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Abstract

In this paper, we propose an end-to-end multi-width activation and multiple receptive field
networks for the large-scale and complicated dynamic scene deblurring. Firstly, we design a
multi-width activation feature extraction module, in which a multi-width activation residual
block is proposed for making the activation function learn more the nonlinear information
and extracting wider nonlinear features. Secondly, we design a multiple receptive field (RF)
feature extraction module, in which a multiple RF residual block is proposed for enlarging
the RF efficiently and capturing more nonlinear information from distant locations. And
then, we design the multi-scale feature fusion module, where a learning fusion structure
is designed to adaptively fuse the multi-scale features and complicated blur information
from the different modules. Finally, we use a multi-component loss function to jointly
optimize our networks. Extensive experimental results demonstrate that the proposed
method outperforms the recent state-of-the-art deblurring methods, both quantitatively
and qualitatively.

Keywords: multi-width activation, multiple receptive field, multi-scale fusion, nonlinear
information, dynamic scene deblurring

1. Introduction

Dynamic scene blur caused by the camera shake, object motions, different scene depths and
occlusion in motion boundaries during the exposure time, and it is one of the most common
image degradation problems when taking a photo in the wild. The blurry structures of
image not only degrade their visual quality seriously, but also directly affect the practical
application of image in various fields. Researchers have actively studied this issue in the
past decade. However, most existing methods are usually ineffective for large-scale and
complicated dynamic scene blurs.

Previous dynamic scene deblurring methods Hyun Kim et al. (2013); Hyun Kim and
Mu Lee (2014); Pan et al. (2016) usually rely heavily on non-uniform blur kernels estimation
or an accurate image segmentation. And the process of deblurring is time-consuming, since
these methods need to solve the highly non-convex optimization problem. Recently, deep
learning, especially the deep convolutional neural network (CNN) Krizhevsky et al. (2012),
has been proven superior in the field of image processing. The CNN-based methods Sun
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et al. (2015); Gong et al. (2017); Noroozi et al. (2017); Nah et al. (2017); Kupyn et al. (2018);
Tao et al. (2018); Zhang et al. (2018a); Gao et al. (2019) have been proposed for dynamic
scene deblurring. Some methods Sun et al. (2015); Gong et al. (2017) estimated pixel-wise
blur kernels by utilizing CNN, which have been shown good performance on certain blurred
images. These methods can obtain some global nonlinear information, but lead to a high
computation cost. And because these methods employ the synthetic blurry images which
are generated by convolving the clean natural images with the synthetic motion kernels,
they either tackle only several specific type dynamic scene blurs or the simple blur model.
Some methods Noroozi et al. (2017); Nah et al. (2017); Kupyn et al. (2018); Tao et al.
(2018); Zhang et al. (2018a); Gao et al. (2019) based on end-to-end trainable manner have
also been proposed for image deblurring. Nah et al. (2017) proposed a multi-scale CNN,
which adopted the coarse-to-fine manner for improving the performance of dynamic scene
deblurring. Tao et al. (2018) proposed a scale-recurrent network using a similar multi-
scale strategy for dynamic scene deblurring. These methods all required the coarse-to-fine
strategy, and adopted a small amount of channels before activation function. The number of
the features limits the performance of activation functions. This causes that the activation
function may loss some nonlinear information about complex dynamic scene blurs. In
addition, the methods usually design a single convolution kernel, which leads to a single
RF to learn all nonlinear information. Because the blurs vary from pixel to pixel and from
image to image in dynamic scenes, it is difficult to deal with all cases by utilizing the single
RF, especially in large-scale and complex blur regions.

In this paper, we propose an end-to-end multi-width activation and multiple receptive
field networks for large-scale and complicated dynamic scene deblurring. Firstly, we design a
multi-width activation feature extraction module, in which a multi-width activation residual
block is proposed for making the activation function learn more the nonlinear information
and extracting wider nonlinear features. Because a larger RF is necessary to deal with
large-scale blur Jin et al. (2018), a multiple RF residual block is proposed for enlarging the
RF efficiently and capturing more nonlinear information from distant locations. Besides,
we design the multi-scale feature fusion module to better representation of the features and
speeding up the convergence of the training process, where a learning fusion structure is
designed to adaptively fuse the multi-scale features and complicated blur information from
the different modules. Finally, we apply mean squared error (MSE) losses to help multi-
scale features extraction in each module, and we use perceptual loss Johnson et al. (2016)
and Wasserstein generative adversarial network (GAN) Arjovsky et al. (2017) with Gradient
Penalty Gulrajani et al. (2017) to preserve high texture details and look perceptually more
convincing. The main contributions of this paper are summarized as follows:

e We propose an end-to-end multi-width activation and multi-scale fusion networks for
large-scale and complicated dynamic scene deblurring.

e We design a multi-width activation residual block for making the activation function
learn more the nonlinear information and extracting wider nonlinear features.

e We design a multiple RF residual block for enlarging the RF efficiently and capturing
more nonlinear information from distant locations.
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e We design a learning fusion structure to adaptively fuse the multi-scale features and
complicated blur information from the different modules.

2. Related Works

Recently, dynamic scene deblurring methods based on deep learning have achieved great
progress. The CNN-based methods Sun et al. (2015); Gong et al. (2017) usually require
estimating the non-uniform blur kernels, and then restore clear images by using a non-blind
deblurring method Zoran and Weiss (2011). Sun et al. (2015) presented a learning method
to address non-uniform motion blur through estimating the motion blur of every patch and
adopted the Markov random field model to achieve a dense non-uniform motion blur field.
This method may lose some the high-level information for some larger regions, since the
training process is at the patch-level. Gong et al. (2017) presented a deeper CNN model
for estimating motion flow and removing pixel-wise heterogeneous motion blur. However,
it was only trained for linear blur examples, and limited to deal with several simple types
of blur.

The based on end-to-end trainable manner Noroozi et al. (2017); Nah et al. (2017);
Kupyn et al. (2018); Tao et al. (2018); Zhang et al. (2018a); Gao et al. (2019) has been
extended to dynamic scene deblurring. Noroozi et al. (2017) proposed a multi-scale CNN to
obtain a larger RF and adopted pyramid schemes with skip connections. Each segment of
the network only needs to produce a residual image to help image reconstruction. Nah et al.
(2017) proposed a multi-scale CNN with 40 convolution layers in each scale for dynamic
scene deblurring. The method required 120 convolution layers and added adversarial loss
to make sure restore sharp realistic images. Furthermore, Kupyn et al. (2018) proposed a
conditional GAN and applied multi-components loss function to preserve high texture de-
tails as well as look perceptually more convincing, but their method can only restore blurry
image with smaller blur and specific type dynamic scene blurs. Tao et al. (2018) adopted
a similar multi-scale strategy and proposed a scale-recurrent network with convolutional
long short term memory (LSTM) for dynamic scene deblurring. Moreover, they proposed
sharing network weights in each scale to reduce training difficulty. Zhang et al. (2018a) pro-
posed a spatially variant neural network, which consists of three deep CNN and a recurrent
neural network. Deblurring step is similar to an infinite impulse response model, which can
be approximated by recurrent neural network. Gao et al. (2019) proposed a network with
parameter selective sharing and nested skip connections. And the method had achieved
some promising results.

3. Proposed Method
3.1. Proposed Network Architecture

The architecture of the proposed multi-width activation and multiple receptive field net-
works, as shown in Fig. 1, which consists of three modules. The multi-width activation
feature extraction module: it aims to make the activation function learn more the nonlinear
information and extracting wider nonlinear features. The multiple RF feature extraction
module: it is used to efficiently enlarge the RF and capturing more nonlinear information
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from distant locations. The multi-scale feature fusion module: it is designed to adaptively
fuse multi-scale features and reconstruct the final clear image.

Multi-width Activation Feature Extraction Module
! v

Convolutional layer (strided=1) Convolutional layer (strided=2) . Deconvolutional layer . Fusion structure

Multi -width activation residual block Multiple RF residual block Residual block

Figure 1: The architecture of the proposed multi-width activation and multiple receptive
field networks.

3.2. Multi-width Activation Feature Extraction Module

Since the blur situations of the same dynamic scene image are usually extremely compli-
cated, we design a multi-width activation feature extraction module. And recently the
encoder-decoder networks have been shown to produce great results for various generative
tasks Pathak et al. (2016); Su et al. (2017). Therefore, we utilize an asymmetric residual
encoder-decoder structure in this module. The encoder comprises of three scales, where each
scale contains two multi-width activation residual blocks as shown in Fig. 2 and two strided
convolutional layers with stride 1/2 to downsample the feature maps. The decoder includes
two transposed convolution layers to enlarge the spatial resolution of the feature maps. In
addition, the skip connections are used for avoiding the issue of vanishing gradients and ac-
celerating convergence. Moreover, wider features before ReLLU activation have been proven
significantly better performance Yu et al. (2018). The proposed multi-width activation
residual block contains two parts: multi-width activation and local residual learning.
Multi-width activation We design a dual-branch structure in this block and different
branches use 3 x 3 and 5 x 5 convolution layer, respectively. In this way, the information
between those branches can be shared with each other so that able to extract the wider
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image features at different scales. Moreover, in order to greatly increase the nonlinear char-
acteristics without losing the any image information and obtain wider activation, we expand
channel numbers by using 1 x 1 convolution layer and add the instance normalization (In-
stanceNorm) Ulyanov et al. (2016) and Leaky Rectified Liner Unit (LeakyReLU) Xu et al.
(2015) with o = 0.2 after the convolution layer. Then it is a stack of one 1 x 1 convolution
layer to reduce number of channels. The expansion and reduction factors of the number of
channels are 8 and 0.8 respectively. And then two convolution layers with the filter size of 3
x 3 and 5 x 5 to perform spatial-wise feature extraction. Finally, all of these feature maps
are concatenated and sent to a 1 x 1 convolution layer for final features fusion.

Local residual learning We adopt local residual learning in each block for making
the network more effective. The multi-width activation residual block is described as:

Fn:MI+Fn—1 (1)

where F,, and F,,_1 represent the input and output of the multi-width activation residual
block, respectively. The operation M’+F;,_1 is performed by a skip connection and element-
wise addition. It is worth noting that the computational complexity is greatly reduced

by using local residual learning. Meanwhile, the performance of the proposed network is
improved.
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Figure 2: Multi-width activation residual block.

3.3. Multiple Receptive Field Feature Extraction Module

The residual block He et al. (2016) is proposed to ease the training difficulty of the deeper
networks, as shown in Fig. 3(a). And the inception block Szegedy et al. (2015) takes
different scale features simply concatenate together as shown in Fig. 3(b), which leads to
the loss of some local features. In addition, dealing with large-scale blur usually requires
a larger RF Jin et al. (2018), meanwhile to capture more nonlinear information, we design
a multiple RF residual block with different receptive fields by using convolution kernels
of different sizes to make better use of the advantages of the above structure, as shown
in Fig. 3(c). The encoder in this module is constructed using three scales, where each
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scale contains two multiple RF residual blocks and two strided convolutional layers with
stride 1/2 to downsample the feature maps. The block consists of two 3 x 3 convolution
layers with the same dilation rate, two convolution layers with the filter size of 3 x 3
and 5 x 5, and a 1 x 1 output layer for multi-scale feature fusion. Furthermore, we add
InstanceNorm layer and employ the LeakyReLU with a = 0.2 as the activation function of
multiple RF residual block instead of ReLLU. It can void the ”dead features” caused by zero
gradients in ReLLU. Simultaneously, the skip connection is used between different scales so
that the feature information can be shared and complemented with each other. The decoder
includes two transposed convolution layers to enlarge the spatial resolution of the feature
maps. Moreover, we adopt local residual learning in each multiple RF residual block for
strengthening feature propagation and reducing its complexity.

“ > N
Conv 3x3 Convy 3x3 dilation=3 \
InstanceNorm2d InstanceNorm2d .
\\ y LReLU LReLU \
Conv 3x3  \ \ _ \
\\ / \ V’; \
ReLU \ / \ Concat Concat ‘
\ A » 4 A ilation=
| Conv Ix1 Conv 3x3 Cony 5x5 Max pool Conv 5x3 Conv 3x3 dilation=3 |
| ~ \ »” - InstanceNorm2d InstanceNorm2d /
Conv3x3 | // LReLU LReLU
/// / s /
/ / Concat
3 / Concat Conv 1x1 /
( /‘ p
) 4 ~
e
v
(a) (b) (¢)

Figure 3: (a)Residual block. (b)Inception block. (c¢)The proposed multiple RF residual
block.

3.4. Multi-scale Feature Fusion Module

It has been observed that fusing convolutional features obtained from different scales can
lead to a better representation of an object in the image and its surrounding context Zhang
and Patel (2018); Zhang et al. (2018b). In order to adaptively fuse the features and facilitate
the convergence of the training process, we design the multi-scale feature fusion module,
which contains three scale fusion structures, and each fusion structure followed three residual
blocks as shown in Fig. 3(a), two transposed convolution layers, a convolution layer with
ReLU and a convolution layer with Tanh. The most important part of this module is the
fusion structure, which mainly consists of two convolutional layers with the filter size of 3
x 3 and 1 x 1 and three pixel by pixel operations. The fusion structure F' generates a
pixel-wise weight maps by blending v, which represent features of three different scales
from the multi-width activation feature extraction module, and ¢p,, which represent the
features of three different scales from multiple RF feature extraction module. Furthermore,
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our fusion structure takes the set of ¥p,, ¥p, and Ypusion, ,, as the input, where Ysysion,
is obtained via a transposed convolution layers, in addition to F' only takes as input the set
of ¥y, and ¢p,, when i equal to 1. It is expressed as:

C= Fi(cat[¢ﬂiawﬁi7 wfusioni_lb (2)
A= (¢ﬂz S ¢ﬂz) (3)
wfusioni = (O @ A) ®C (4)

where cat represents concatenation, ® represents the element-wise multiplication and &
represents the element-wise addition. The values of ¢ are from 1 to 3. The fusion structure
mainly consists of two convolutional layers with the filter size of 3 x 3 and 1 x 1.

Finally, to further refine the estimated three coarse deblurring images and make sure
better details well preserved, we concatenate three coarse deblurring image, and then feed
into a convolutional layer with ReLLU and a convolutional layer with Tanh as the final clean
image refinement.

3.5. Loss Function

We train our network by jointly optimizing multi-module loss L, ps, perceptual loss Lp and
adversarial loss L 4. The loss function of our entire network is designed as:

L=Lyy+Lp+La (5)

The multi-scale loss has been proven to achieve good deblurring effects Nah et al. (2017);
Tao et al. (2018). So we introduce a multi-module loss to extract more available features
and texture details of dynamic scene blur image in each feature extraction module. We use
MSE loss in each module of output and the ground truth. The proposed multi-module loss
function is calculated as the following:

3

Lyn = ZLMSE(IBi; %) (6)
i=1

where I® is a sharp dynamic scene image, I are latent sharp images of the corresponding
modules.

Recently, perceptual and adversarial loss Kupyn et al. (2018); Isola et al. (2017) are
proven to generate higher quality images indistinguishable from real images. We introduce
the perceptual loss and adversarial loss to constrain the final output of multi-scale feature
fusion module. Our perceptual loss function is expressed as:

1 < :
Lp = 3 (2i5(1%)ny — ®ij(Go (I")ay)? (7)
] r=1y=1

where IP3 is final restored image, ®; ; is the feature achieved from the j — th convolution
layer before the ¢ — th maxpooling layer within the VGG19 network, which is a well-trained
on ImageNet Deng et al. (2009). W; ;, H; ; are the width and height of the feature maps.
In this paper, we utilize activations from VGG3 3 convolution layer.
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For adversarial loss, following the architecture of method Kupyn et al. (2018), we adopt
WGAN-GP Gulrajani et al. (2017) as the adversarial loss function, which has been verified
to be robust to the choice of generator architecture Arjovsky et al. (2017). We build
discriminator as in Table 1. The adversarial loss function is given as follows:

N

La=Y -D(G(IP)) (8)

n=1

where G represents the generator, and D represents the discriminator. I? is the input
blurred image.

Table 1: The structure of discriminator. Except for the last layer, all the convolution layers
are followed by InstanceNorm layer and LeakyReLU with a= 0.2.
’ Layer ‘ Channel | Kernel size ‘ Stride ‘

Convl 3 x 64 4 x4 2
Conv2 | 64 x 128 4 x4 2
Conv3 | 128 x 256 4x4 2
Conv4 | 256 x 512 4 x4 1
Convb | 512 x1 4 x4 1

4. Experimental Setup
4.1. Datasets

GoPro dataset Nah et al. (2017) is used for training and testing our method, which includes
3214 paris of blurred and ground truth images with the size of 1280 x 720. Following
the same ways as in Nah et al. (2017), we utilize 2103 pairs as training dataset and the
remaining 1111 pairs for test dataset. Notably, the blur image provided by this paper are
more realistic because it can simulate complex camera and spatially varying blurs caused
by objects motion that are common in real scenarios and the static background. We further
evaluated the state-of-the-art methods and our method on other datasets, which are Kohler
dataset Kohler et al. (2012), which contains 48 blurred images with the size of 800 x 800,
Kupyn dataset Kupyn et al. (2018) that contains 1151 images with size of 720 x 720 and Su
dataset Su et al. (2017) that includes 6708 images from multiple devices including Canon
7D, GoPro Hero 4, and iPhone 6s.

4.2. Training Details

For the training phase, we utilize the PyTorch deep learning framework for training and
testing our network on a single NVidia Titan GPU, and MATLAB for all peak signal-to-
noise ratio (PSNR) and self-similarity measure (SSIM) evaluation. Different from these
methods, we employ the image patches of size 320 x 320 as input instead of 256 x 256 ,
which will be beneficial to learn more about effective information of blurs. We perform 5
gradient descent steps on D, then one step on . In addition, our model was trained with
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a batch size = 1. And we use ADAM optimizer Kingma and Ba (2014) with 51 = 0.5,
B2 = 0.999 and € = 1078, The learning rate is set initially to 10~% for both generator and
discriminator. All trainable variables are initialized with the method Kupyn et al. (2018) is
same. During the fine-tuning, after the first 40 epochs we linearly decay the learning rate
to zero over the next 40 epochs.

5. Experimental Results

5.1. Quantitative Evaluations

Table 2 shows the average PSNR and SSIM values of the restored images on the GoPro
and Kohler datasets. We can observe from the quantitative measures in Table 2 that our
method perform favorably against with state-of-the-art methods in terms of PSNR and
SSIM. These generated results reveal that our method can effectively improve the quality
of restored images and have much higher PSNR and SSIM values. In addition, we also
evaluate the average test time (s) for images with the size of 1280 x 720 pixels on GoPro
dataset. In contrast to end-to-end method Kupyn et al. (2018), our method take slightly
more time, but our method can generate much clearer images with higher PSNR and SSIM
values.

Table 2: Quantitative results comparison with state-of-the-art methods on GoPro and
Kohler dataset.

Method

GoPro dataset Kohler dataset
PSNR(dB) \ SSIM | PSNR(dB) \ SSIM
Nah et al. (2017) 29.5762 0.8708 26.4581 0.8084 | 6.59
Kupyn et al. (2018) 28.8248 0.8507 26.1088 0.8163 | 0.85

Time

Tao et al. (2018) 31.0659 0.9085 26.7597 0.8371 | 1.55
Zhang et al. (2018a) 30.1978 0.9013 25.7146 0.8000 | 1.45
Ours 31.5027 0.9118 29.0208 0.8957 | 1.30

5.2. Qualitative Evaluations
5.2.1. RESULTS ON GOPRO EVALUATION DATASET

To fairly compare with other methods, we further qualitatively evaluate the method on
GoPro evaluation dataset. In Fig. 4, we show two visual comparison examples generated
by the proposed method and state-of-the-art methods. These blurry examples caused by
scene depth variations, object motions and camera shake, and contain local large scale blur.
From Fig. 4, in addition to achieving the highest PSNR and SSIM values, the presented
method restores the clear images with much clearer structures and finer texture details than
existing state-of-the-art methods.
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PSNR/SSIM 29.7100/0.8509
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(a) Blurry image (b) Nah et al. (c) Tao et al. (d) Ours
PSNR/SSIM 29.2353/0.8528 30.9426/0.8984 31.1634/0.9040

Figure 4: Deblurring results on GoPro dataset. The proposed method generates much
clearer images with higher PSNR and SSIM values.

5.2.2. RESULTS ON OTHER REAL DATASETS

We further qualitatively evaluate our method on other blurred images. Fig. 5 shows two
different examples from Kupyn dataset (1 row) and Su dataset (2-3 rows). The results gen-
erated by the proposed method and state-of-the-art methods. Visual comparisons clearly
show the superior performance of the proposed method over previous state-of-the-art meth-
ods, especially for fine details such as numbers, moving objects and texts.

6. Analysis and Discussions

6.1. Effectiveness of the Multi-width Activation and Multiple RF Feature
Extraction Module

To demonstrate the effectiveness of the designed modules, we perform four related experi-
ment on GoPro dataset. To demonstrate the effectiveness of the designed activ-module and
RF-module, we remove activ-module and RF-module, respectively. To prove the effective-
ness of the designed activ-residual and RF-residual blocks, we replace active-residual and
RF-residual by the residual block. We call two modules and two blocks as activ-module,
RF-module and activ-residual, RF-residual, respectively. We show the deblurring re-
sults generated by these four networks and the proposed method in Fig. 6. From Fig.
6(b, c), the deblurring results without multi-width activation feature extraction module
and multi-width activation residual block still contain blur residual, especially in the detail
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Figure 5: Deblurring results on other datasets.

regions. Fig. 6(e) is a large-scale example, and our method is able to generate a clearer
image by adding the multiple RF feature extraction module and multiple RF residual block,
as presented in Fig. 6(f-h). Moreover,we visualize the output of these modules as shown in
Fig. 7(a, b). It is obvious that the output of these module contains more effective activa-
tion maps and complex nonlinear information, which further verifies the effectiveness of our
modules. Moreover, the average PSNR and SSIM comparison with these four models on the
GoPro test datasets are shown in Table 3. From the Table 3, it is clearly that the proposed
method yielded significantly better PSNR / SSIM than the corresponding four models. In
view of the above, the designed multi-width activation and multiple RF features extraction
module can effectively improve the quality of large-scale and complex blur images.

Table 3: Quantitative results comparison with different models on on GoPro dataset.
Method Real GoPro Synthetic GoPro

PSNR(dB) | SSIM | PSNR(dB) | SSIM
Without activ-module 29.4089 0.8860 27.7811 0.8704
Without activ-residual 30.7619 0.9001 28.6984 0.8896
Without RF-module 29.1619 0.8751 27.3984 0.8689
Without RF-residual 30.5039 0.8907 28.4284 0.8790
Ours 31.5027 0.9118 29.0208 0.8957
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(e) Blurry image (f) Without RF-module  (g) Without RF-residual (h) Ours

Figure 6: Visual comparison of our method with other verification models on GoPro
dataset.

Figure 7: The visualization features (a) and (b) from activ-module and RF- module.
(c) is fused by our designed fusion structure.
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6.2. Effectiveness of the Multi-scale Feature Fusion Module

In order to further illustrate the effectiveness of the designed multi-scale feature fusion
module, an ablation experiment is performed on GoPro dataset. We compare the proposed
network with the network without fusion structure (FS). We show the visual features ex-
tracted by the activ-module and RF- module and FS in Fig. 7(a-c). From Fig. 7(c),
we can see that it mainly includes more effective activation maps and rich details. We also
show the visual results generated by these two methods in Fig. 8. As show in Fig. 8(b),
the deblurring result without using FS still contains blur residual, and many details are
still not clear enough. Compared to the proposed method without FS, a clearer image with
clearer details can be recovered by the proposed method as show in Fig. 8(c).

(a) Blurry image (b) Without FS (¢) Ours

Figure 8: Visual comparison with the proposed method without FS and with F'S on GoPro
dataset.

Correspondingly, quantitative results comparison with the proposed method with FS
and without FS on real dynamic scene and synthetic dynamic scene dataset are shown
in Table 4. It is obvious that the proposed method outperforms the proposed method
without F'S. Concretely, the average PSNR and SSIM gain of the proposed method over the
proposed method without FS are 1.0997dB, 0.0166 and 0.9151dB, 0.0193, respectively, in
two dataset experiments. Thus, the experimental results well prove the effectiveness of the
fusion structure.

Table 4: Quantitative results comparison with the proposed method with FS and without
FS on_GoPro dataset.

Method

Real GoPro Synthetic GoPro
PSNR(dB) | SSIM | PSNR(dB) | SSIM
Without FS | 30.4030 | 0.8952 | 28.1057 | 0.8764

Ours 31.5027 | 0.9118 | 29.0208 | 0.8957
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7. Conclusion

We propose an end-to-end multi-width activation and multiple receptive field networks for
large-scale and complicated dynamic scene blurs. In the proposed method, a multi-width
activation feature extraction module is designed, where a multi-width activation residual
block is proposed for making the activation function learn more the nonlinear information
and extracting wider nonlinear features. Furthermore, a multiple RF feature extraction
module is designed, in which a multiple RF residual block is proposed for enlarging the RF
efficiently and capturing more nonlinear information from distant locations. And then, the
multi-scale features fusion module is designed to adaptively fuse the multi-scale features
and complicated blur information from the different modules. Extensive experiments are
performed on GoPro and other datasets. The experimental results have demonstrated the
proposed method significantly outperforms state-of-the-art methods.
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