further discussions about this aspect.

Remark: To perform well, all cyclic algorithms discussed in
this paper require a proper value for the stop criterion param-
eter € (see e.g., the last step in Table III). For the above example
where the inequality P < (N + M)/2M is satisfied, a suf-
ficiently small € (e.g., 10710) should be used to allow running
enough many iterations that drive the criterion £ to zero. In other
examples, a “moderate” e (such as 10~%) is preferred to prevent
the algorithm from running indefinitely without decreasing the
criterion any more. ]

E. MIMO SAR Imaging Application

Consider a MIMO radar angle-range imaging example (intra-
pulse Doppler effects are assumed to be negligible) using uni-
form linear arrays with colocated M = 4 transmit and M,. = 4
receive antennas. The inter-element spacing of the transmit and
receive antennas is equal to 2 and 0.5 wavelengths, respectively.
Suppose that all possible targets are in a far field consisting of
P = 60 range bins (which means that the maximum round trip
delay difference within the illuminated scene is not longer than
59 subpulses) and a scanning angle area of (—40,40) degrees.
The length of the probing waveform for each transmit antenna
is N = 512.

Let X denote the NV x M transmitted probing waveform ma-
trix [see (5)], and let

X = [)ﬂ (59)
(N+P—-1)xM

where 0 is a (P — 1) X M matrix of zeros. Then the M,. x (N +
P — 1) received data matrix can be written as

P-1 K

DY =33 apab{ X7, + EX
p=0 k=1

(60)

where J,, isan (N + P — 1) x (N + P — 1) shifting matrix as
defined in (8) (with the same structure but different dimension),
E# is the noise matrix whose columns are independent and
identically distributed (i.i.d.) random vectors with mean zero
and covariance matrix Q, {apk}f’zlikzl are complex ampli-
tudes which are proportional to the radar-cross-sections (RCS)
of the scatters, and a; and b, are the receive and transmit
steering vectors, respectively, which are given by

a, = [1 e—i™ sin(6y) e—jﬂ(l\'fm—l) sin(6y) ]T (61)

and

efjﬂ'l\/[r sin(6x) ...

by, [1 87]'7;'(1\/[71)]Mr sin(6y) ]T (62)
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where {6}, are the scanning angles. Our goal is to estimate
{opi o2y from the collected data D

First we apply the following matched filter to the data matrix
DH .

wvMF A YH~r(~xH~\—1
XMF L JER(XHX) L, (N+P-1)xM  (63)

(note that X7 J » Xi\)w = Is) to perform range compression for
the p*® range bin, i.e.,

NH 2 nWH~MF
DI 2pHX)

P—-1 K ~ ~
- (Z Z aqkakb{XHJq> XF

q=0 k=1
H~rMF
+E"X)

K
> apparbf X7 I, XM 1 7,
k=1

apkakf)f + Zp7 (Bf é b{) (64)

I
M=

>
Il
iR

where

P-1 K

S agarbf XH3, [ XM+ EFX)IE
q=0 k=1

q7#p

Equation (64) leads naturally to the following least squares (LS)
estimate of cpy:

a/ Db
d;j,?:%? k=1,...,Kandp=0,...,P—1
[l ||| b
(65)
as well as to the following Capon estimate:
&Capon _ agﬁ‘;lﬁfgk
k ~ THAB-1_ ni no’
! af' Ry tay|[by |
k=1,...,Kandp=0,....,P—1 (66)

4401

where f{p = f)f D, denotes the covariance matrix of the “com-
pressed” received data (see [4] for more details about these es-
timates of apg).

To obtain a larger synthetic aperture, we use the SAR
principle and thus repeat the process of “sending a probing
waveform and collecting data” at N = 20 different positions;
the collected data matrices are denoted as D DI ... ,Dg
respectively. Suppose that two adjacent positions are spaced
MM, /2 wavelengths apart, which induces a phase shift of
Y = —2rM M, /2sin(fy) for both the transmit and receive
steering vectors corresponding to the two adjacent positions.
(As long as the “targets in the far-field” assumption holds, the
distance between two adjacent positions can be chosen at will
and can be different for different adjacent positions; we only
need to change the phase shift 15, accordingly.) In this case, we
let

DY = [DFX)T DFXYF ... DEXIF], o

(67)
and

pbH = [bT bl e b{eﬁ(ﬂ’—l)wk 68)

] IXNM "~
Using this notation, the expressions for the estimates of «py in
(65) and (66) can be used mutatis mutandis.

In the numerical simulation, the noise covariance matrix Q
is chosen as 02T, where 02 = 0.001. The targets are chosen
to form a “UF” shape (see Fig. 6) and the RCS-related param-
eters {apk}f’:ﬁ_’kzl are simulated as i.i.d. complex symmetric
Gaussian random variables with mean 0 and variance 1 at the
target locations and zero elsewhere. The average (transmitted)
signal-to-noise ratio (SNR) is given by

tr(X 7 X)

M
SNR= —& — = =30 dB. 69
tr(Q) M,c? 69)
We use two different probing sequences: the QPSK
Hadamard+PN sequence and the CAD sequence with

N = 512, M = 4 and P = 60. The transmitted waveform
is phase-modulated by the probing sequence (one sequence
element corresponds to one subpulse) and we assume proper
sampling so that the considered discrete models are appro-
priate. The estimated { apk}f’zli r—1 using these two waveforms
are shown in Fig. 7. The CAD waveform gives much clearer
angle-range images than the Hadamard+PN waveform. Note
from Fig. 7(c) and (d) that the CAD waveform facilitates al-
most perfect range compression via the matched filter (the false
scatterers are due to the presence of noise) and that the Capon
estimator provides a radar image with a high angle resolution.

VII. CONCLUDING REMARKS

In this paper we have presented several new cyclic algo-
rithms, namely CAN, WeCAN and CAD, for the synthesis of
unimodular sequence sets which can be used to phase-modulate
a MIMO radar waveform. We aimed at generating sequence sets
that have both good auto- and cross-correlation properties. The
CAN algorithm can be used to design very long sequences (of
length up to N ~ 10%), which can hardly be handled by other
algorithms previously suggested in the literature. The WeCAN
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Fig.7. Estimated target images in terms of the RCS-related parameters { | |} 22 e 5 =1 (@) The LS estimate using the Hadamard + PN waveform, (b) The Capon
estimate using the Hadamard 4+ PN waveform, (c) The LS estimate using the CAD waveform and (d) The Capon estimate using the CAD waveform.

algorithm is useful when only a few selected correlation lags
are of interest. The CAD algorithm minimizes a specific form
of the WeCAN criterion; unlike the other algorithms, it does
so in a direct manner without relying on an “almost equiva-
lent” criterion. The WeCAN or CAD algorithm can make the
correlation levels almost zero if the lag interval of interest
is sufficiently small. Several numerical examples have been
presented to demonstrate the good performance of the designed
sequences. The proposed sequence set design algorithms can
also be used for waveform design in multiple access wireless
communications applications.

APPENDIX A
SOLVING THE MINIMIZATION PROBLEM IN (53)

The problem is to minimize the following single-variable
function:

f(¢)

¢ € [—m, 7.
(70)

—2aq cos(¢ + 01) + as cos(2¢ + 62),

We take the derivative of f(¢) with respect to ¢ and set it to 0:
f(¢) = 2a1sin(¢p + 01) — 2a2sin(2¢ + 62) = 0. (71)
By using trigonometric identities, (71) can be written as

—6ds? —2(a —2¢)z —b+d =0,
T = tan (g) € (—o00,00) (72)

(b+d)z* — 2(a + 2¢)2>

where

b = ay sin(6y);
d = azsin(67).

a = ay cos(61),

¢ = az cos(62),

Equation (72) is a 4'"-order polynomial equation whose roots
can be found in closed-form. (However, the closed-form root
formula is somewhat complicated and we will actually use the
companion matrix method to compute the roots, see [28]; the
latter only requires computing the eigenvalues of a 4 x 4 matrix
and works even faster than the algebraic closed-form formula.)
Then we select the real-valued roots (in terms of ¢) of (72) and
form a set of these roots together with the end points —7 and 7;
the point in this set that gives the smallest value of f(¢) in (70)
determines the minimizer ¢ of (53).

APPENDIX B
ON “ALMOST EQUIVALENCE”

As mentioned in Section III, the criteria in (20) and (19) are
what we can call “almost equivalent” (and so are (34) and (33) in
Section IV, and (48) and (47) in Section V). For simplicity, let us
assume that M = 1 here (in which case the designed sequence
becomes {z(n) = e/*(M}N_ ). Then (19) can be written as

2 2

N
Z JeIwrn| (73)

\/_

DN | =

2N
E= QNZ
p=1
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Fig. 8. The contour surface plots of the two metrics £ and &€,.. Solid yellow, hatched green and solid black represent small, middle and large values, respectively.

(a) The £ in (73) and (b) &, in (78).

Let

—Jepm (74)

;XN
— Z xz(n)e
V2N ‘=
and note that 2%, 2. = YN |2,|2 = N (from Parseval
p=17°pP — n=1 [""" -
equality). The goal is to determine {z(n)}2_; such that (73)

is minimized. To simplify this determination we can first deter-
mine {z,},Y, such that

2N 1\ 2
min Zp — —
{Zp}igl pz::l < v 2>

s.t.

(75)

Zzp =N
p=1

That is, we over-parameterize the problem (73) via the use of
{2p}2X, and then we will fit the right-hand-side of (74) to the
so-obtained {7, }2Y,

The solution to (75) is obviously given by

p=1,...,2N. (76)
It is clear from (74) that z, constrains the magnitude of
ij:l x(n)e~7«»™ but leaves its phase free. Therefore, fitting
to {7, }2Y, leads to the following minimization problem:

2N 2
min Je —jwpn _ [7 edte
{xn}fl\;l,{'(/)p ?,le z_:l \/ Z v
s.t.jz(n)] =1, n:l,...,N T7)

which is exactly (20) for M = 1.

As evidenced in the foregoing analysis, the criterion in (77)
is itself a correlation metric in its own right; if there exists
{x(n)}N_, that makes the criterion in (77) zero, the same
{x(n)}N_, will also make the original criterion in (73) zero.
By continuity arguments, the {z(n)})_; that makes (77) small
will also make (73) equal to a small value.

According to the derivation in Section III [c.f. (23)],
for fixed {z(n)}N_,, the minimizer e’¥» is given by

Thus, the crite-

25:1 a(n)e= i/ ‘Z,J:;l x(n)e=Iwrn

rion in (77) can be written as
2N N

e = 2N - —_— z(n)e
2| 2

1 SN a(n)e i

f’z

—jwpn

(78)

—Jwpn
nlx 6 P

To illustrate the relationship between £ in (73) and &,, in (78),
we show the contour plots of these two metrics in the case of
N = 3. Note that both £ and &, are functions of the variables
{¢(n)}2_,, which are the phases of {z(n)}3_; and each can
take values from — to 7. We cover the phase range [—7, 7] by
50 points and calculate £ and &, at each grid point in the three
dimensional cube [—7, 7]3. Then we use three different colors
to draw contour surfaces with values around the minimum value
plus 1, the median value and the maximum value minus 1 of £
(€.e), respectively. The resulted plots are shown in Fig. 8

We can first observe from Fig. 8 that both £ and &, are
“quite irregular” metrics with respect to {¢(n)}3_,: contour
planes with different values interleave with each other and there
is hardly any global direction of consistent functional increasing
or decreasing. On the other hand, locally there are clear gradient
structures, as seen from the sequentially repeated “yellow green
black” planes, especially in Fig. 8(a). Another interesting obser-
vation is that the shape and positions of yellow and green planes
(corresponding to small and middle values) in Fig. 8(a) are very
similar to those of yellow and green planes in Fig. 8(b). This
observation lends support to the previous claim that a sequence
{x(n)}3 _, resulting in a small value of &,. also makes £ small.

In the above case where N = 3, we actually have

£=2(r( +r(2)1%)

2 ]ei@@=01) 1 ie®-e|" L o> 9 (79
The complex sinusoidal terms in (79) imply a periodic pattern
with many local minima, which can be observed from Fig. 8.
Indeed, the smallest value of £ in this example is 2.0, and it ap-

pears ten times for the 50 x 50 x 50 grid points (it will appear
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Fig. 9. Same comparisons as shown in Fig. 2(a) and (b), except that the phases of the CAN sequence used here are quantized into 32 levels.

more times if we use a finer grid). Interestingly, if we apply the
CAN algorithm described in Section III, the generated sequence
{xz(n)}2_, makes & equal to 2.0 and thus achieves the global
minimum. Moreover, different initial conditions (c.f. Table II)
lead to different sequences, which are all global minima (i.e.,
making £ equal to 2.0). This again sheds some light on the va-
lidity of the “almost equivalent” metric &£,e.

APPENDIX C
ON QUANTIZATION EFFECT

We have assumed in this paper that the phases of the designed
sequences can take on any values from —7 to w. In practice
it might be required that the phases are drawn from a discrete
constellation. Thus, we briefly examine here the performance
of our designed sequences under quantization.

Let {2, (n) }i\,;[’:]\lr,nzl denote the sequence set that is obtained
from one of the algorithms discussed in this paper. Suppose that
the quantization level is 2¢ where ¢ > 1 is an integer. Then the

quantized sequence can be expressed as

in(n) = exp { | 2B} 20

24

m=1,...,Mandn=1,...,N. (80)

We quantize the CAN sequence used in Fig. 2 into 32 levels
(i.e., ¢ = 5) and do the same comparisons with the Hadamard +
PN sequence. The results are shown in Fig. 9, from which we
see that the curves representing the CAN sequence move up a
little but they are still below the corresponding curves of the
Hadamard+PN sequence [except for the point of N = 4096 in
Fig. 9(b)]. We do not plot the fitting error here as was done in
Fig. 2(c), because the fitting error of the CAN sequence almost
does not change after this 32-level quantization.

Similar situations occur if we quantize sequences generated
from the other algorithms (WeCAN, CAD and CA) used in
Section VI. In our test, the performance degradation (i.e., the
correlation sidelobe increase) was quite limited provided that
the quantization level was not very small (e.g., ¢ > 6).
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