
Wild fluctuations in the stock prices and currency ex-
change rates of every country have had a huge impact
on the world economy and the personal fortunes of
millions of us over the last few years. These instabilities
have also had another, perhaps unintended, conse-
quence – of thrusting the academic discipline of
“econophysics” firmly into the limelight. But does a
field that involves applying the concepts of statistical
physics to economics really have anything important to
contribute to discussions about the current economic
crisis? Yes – absolutely – because finding laws descri-
bing fluctuations is the essence of statistical physics.

Physicists are not, of course, the first people to apply
statistics to economics, with mathematicians also hav-
ing contributed to the field for many years. One of their
first significant breakthroughs came in 1900 when
Louis Bachelier, working under the tutelage of the
great French mathematician Henri Poincaré, published

a PhD thesis in which he analysed real financial data.
Bachelier claimed that a histogram of the changes in
share price (measured over any period of time) forms a
bell-shaped curve known as a Gaussian function, with
very large fluctuations essentially never occurring. In
other words, he believed that the chances of a serious
crash occurring are almost zero. Such serious crashes
are indeed very rare, but when they do occur, their
effects can be devastating.

The model associated with Bachelier is often referred
to as the “random walk” or “drunkard’s walk” because
he assumed that stock prices go up or down randomly
by an amount that has a characteristic value. In recent
years, however, econophysicists have been able to get
their hands on a staggering quantity of real-time finan-
cial data, including the price, volume and timestamp of
every transaction of every stock you can think of. Thanks
to this information, which is now available in huge
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financial databases, it is becoming widely accepted that
the drunkard’s walk fails to account for the very largest
changes in stock price. These rare occurrences, which
are collectively known as the “fat tails”, correspond to
events with huge price changes that are far more com-
mon than can be explained by Bachelier’s model. How-
ever, as Bachelier’s form of a Gaussian price-change
histogram was still able to fit most of the available data,
it led some mathematicians and economists to dismiss
the fat tails as “outliers” or “tsunamis”. Being so rare,
they argued, the outliers can simply be ignored.

Expect the unexpected
Most physicists will find it incredulous that something
that does not fit into a theory should be dismissed as
merely an outlier. And econophysicists share that view
too. But econophysicists have another trait – a reluct-
ance to construct a theory before analysing as much
relevant data as exist. Collecting significant amounts
of data in traditional areas of physics often requires
years of painstaking labour, but nowadays vast quanti-
ties of financial data are available, often free of charge.

In the late 1990s Paramaswaram Gopikrishnan and
Vasiliki Plerou, who were then graduate students work-
ing at Boston University in the US, decided to analyse
every transaction of every single stock in the major US
markets. At that time, the analysis of such huge data
sets was not as commonplace as it is today and required
a significant upgrade to their university’s computer
system to complete the task. Using the extra computer
resources, the two students constructed a histogram
that displayed the number of times the stock market
changed by a certain amount, plotted as a function of
that amount. They did this by analysing 1000 different
stocks each consisting of 200 000 data points.

What Gopikrishnan and Plerou found was that large
transactions are more common than they had expected,
with the tail of their histogram not being Gaussian but
following an “inverse quartic power law”. This law

means that if there is a probability p of, say, a $5 price
change occurring, then the probability of a $10 price
change is p/24, i.e. p/16. This inverse quartic law excels
at describing the probability of very rare events, such
as those occurring once every few decades. Events cor-
responding to 100 standard deviations, for example,
have a probability of about 10–350 with a Gaussian
model, but a far more realistic likelihood of 10–8 (i.e.
one in a hundred million) with the inverse quartic law.
This latter value is confirmed by real data. For example,
Gopikrishnan and Plerou typically found two events
corresponding to 100 standard deviations in a database
of 200 million entries.

Although the inverse quartic law accounts for these
incredibly rare events, as well as for more common-
place events, it is still not popular with some economists
– particularly those who demand a complete theory
that explains the causes before accepting empirical
data. Physicists are not, however, accustomed to wait-
ing for a fully formed theory before reporting new
results. After all, the theoretical basis of many physical
phenomena is often not understood for years after an
experimental observation – and sometimes not even at
all. To see this, you only have to look at the huge num-
ber of papers streaming out about high-temperature
superconductivity despite the fact that we have no
accepted theory for this phenomenon at all.

Shock and panic
The discovery of the inverse quartic law was a conse-
quence of an intense study of a huge number of finan-
cial-transaction data. However, the law had one big
flaw: it did not pay any regard to when the transactions
took place. Individual price changes, in other words,
were simply collected in the bins of a histogram and all
“time ordering” of the data was lost. But can we find
laws to describe this time ordering? It is a crucial ques-
tion for econophysicists seeking to understand stock-
market behaviour, which rises and then suddenly falls

(a) A small subset of the German DAX Future market comprising a few hours of trading on the afternoon of Friday 15 October 2010. The data can be analysed to obtain the

price and volume of transactions as well as the time intervals between them, all with a resolution of 10 ms. (b) This graph shows local price maxima (blue circles) and local

price minima (red circles), where these peaks and troughs are determined over a time window of 2Δt. Positive trends start at the local minima and end at the local maxima –

and vice versa for negative trends – with ε= 0 assigned to the start of each trend and ε= 1 to each end. In order to study the “switching processes” between trends – both

before a trend switch and after – the subsequent volume sequences of identical length need to be considered.
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in a manner that cries out for an explanation.
To analyse the time behaviour of financial data, what

the current authors have done is to analyse massive
data sets comprising three fluctuating quantities. These
are: the price of each transaction; the number of ex-
changed shares in each transaction (i.e. the volume);
and the time between each transaction and the next.
Our goal was to find out if there are general laws to
describe market behaviour near the “switching points”
in the data – these are either local minima where the
share price falls before starting to rise again (also
known as an “uptrend”) or local maxima where the
price peaks before falling (a “downtrend”). In other
words, are there regularities either just before or just
after a switching point?

To find out, we analysed a time series of the German
DAX Future stock market, which trades “future
shares” of the top 30 German companies trading on
the Frankfurt Stock Exchange (2010 J. Stat. Phys. 138
431). It comprises 14 million transactions recorded
with an incredible resolution of only 10 ms, which
allows us to analyse in detail all “microtrends” occur-
ring. We also looked at “macrotrends” over periods 
of up to 100 days by analysing 2.6 million daily closing
prices of stocks in the S&P 500 share index in the US.
What we first needed to do, however, was find a way of
looking at all the data at once, without having to worry
about the fact that the time between switching points
can vary greatly from minutes to hours. Our solution
was to “renormalize” the data by simply assigning a
time ε= 0 to the start of an uptrend and ε= 1 to the 
end of an uptrend (figure 1). We also applied this
methodology to negative trends, where ε= 0 and ε= 1

correspond to the start and end of a downtrend, re-
spectively. Taken together, the two analyses let us look
at positive and negative trends ranging in time over
nine orders of magnitude (i.e. from 10–2 s to 107 s).

Financial markets and their participants are well
known to be hugely complex systems in which individ-
ual traders interact with one another through various
mechanisms. For instance, traders are explicitly aware
of all price fluctuations, and use this information when
placing their individual orders – trying to guess when
the price has a local maximum so they can sell at the
best possible time, and trying to guess when the price
is at a local minimum so they can buy at the best possi-
ble time. Although people have never quite been sure
if this “panic hypothesis” is really true, we found plenty
of evidence to back that view up. In particular, our
analysis revealed that the volume of each transaction
increases dramatically as the end of a trend is reached
(figure 2a), while the time interval between each trans-
action drops (figure 2b). In other words, as prices start
to rise or fall, stock is sold more frequently and in larger
chunks. Traders become tense and panic because they
are scared of missing a trend switch.

Based on the results of both databases, we also found
to our surprise that there is a unique empirical power
law quantifying both transaction volumes and inter-
trade times in all the financial markets we analysed.
Even more surprising, we found the same exponent on
timescales varying over nine orders of magnitude, from
10 ms to 100 days (figure 2c and d). In other words, the
formation of increasing and decreasing trends – bub-
bles and crashes – is scale-free in that the same law
holds over up to at least nine orders of magnitude.

Whenever a stock market switches from a rising to a falling trend or vice versa, (a) the volume, v*, of transactions peaks, while (b) the time between

transactions, τ*, reaches a minimum. These aggregated volume and “inter-trade” times were obtained by averaging all trends in data from the

German DAX Future stock market, with the “renormalized time” on the x-axis running from the start of a trend (ε= 0) to the end (ε= 1). Price maxima

and price minima coincide with peaks in the volume and dips in the inter-trade time. Analysis also reveals a power-law behaviour as seen from 

(c) this log–log plot of averaged transaction volumes versus ε both before reaching a switching point (ε< 1, circles) and after reaching a switching

point (ε> 1, triangles). Power-law behaviour is also revealed by (d) this log–log plot of the averaged inter-trade times. β is the value of the slope.
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Respect the data
Our results are consistent with the idea that the well-
known catastrophic bubbles that occur over large time-
scales – such as the global financial crashes of 1929 and
2008 – may not be outliers. Instead, they are single dra-
matic representatives caused by the formation of in-
creasing and decreasing trends on timescales varying
over nine orders of magnitude from milliseconds to
years. Just as the minor, tiny earthquakes that occur all
the time turn out to be connected to the largest and most
dramatic quakes, so it may be possible to learn more
about the characteristics of dramatic crashes by studying
the gargantuan amount of data concerning tiny crashes.

On typical trading days, economists who stick with
traditional Gaussian models will have nothing to lose.
However, they open themselves up to a false sense of
security not unlike those who ignore very small earth-
quakes: unless you work in a seismic detection centre,
you will be oblivious to the minor quakes occurring all
the time. But huge earthquakes, when they do happen,
can cause devastation. The 2008 Sichuan earthquake
in China, for example, claimed nearly 70 000 lives,
while, at the time of writing, more than 27 000 people
have either died or remain unaccounted for after the
earthquake in Japan in March.

Our experience might lead us to believe, naively, that
a histogram of earthquake magnitudes will have a
broad maximum for everyday earthquakes and a small
sharp maximum for devastating earthquakes. Re-
searchers studying actual seismic data, in fact, do not
find this kind of “bimodal distribution” but rather a
power law – the Gutenberg–Richter law. Yet while gov-
ernments respect the real possibility of extremely rare
huge earthquakes by requiring that buildings should be
appropriately designed and constructed, it is not clear
if policy makers equally respect the possibility of ex-
tremely rare huge financial shocks. ■

Scale-free market fluctuations Data from the German DAX Future stock-market

index, with each curve showing just a tiny part of a data set consisting of 14 million

transactions. The curves reveal how the rise and fall of share prices behave in a 

“self-similar” way, looking the same over whatever timescale you choose to pick –

in this case over intervals of 1 day (top), 1 hour, 10 minutes and 1 minute (bottom).

Local maxima and minima, or “switching points”, are marked as blue and red circles.
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