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On Designing Sequences With Impulse-Like
Periodic Correlation

Petre Stoica, Fellow, IEEE, Hao He, Student Member, IEEE, and Jian Li, Fellow, IEEE

Abstract—Sequences with impulse-like correlations are at the
core of several radar and communication applications. Two cri-
teria that can be used to design such sequences, and which lead
to rather different results in the aperiodic correlation case, are
shown to be identical in the periodic case. Furthermore, two sim-
plified versions of these two criteria, which similarly yield com-
pletely different sequences in the aperiodic case, are also shown to
be equivalent. A corollary of these unexpected equivalences is that
the periodic correlations of an arbitrary sequence must satisfy an
intriguing identity, which is also presented in this letter.

Index Terms—Clyclic algorithm, periodic correlation, sequence
design.

I. INTRODUCTION AND PRELIMINARY RESULTS

ET {z,})_, be the sequence in question, and let
{rhty 41 denote its periodic correlation coefficients
(or correlations, for short):

N

n=1

In (1), the superscript * denotes the complex conjugate for
scalars (as well as the conjugate transpose for matrices), and

n(mod N) =n — \‘%J N )

where |n/N| is the largest integer smaller than or equal to
n/N.Inmost applications the elements of the sequence are con-
strained in some way; for instance, they may be required to be
binary or polyphase, or at least to be unimodular (i.e., to have
constant modulus). However we do not make such an assump-
tion in the theoretical analysis here, for the sake of generality:
therefore we simply let 2z, € C (n = 1,..., N) to avoid re-
straining the validity of the results that follow.
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Sequences with impulse-like periodic correlations are re-
quired in many applications, particularly in pulse compression
radar and in wireless communications [1]-[6]. Such sequences
can be designed via the minimization of a number of criteria
that express, in different ways, the distance between the actual
and the desired periodic correlations. In order to describe these
criteria, let us assume that rq is fixed (i.e., 79 = constant;
for example, in the case of unimodular sequences mentioned
above, we have ro = N when |z,,| = 1). Also, let X denote
the following N x N right circulant matrix:

r1 T2 TN-1 TN
N T1 - IN—2 IN-1

X=1 . . . 3)
Tro I3 N T

Making use of X we can write the N X N correlation matrix of
the sequence in the following form:

* *
70 1 T"N-1
x
T Nl xxe @)
'N—1 -+ TN To

(this fact is well known; for completeness and for readers’ con-
venience, we include a simple proof of (4) in Appendix A).

With (4) in mind we can think of designing the desired
sequence {z,} with impulse-like periodic correlations via the
minimization of the following criterion:

Oy = ||IXX* — roI))? 5)

where || - || denotes the Frobenius matrix norm (as well as the
Euclidean vector norm). It follows readily from (4) that

N-1

>

k=—(N—1)
k0
N-1

=2 (N = k). 6)
k=1

G = (N = [kDlrx/*

Seemingly the above form of C; suggests that the larger
correlation lags are less emphasized in this criterion than the
smaller correlation lags (for example, the weight of |r1|? in (6)
is N — 1, whereas that of |ry_1|? is equal to 1).

The above observation leads to a second, potentially more
natural criterion, in which all correlation lags (that are to be
minimized) are equally weighted:

N-1
Ca=N> |nf? (7
k=1

1070-9908/$25.00 © 2009 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on June 12, 2009 at 12:08 from IEEE Xplore. Restrictions apply.



704

(the factor N in (7) will make the comparison with (5) neater).
Criteria similar to C; and C5 have been used to design uni-
modular sequences with impulse-like aperiodic correlations in
[3] (see also [1] and the many references both in [1] and in [3]).
The sequences obtained by minimizing C'; and respectively Cs
turned out, as expected, to have rather different correlation prop-
erties. On the other hand, in the periodic case the two criteria
are, quite unexpectedly, identical under general conditions, as
shown in the next section. A corollary of this result is that the
periodic correlations {7} of an arbitrary sequence {z,, } must
satisfy the following striking (and possibly novel) identity:

N Z r]? =

(see (6) and (7)). In the next section we also prove the equiv-
alence between two other design criteria, called C'5 and Cy,
which are related to, but at the same time simpler than, C; and
C,. This equivalence was, once again, unexpected at least in
view of the fact that C3 and Cy lead to rather different results in
the aperiodic correlation case, see [3].

We should remark on the fact that in the no-constraint case,
the sequence {z,} can be easily selected to make both C; and
Cs (as well as Cs and Cy, see the next section) equal to zero.
In fact the same is true in the unimodular case, and even in the
polyphase case (provided that the number of different phases
allowed is large enough), see, e.g., [6] and the references therein.
In all these cases, the criteria are equal to one another at the
minimizing (also called “perfect”) sequences. However, in the
next section we prove that C; = C5 (and similarly for C3 and
C}) at any sequence {x,, }, which is a much stronger result.

N—1
(N — k)|ri|? (8)

II. MAIN RESULTS

First we prove that the criteria C; and C5 are identical.

A. Cl and 02

Let F denote the N x N (inverse) FFT matrix, whose
(k, p)-element is given by

[Flip = —=€>™/N02 - p=1,...,N )
VN ’ ’
and let
N )
Xp =Y wne 27N p=1 N (10)
n=1

be the finite Fourier transform of the sequence {z,, }. Then it is
well known that:

X = F*DF an

where
X1 0
. 12)
0 XN
(once again, for completeness’ sake and for readers’ conve-
nience we provide a simple proof of (11) in Appendix B).
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Using (11) and the fact that F is unitary (i.e., F*F = I) we
can rewrite C as:

Cy = ||XX* — 7oI|)? = |[DD* — roI||?

N
= (X" = 10) (13)
p=1
Regarding C,, from (4) and (11) it follows that
7o 1 TN-1
71 70 . r}kv_l
F . ) ) . =FXX* =DD*F (14)
TN—-1 -+ T To
and consequently that
To |X1|26j27r/N
1 R (15)
| VN y
|XN|26_]27r/NN
TN—-1
From (15) we obtain the following expression for Cs:
2
o
Co=N> |nl>=N|[|F]| : — 72
- TN-1
N
Z X" = r3). (16)

Comparing (13) and (16) we see that C; = Cs if and only if

N
~2r0 Y [X,[? + Nvg = —NvZ (17)
p=1
or, equivalently,
1 Y
- 2
o= Zl X, 2. (18)
p=

However (18) is nothing but a Parseval-type equality that fol-
lows easily from the fact that

T 1 X 1
F*| | =— : (19)
: N :
TN \/_ X N
With this observation, the proof of the identity
Gy =0 (20)

is concluded.

The criterion C is a quartic function of the sequence ele-
ments. The following criterion is related to Cy, as explained
shortly, but it is a simpler quadratic function of the unknown
variables:

Cs = [X — y/roUJJ?

where U is an V x N unitary matrix: U*U = UU* = 1. The
criterion C} is related to C1 in the sense that C'; takes on a small

1)
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value if C'3 does so, and vice versa; in particular, C; = 0 if and
only if C'3 = 0. Consequently, an alternative way of designing
the sequence is to minimize C5 (with respect to both {z,,} and
U) instead of minimizing C}.

Regarding C5, a similar argument to the above one leads to
the following related but simpler criterion [see (13) and (20)]:

N
Cy=_|X, = /roedr|? (22)
p=1

where {1, } are auxiliary variables (similar to the U in (21)).

The equality of C; and C5 does not necessarily imply the
equivalence of C's and Cy. However, once again somewhat un-
expectedly, C3 and Cy can be shown to be equivalent, as ex-
plained next.

B. 03 and C4

Making use of (11) we can rewrite C'5 as follows:

Cs = D - ViV (23)
where V = FUF* isan N x N auxiliary unitary matrix. Be-
cause D is diagonal we can expect that the minimizing unitary
matrix V is also diagonal. To show that this is indeed the case,
note that the matrices made from the right and left singular vec-
tors of D are diagonal with unit-modulus elements on the main
diagonal. Then it follows from a result proved in [5] (see also
the references there) that the minimizing matrix V must have
the form:
VA 0
V= (24)

0 eij
Inserting (24) into (23) we obtain the criterion C} after a simple
calculation, a fact that we informally can state as follows:

Cy = Cly.

min

25
{Vip (k7#p)} )

With this observation the proof of the equivalence between Cs
and C} is concluded.

III. DISCUSSION AND A NUMERICAL EXAMPLE

In the heavily constrained case of binary sequences or of
polyphase sequences with a small phase set, perfect sequences
(for which C; = Cy = C3 = C4 = 0) are rare occurrences
[6]. For such cases, minimizing C; or Cs may be the only way
available for designing an optimal sequence. Alternatively, we
can design a quasi-optimal sequence by minimizing the related
but simpler criteria C's or Cy (note that the sequence minimizing
Cj3 or (4 is not necessarily the same as the sequence that min-
imizes C7 or C5). We recommend using C, for such a design
task due to the computational convenience of this criterion. In-
deed, the evaluation of Cy can be efficiently done by means of
the FFT. Furthermore, C, can be conveniently minimized using
a cyclic algorithm called PeCAN (Periodic-correlation Cyclic
Algorithm-New) that was introduced in [4] (see below for an
outline). If the performance achieved by C; and PeCAN is not
deemed to be satisfactory, then the direct minimization of C; or
C5 (which is harder) may be advised.

In the mildly constrained case of polyphase sequences with
large phase sets or of unimodular sequences, on the other
hand, perfect sequences exist for any length IV (see, e.g., [6]).
Furthermore, there are systematic analytical ways (including
closed-form expressions) for constructing such perfect se-
quences. However, even in this situation, designing a perfect
sequence by minimizing one of the above criteria (all of which
can be made equal to zero in such a case) is of considerable
interest for radar and for wireless communications in hostile
environments (such as covert underwater communications, see,
e.g., [4] and the references therein). Indeed, in such applications
it is important not only to use a perfect sequence to mitigate the
multipath interferences, but also to employ one that is hard to
guess by the adversary. Perfect sequences given by closed-form
expressions or constructed in some other analytical ways are
typically easy to guess because they depend on a relatively
small number of parameters (such as the sequence’s length,
possible sign changes or phase shifts etc.). On the other hand,
perfect sequences generated by minimizing the above criteria
depend on the initial sequence used to start the search, and
are nearly uncorrelated to one another when obtained using
random initializations; and a random initial sequence depends
on too many unknowns (between 2 in the binary case, and
infinity in the unimodular case) to allow an exact guessing (even
when the sequence’s length and the generating algorithm are
known). Similarly to what we said in the previous paragraph,
we recommend using Cy for sequence design in this case as
well: indeed C4 can be efficiently minimized by the PeCAN
algorithm, whereas no similarly efficient algorithm is available
for minimizing the other criteria.

To illustrate the above claim, we consider the design of a uni-
modular sequence (with |z,,| = 1) of length N = 256. We will
use Cy in (22) and the PeCAN algorithm for this purpose. Here
is a brief review of PeCAN (see [3] and [4] for more details; note
that this algorithm can be used with values of V up to 10°).

1) Use NN independent and uniformly distributed phases in the
interval [0, 27] to randomly generate an initial unimodular
sequence {z, }_;.

2) For given {x,, }, compute the FFT of {z,},i.e., {X,}] ;.
and minimize C; with respect to {1, } )", . The minimizing
{%p} are simply given by

Py = arg(X,),

3) For given {1, }, compute the IFFT of {e/¥7}, let us say
{zn}, and minimize C, with respect to {x,} (subject to
|z,| = 1). Similarly to (26), the minimizing {z,, } are easy
to compute:

p=1,...,N. (26)

T, =8 =1 N. (27)
4) Tterate Steps 2 and 3 until a practical convergence criterion
is satisfied.

(We should note that design algorithms similar to PeCAN
have been proposed before in the literature, see e.g., [1], [2] and
references therein; however, these algorithms have been moti-
vated on only heuristic grounds, without any clear connection
to the minimization of Cy, and in fact they fall short of being
minimization algorithms for Cy).

We have run PeCAN with N = 256 and 200 different random
initializations. Out of the obtained 200 unimodular sequences,
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Fig. 1. Superimposed normalized periodic correlations (see (28)) of 100 per-
fect sequences (of length N = 256) generated using PeCAN with random ini-
tialization.

the TIOO sequences with the lowest integrated sidelobe level,
Zi\:_ll 7|2, were kept. The normalized periodic correlations
(in dB) of these 100 sequences, viz.

20logq, |7]ﬁv—k|

(k= —255,...,255) (28)
are shown in Fig. 1, in a superimposed manner. The values of
the correlation sidelobes (corresponding to lags k& # 0) in this
figure are lower than —260 dB (i.e., 10~'3), which can actually
be considered as zero in practice. We have also computed the
normalized periodic cross-correlations of these 100 perfect se-

quences associated with Fig. 1:

N

1 ma)s

5 2 e ey K =0,...,255 and
n=1

my, Mo = 1/,100

(ml ;é mg) (29)

where {z"""}2_, denotes the m1'" perfect sequence. The ab-
solute values of (29), for the shown k, mq and ms, turned out
to lie in the interval [4.83 x 1075,0.24] (with a mean value
equal to 0.055), which means that the perfect sequences ob-
tained using PeCAN with random initialization can be consid-
ered to be nearly uncorrelated to one another. Note that the
corresponding interval for the initial sequences was [2.77 X
107?,0.25] (with a mean value of 0.055), from which we can
infer that the PeCAN algorithm lowers the auto-correlation side-
lobes of the initial random sequences to almost zero without in-
creasing the cross-correlations among them.

APPENDIX A

PROOF OF (4): Let J denote the N x N shift matrix:

01
- [1 0} | (30)
Then, we have that
Ty TN
. T
v o =] 31)

TN-1

TN ITN-1
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(the superscript T denotes the matrix transpose) and, by induc-

tion, that the k' row of X is x7J* (x = [x; an]h)
and therefore that
XXy = x" IEIP) = x"TE@ P (xT). (3

Let k > p. Because 7, = x7J*(xT)* and J*(J*)? = J*~P (as
JJ* = 1), it follows that

[(XX*gp = xTIFP(xT) =1y, (33)
which proves (4).
APPENDIX B
PROOF OF (11)
Let
a, = the p'" column of F*
= [e—jQW/Np e—J'??T/NNp]T. (34)

Then we have the following equivalences (see also the proof of

“4):
(11) <= XF* =F'D <= Xa, = a, X,
— xTJka, = 12"/NkP X (p k=1,...,N). (35)

The last equality is obviously true for £k = N; so let us assume
thatk = 1,..., N — 1. To show that (35) holds in the latter case
as well, observe that

87]27r/Nkpo

N
= sze_ﬂ”/Np(s'i'k) (k=1,..., N -1)

s=1
r e—j27‘r/]\71)(k+1) 7 'e—j27r/Np(k+1) T
T e—j27r/NpN T e—j27r/NpN
=X | gmi2n/Np(N+1) | =X e—i27/Np
e—j?‘/r/Np(N—‘,—k) e—j27T/Npk
=x"J"a, (36)

which proves (35), and therefore (11).
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