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Abstract

Recovering high quality images from microscopic observations is an essential technology in
biological imaging. Existing recovery methods require solving an optimization problem by
using iterative algorithms, which are computationally expensive and time consuming. The
focus of this study is to accelerate the image recovery by using deep neural networks (DNNs).
In our approach, we first train a certain type of DNN by using some observations from
microscopes, so that it can well approximate the image recovery process. The recovery of a
new observation is then computed thorough a single forward propagation in the trained DNN.
In this study, we specifically focus on observations obtained by SPoD (Super-resolution by
Polarization Demodulation), a recently developed microscopic technique, and accelerate the
image recovery for SPoD by using DNNs. To this end, we propose SPoD-Net, a specifically
tailored DNN for fast recovery of SPoD images. Unlike general DNNs, SPoD-Net can be
parameterized using a small number of parameters, which is helpful in two ways: (i) it
can be stored in a small memory, and (ii) it can be trained efficiently. We also propose
a method to stabilize the training of SPoD-Net. In the experiments with the real SPoD
observations, we confirmed the effectiveness of SPoD-Net over existing recovery methods.
Specifically, we observed that SPoD-Net could recover images with more than a hundred
times faster than the existing method.

Keywords: sparse coding, convolutional sparse coding, learned iterative soft-thresholding
algorithm, deep neural network

1. Introduction

Observing nanoscopic structures of live cells is a challenging topic in biological imaging (Sahl
et al., 2017). Conventional super-resolution nanoscopy is not suitable for this purpose
because the detailed inspection requires high-power illumination that is harmful to live cells.
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To observe live cells, three key technologies have been developed in the last few years. The
first technology is SPoD (Super-resolution by Polarization Demodulation), a microscopic
technique which improved the resolution of observations by incorporating information of
molecular orientation (Hafi et al., 2014). The second technology is the use of a positively-
photoswitchable fluorescent protein, Kohinoor (Tiwari et al., 2015), that can color cells
which enabled to observe cells with low-power illumination in SPoD (Wazawa et al., 2018).
The third technology is the image recovery methods (Hafi et al., 2014; Wazawa et al., 2018)
that can recover high quality images from the observations obtained by SPoD.

While the development of these technologies enabled us to observe cells in detail, the
long computation time required for image recovery is found to be a bottleneck in practice.
Hafi et al. (2014) and Wazawa et al. (2018) proposed to formulate the image recovery as an
optimization problem, which is then solved by using Iterative Soft-Thresholding Algorithm
(ISTA) (Daubechies et al., 2004) and Fast ISTA (FISTA) (Beck and Teboulle, 2009). These
ISTA and FISTA require several tens of minutes to recover a single observation. This
is because these are iterative algorithms that usually require thousands of iterations to
recover an image. Because of the long computation time of these methods, the scientists
need to wait for several tens of minutes every time after they obtained observations by
SPoD. This problem is crucial especially when the scientists are interested in the dynamics
of cells. In such a case, they record several hundreds of observations over time to trace
the dynamics. With the current methods, the recovery of hundreds of observations are
apparently computationally prohibitive. A fast recovery method is therefore in high demand
to accelerate the entire process of the science.

To overcome the problem of computation time, here we propose SPoD-Net, a specifically
tailored deep neural network (DNN) that enables a fast image recovery for SPoD. In our
approach, we first train the SPoD-Net by using some observations from SPoD as a training
set, so that the SPoD-Net can well approximate the recovery process of ISTA. The recovery
of a new observation is then computed thorough a single forward propagation in the trained
SPoD-Net, which usually takes less than one second. Thus, the image recovery using
SPoD-Net is significantly faster than ISTA and FISTA.

The proposed SPoD-Net is based on the idea of Learned Iterative Soft-Thresholding
Algorithm (LISTA) (Gregor and LeCun, 2010; Kavukcuoglu et al., 2010), which is a typical
surrogate of ISTA. In LISTA, we express the recovery process of ISTA as a DNN with a
fixed number of layers (e.g., DNN with ten layers). DNN is trained using a training set so
that it can well approximate ISTA. We follow the same approach to construct the SPoD-Net
for SPoD. The contribution of our study is in twofolds.

1. We propose SPoD-Net, a DNN specifically tailored for SPoD. Unlike general DNNs
used in LISTA, SPoD-Net can be parameterized using a small number of parameters.
This property is helpful in two ways: (i) it can be stored in a small memory, and (ii) it
can be trained efficiently.

2. We propose a method to stabilize the training of SPoD-Net. We observed that the
soft-thresholding operator in the network can zero out the signal during the forward
propagation, which spoils the training of the network. In the proposed method, we
use leaky ReLU (Maas et al., 2013) as an alternative of the soft-thresholding operator.
Because leaky ReLLU does not zero out signals, the training process gets stable.
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Figure 1: 12 observations obtained by SPoD. One observation consists of 18 images, where
the average image is shown here. See Figure 2 for each of 18 images.

Figure 2: 18 images in the last observation in Figure 1. Although they may look similar,
they are different images reflecting the change of polarization.

We demonstrate the effectiveness of SPoD-Net using observations obtained by SPoD. Specif-
ically, we observed that SPoD-Net could recover images of comparable qualities as FISTA
with only ten layers. This means that SPoD-Net was more than a hundred times faster than
FISTA which requires thousands of iterations for recovery. With SPoD-Net, the scientists
can obtain recovered images just after they obtained observations by SPoD.

SPoD Data In the paper, we use the twelve observations obtained by SPoD, which are
shown in Figure 1. In SPoD, we observe cells with an illumination polarization changing
over the time. Thus, one observation of SPoD consists of a set of images with different
polarizations. Examples of images in one observation is shown in Figure 2. In the example,
one observation consists of 18 images of size 512 x 512 with different polarizations. A
high quality image is recovered from the observation (i.e. the set of images) by solving an
optimization problem. Figure 3 shows an example of the recovered image.

Notations We denote the set of real values and positive integers by R and N, respectively.

Let & € R"*®wX¢ he an image with the height h € N, the width w € N, and the channel
¢ € N;. Here, each channel in x corresponds to an image with different polarization. For
example, in Figure 2, the number of channels ¢ is 18. Let u € R**?*¢ be a filter with the
same number of channels ¢ as the image x. We denote the convolution, or cross-correlation,
of the image x with the filter u by u % x € RU—a+tD)x(w=b+1) "where the (i, 7)-th entry of
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(a) Observation (b) PSF (¢) FISTA (d) SPoD-Net

Figure 3: An example of the image recovery. (a) the first image out of the 18 images; (b)
point spread function (PSF); (c) a recovered image using FISTA; (d) a recovered
image using the proposed method SPoD-Net. See Section 2 and 3 for the details
of the image recovery.

u * x is given by

a b c
(ux*x)i; = Z Z Z Wit 57 k' Tidi! =1, 45— 1,k 5 (1)

i'=1j'=1k'=1

for Vi € [1,h —a+ 1] and Vj € [1,w — b+ 1]. See Figure 4(a) for an example.

Let y € R ™ be an image with the height h € N and the width w € N. Let u be the
same filter as above. We denote the transposed convolution of the image y with the filter u
by u % y € RUta—l)x(wtb=1)xc where the (i, j, k)-th entry of u  y is given by

a b

(W*y)ijr = E E Ug—i/ +1,b—j/+1,kYi—ati j—btj s (2)
i'=1j'=1

for Vi € [1,h+a—1],Vj € [1,w+b—1], and Vk € [1,c]. Here, we defined y; ; = 0if ¢ ¢ [1,h]

or j ¢ [1,w], which corresponds to zero padding of the image y. Note that, in (2), the filter

u is flipped horizontally and vertically when taking a sum. See Figure 4(b) for an example.
We denote the thresholding of an image « by [z]4 where ([z]4); ;1 = max{x; ;x,0}.

2. Image Recovery Problem for SPoD

Here, we review the image recovery problem for SPoD. SPoD microscopy (Hafi et al., 2014;
Wazawa et al., 2018) enabled to observe cells with improved spatial resolution. SPoD
achieved this goal by taking temporal information into account. While ordinary microscope
obtain a single image as one observation, SPoD obtains a set of images over several different
polarizations changing over the time. In this way, SPoD collects information necessary for
microscopy using only low-power illumination. A high quality image is then recovered from
the observation by solving an optimization problem. Popular image recovery methods for
SPoD are ¢ and ¢, regularization methods (Hafi et al., 2014; Wazawa et al., 2018).

The recovery problem for SPoD is formulated as follows. In SPoD, observed images
are decayed through the point spread function (PSF). PSF expresses how a single dot is
blurred in the observation. Note that, in SPoD, we can obtain the PSF by observing a
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(a) Convolution (b) Transposed convolution

Figure 4: (a) Convolution of input shape h x w x ¢ = 4 x 4 x 5 with filter shape a x b x ¢ =
3 x 3 x5 and output shape (h—a+1) x (w—b+1)x1=2x2x1. (b) Transposed
convolution of input shape 2 x 2 x 1 with filter shape 3 x 3 x 5 and output shape
4 x 4 x 5. The white voxels correspond to zero padding around the input.

known dot pattern. See Figure 3 for an example of PSF. Let ¢ € R**? be a PSF, and let
z € RPXWXC he a frue image we want to obtain. Moreover, let y, € R(r—atDx(w=b+1) 1,6 gp
observed image at time ¢, and let the entire observation Y := {y1,y2,...,y.} be a set of the
observed images. Then, by using convolution, the observed image ¥; at time ¢ is expressed
as follows (Hafi et al., 2014; Wazawa et al., 2018):

t—k
Yt = A ¥ T + €, (at)i,j,k = d)ij cos” (Cﬂ> 7 (3)

where € is an observation noise.! Here, the term cos? (%ﬂ) in a; expresses the effect of the
polarization changing over time. Note that, the true image x is sparse, i.e. most pixels are
black, in general. This is because, in SPoD, we observe cells colored by photoswitchable
fluorescent protein (Tiwari et al., 2015). The remaining cells that are not colored are observed
as black backgrounds. By assuming the sparseness of z, the image recovery problem for (3)
is formulated as the following optimization problem (Hafi et al., 2014; Wazawa et al., 2018).

Cc

& = argmin Zr(yt,at * ) + Q(x) subject tox > 0. (4)
rERwxhxe —1 S~~~
— sparsity inducing term

reconstruction error
The first term enforces the recovered image & to well represent the observations ;. Specifically,
the recovered image & should reconstruct the observation if it is decayed along the decaying
process (3). The second term enforces the recovered image % to be sparse. Here, in (4),
the element-wise non-negative constraint x > 0 is added because the value of each pixel
should be zero (i.e. black) or larger. As the error term r, one can use the Poisson loss
r(y,z) =32 j(—vijlog 2 j + 2i;) as well as the squared loss r(y, z) :=1/23_, :(yi; — 2i )2
As the sparsity inducing term 2, one can use the ¢, regularization Q(z) :== A>_, . | |i k| as
well as the ¢, regularization Q(z) := A, .\ |2 k[P with p > 1, where A > 0 is a trade-off
parameter determined by the user balancing the reconstruction error and the sparsity. To

1. One can adopt generalized linear models instead of the additive noise model if needed.
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solve the problem (4), optimization algorithms such as ISTA (Daubechies et al., 2004) and
FISTA (FISTA) (Beck and Teboulle, 2009) are used (Hafi et al., 2014; Wazawa et al., 2018).

In this paper, for simplicity, we consider the problem (4) with the squared loss as r and
the /1 regularization as 2, as follows:

x

1< A
= argmin o ; lye — ar 2| + §||$||1, subject tox > 0, (5)

L(Y,z)

where ||z]|? := > zl2 ; is an Buclid norm. Here, we introduced the normalization constants
A:=(h—a+1)(w—>b+1)c and B := hwc to balance the two terms. We denote the
objective function by L(Y,z). Note that the following discussions in this paper including

the proposed method can be extended also to other loss functions and regularizations.

3. LISTA

Learned ISTA (LISTA) (Gregor and LeCun, 2010; Kavukcuoglu et al., 2010) is a general
framework for approximating the optimization process of ISTA using DNN. Here, we briefly
review ISTA and LISTA for the problem (5).

ISTA ISTA is a common algorithm for solving ¢;-regularized problems such as (5). With
ISTA, we can solve the problem (5) by repeating the following two steps.

$<—$—%Zat?¢<(at*x—yt), (6)
t=1
T < R)\/Bn(x)7 (7)

where Rp(z) := [z — 0]+ is a non-negative soft-thresholding operator. The first step (6)
minimizes the first term of (5) using gradient descent with a step size n > 0. The second
step (7) reflects the effect of the second term in (5), and shrinks x towards zeros while
incorporating the non-negative constraint. Note that Ry with § = 0 is a well-known ReLLU
function (Glorot et al., 2011). ISTA repeats these two steps until z converges.

LISTA LISTA approximates the repetition of the steps (6) and (7) in ISTA using DNN.
To this end, LISTA interprets the iterations of ISTA as a feed forward network, as follows.
Suppose x is initialized as zeros in ISTA. Then, the M iterations of ISTA is expressed as

2 = Ry (n(l) S p yt) ,
t=1
22 = Ry (m(l) - 77(2) Zp?) * (P?) x ol — yt)) )
t=1

2™ = Ry (il‘(M_l) — ™ ZP%M) * (pg/M) x M) — yt)) )
t=1
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Figure 5: An example of the LISTA-Net for the problem (5). Three iterations of ISTA is
expressed as a deep neural network.

where pgl) = p§2) =...= pEM) =ap, nM =9® = .. =9M) =p/A and 6V =92 = | =
6(M) = \/Bn. This can be interpreted a feed forward network as shown in Figure 5. The
network accepts a set of images Y as its input, and outputs ) after M iterations of the
ISTA update steps. We refer to this network as LISTA-Net hereafter.

LISTA approximates ISTA by training the LISTA-Net. While the parameters in each layer
({pgm) ¢ 1,0 g(m) are equivalent to the constants ({a¢}_;,n/A, \/Bn) in ISTA, we treat
them as trainable parameters in LISTA. By optimizing these parameters through training,
LISTA-Net can approximate the optimization process of ISTA. Moreover, while ISTA usually
requires more than a thousand iterations, LISTA-Net can approximate this exhaustive
iteration with a limited number of layers, e.g. with the number of layers M = 10. Here, let
0 := {({ptm)}fg’:l, n(m), H(m))}%zl be a set of parameters of the LISTA-Net, and x = f(Y; 9)
be the LISTA-Net parametrized by ©. Suppose we have a set of observations {(Yy, #,)}Y_,
where Z,, is obtained by solving the problem (5). We can then train the LISTA-Net by
optimizing the parameter © so that the following training loss to be minimized.

N

A 1 .

6 = argmin > lin — F(Yn; ©))1%. (8)
n=1

In practice, we can use typical optimization algorithms such as mini-batch SGD and
Adam (Kingma and Ba, 2014). Several studies have reported that LISTA-Net and its
variations can approximate the recovered image & well with a few layers, while requiring
significantly smaller computation (Gregor and LeCun, 2010; Kavukcuoglu et al., 2010;
Borgerding and Schniter, 2016; Borgerding et al., 2017; Metzler et al., 2017; Sreter and
Giryes, 2018; Chen et al., 2018).

LISTA without supervision One practical difficulty of LISTA is that its training requires
a set of observations {(Yy,%,)}\_;. To prepare Z,, we need to solve the problem (5) for
each Y),, e.g. by using ISTA. Because ISTA is computationally expensive, the collection of
data is computationally highly demanding especially when we want to collect many data for
training. Fortunately, there is a way to bypass this difficulty. Prior studies (Kavukcuoglu
et al., 2010; Sreter and Giryes, 2018) have proposed a way to train LISTA-Net by using only
observations {Y,,}_; without #,. The idea here is that 4, is defined as the minimizer of
(5). It is therefore sufficient if LISTA-Net can well approximate the minimizer of (5). We
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can thus train the LISTA-Net so that it can minimize (5), as follows.

) 1 Y _
© = argmin Zl L(Yy, f(Y2; ©)). 9)

Note that the training based on the loss function (9) does not require &,, as the supervised
signal. Hence, we do not need to solve (5), and we can thus save the computation.

4. SPoD-Net: Image Recovery DNN for SPoD

In this section, we propose SPoD-Net, a specifically tailored DNN for the image recovery
problem of SPoD (5). We then present the proposed network modification to stabilize the
training as well as the layer-wise training algorithm.

4.1. SPoD-Net

We propose SPoD-Net, a specifically tailored DNN for SPoD. Recall that each layer of

LISTA-Net has the set of filters {pgm)}le each of which has abc parameters. Thus, the

number of parameters in the set of filters is abc?. SPoD-Net is a variant of LISTA-Net

whose filter pgm) has a specific structure. In SPoD, as shown in (3), the filter a; is of the

form (at)i jr = ¢ij cos®((t — k)m/c), where ¢ is the PSF. An important observation is that
the spatial indices ¢ and j appear only in the PSF ¢, and the temporal index k appears
only in the cos?. In SPoD-Net, we follow this observation and decompose the filter pgm)
into the spatial part and the temporal part. Specifically, we consider the decomposition
(pg )) ik = gfj )ug k) with the parameters ¢(™ € R%*? and u§m) € R¢. Here, the first part

g,EZ-L) represents the dependency to the spatial indices ¢ and j, and the second part ugrz)

represents the dependency to the temporal index k. Moreover, recall that cos?((t — k)m/c) is
(m)

shift-invariant over ¢ and k. Thus, the term wu, ,” should depend only on ¢ — k. To implement

the shift-invariance, we introduce the parameter h(™ € R¢, and express ug k) by ugm) = h<m)

with a circular indexing h( m . hi 2 4 for £>1.
(m)

With the proposed parametrlzatlon, in SPoD-Net, the convolution with the filter p, " is
expressed as

(m
( )ij = Z Z i, ’ht k’xH-l’ Lj+j' =1,k

i'=1j'=1k'=1

- E :ht K E : § :gz’j’x“ﬂ’ 1j+5' -1,k
k=1 i'=14'=1

= th AR (10)
k'=1

where .. ;s denotes the k’-th channel of z. Note that this is a specific variant of the
depth-wise separable convolution (Kaiser et al., 2017; Chollet, 2017). Here, the term g*x. . 5/
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with independent convolutions for each channel is known as depth-wise convolution. The
term > 1, hiing, (g9 * x.. )i that applies the convolution with h over each index (i, ) is
known as point-wise convolution.

In summary, in SPoD-Net, the filter pgm) is composed of the two basic parameters
g™ € Re*b and h(™) € R¢. The number of parameters is thus ab + ¢. Compared to LISTA-
Net with abc? parameters, SPoD-Net has a far less parameters: the number of parameters
is nearly ¢? times smaller than LISTA-Net. This property of SPoD-Net is favorable in two
ways. First, it can be saved in a small memory. Second, the training of the network requires
less data.

4.2. Stabilizing Training by Network Modification

We propose a modification to SPoD-Net so that its training to be more stable. One difficulty
when training LISTA-Net and SPoD-Net is that the operator Ry can zero out signals during
the forward propagation if the parameter of the network is badly conditioned. If the signals
are zeroed out for all the training data, the gradients of all the parameters vanish during
backpropagation. Thus, the training of the network completely stops once this phenomenon
occurs. To avoid zeroing out signals, we need to tune the learning rate carefully so that the
parameter does not fall into such an unfavorable condition.

To avoid the cumbersome tuning of the learning rate, we propose to modify the structure
of the network. Recall that zeroing out occurs because of the operator Ry where Ry(z) :=
[z — 0]+, i.e. if the signal z gets smaller than the threshold 6, the signal is zeroed out. Our
idea is to use leaky ReLU (Maas et al., 2013) instead of the operator Ry. More specifically,
we replace the operator Ry with the following leaky soft-thresholding operator Rg,a:

Z; — 0 ifzi > 9,

a(z; —0) otherwise,

Re,a(zi) = { (11)

where a > 0 is a level of relaxation determined by the user. While the signals smaller than
the threshold are zeroed out in Ry, the operator Rg’a does not zero out small signals but
allow them to be slightly negative with the factor a. Consequently, the gradients do not
vanish during backpropagation with the operator ]A%g,a as long as « is set to be strictly
positive. Hence, with this modification, we can stabilize the training of the network.

Note that we achieve stable training by relaxing the non-negative constraint in the
problem (5). Because the operator .Rgﬂ can output negative values, the output M) of the
modified network may not be a feasible solution to the problem (5) anymore. To obtain a
feasible output, we post-threshold the output to be non-negative by M) — [x(M )]+. The
next theorem assures that this post-thresholding does not degenerate the quality of the
recovered image so much. The proof of the theorem can be found in Appendix A.

Theorem 1 For § >0, let x5 > —6 and & := [xs]+. Then, we have
1< A
L(Y,z) < M;(Hyt—at*wéHJth)QJrB!%Hh (12)

where ki = ||as * Lpxwxel|-
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Theorem 1 indicates that the post-thresholding can change the quality of the recovered
image only up to the factor dx;. Thus, as long as ¢ is kept small, the relaxation induced
by ]%9704 is almost negligible. Overall, the use of the relaxed operator Rga can stabilize the
training with almost no lose in the quality of the recovered image.

4.3. Layer-wise Training

To train the proposed SPoD-Net, we use the layer-wise training. A typical approach for
training DNN is to train the entire parameters by using the gradient-based methods. However,
in the context of LISTA, several studies have reported that layer-wise training is much more
effective (Borgerding and Schniter, 2016; Borgerding et al., 2017; Metzler et al., 2017; Chen
et al., 2018). To train SPoD-Net, we follow the method proposed by Chen et al. (2018).

The layer-wise training algorithm is shown in Algorithm 1. In the algorithm, we
sequentially add a new layer ©,, and train it. The training of each layer ©,, consists
of the two steps, each of which requires an optimizer Opt(0;{Y,}"_,, £) that optimizes
the parameter © so that the loss £ on the set {Y,,}»_; to be small. The choice of the
optimization algorithms such as SGD and Adam, as well as the size of the learning rate and
the number of the optimization epochs are determined by the user. In the fist step, we train
the parameter of the new layer ©,, using the optimizer Opt;. This aim of this step is to find
a good initial parameter of the new layer for the second step. In the second step, we train all
the parameters in the entire network © using the optimizer Opt,. In this step, we refine the
entire network so that it can output high quality images. After these steps, the parameters
in the new layer are shrunk by the factor v € (0, 1] before the next layer is added.

5. Experiment

We now present the effectiveness of the proposed SPoD-Net using the SPoD data.? Here,
we evaluate the two aspects of SPoD-Net. In the first experiment, we demonstrate the
effectiveness of the two proposed approaches which are (i) the use of the depth-wise separable
convolution and (ii) the use of the leaky soft-thresholding. In the second experiment, we
show that SPoD-Net can recover images more than a hundred times faster than FISTA.

Dataset Across the experiments, we used the twelve SPoD observations shown in Figure 1.
Each observation consists of 18 images of size 512 x 512 and one PSF of size 32 x 32. Here,
¢ = 18 corresponds to the number of channels in (3). All the observations are preprocessed
by the median filter of size five to remove noisy dots in the observations, followed by the
minimum filter of size seven to remove noisy backgrounds. In the experiment, we split twelve
observations into four groups each of which consists of three observations. We used three
of them (i.e. nine observations) as a training set for training SPoD-Net, and the remaining
one (three observations) as a test set for evaluation. Thus, each experiment is conducted
under four different data configurations depending on which group of observations is used as
the test set. Because the PSF's of all the observations were similar, we used the average of
twelve PSFs as ¢ in (3). Figure 3(b) shows the PSF we used in the experiments.

2. The codes are available at https://github.com/sato9hara/SPoD-Net
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Algorithm 1 Layer-wise Training of SPoD-Net

Require: Training set {Y,,}»_; and optimizers Opt, and Opt,
O« 10
form=1,2,...,M do
// add new layer
Om — {{g™, nlmye_ pn0m) gm)y
Let fn(Y;0UO,,) be the SPoD-Net with m layers.
Let the loss for Y = {y1,y2,...,yc} be Ly, := LY, frn(Y;©UO,,)).

// stepl: train the new layer
Om ¢ 0pt1(Om; {Yn}nly, Lm)
O+~ 0UOB,,

// step2: train the entire network
if m > 2 then

© « Opty(6; {Yn}ﬁyzlv L)
end if

// shrink parameters
if m # M then
Om +— 70,
end if
end for

5.1. Effectiveness of the Proposed Approaches

Here, we evaluate the effectiveness of the proposed approaches. Specifically, we evaluate
the two key components of the proposed method, which are (i) the use of the depth-wise
separable convolution and (ii) the use of the leaky soft-thresholding.

Setup We used SPoD-Net with M = 10 layers. For each data configuration, to train the
SPoD-Net, we generated N = 100 observations from the nine observations as the training
set by using data augmentation as follows. We first randomly selected one observation, and
randomly clipped 96 x 96 images from it. We then randomly flipped the images horizontally
or vertically. As a result, each observation Y = {y1,y2,...,y.} in the training set consists of
¢ = 18 images each of which has a size 96 x 96. We also applied the same data augmentation
to the test set, and generated 12 test observations. We set A = 107 in the loss function (5).

Networks We refer to the proposed SPoD-Net with the leaky soft-thresholding (LST)
as SPoD-LST, where we set « in the LST (11) to be 0.1. To evaluate the effectiveness
of SPoD-LST, we prepared two baselines to be compared with. The first baseline, ISTA-
LST, is the ordinary LISTA-Net presented in Section 3, with LST used instead of the
non-negative soft-thresholding. As we have pointed out in Section 4, LISTA-Net has filters
with the number of parameters abc? in each layer, while the SPoD-Net with the depth-wise
separable convolution has only ab 4 ¢ parameters. We show the effectiveness of the depth-
wise separable convolution by comparing SPoD-LST with ISTA-LST. The second baseline,
SPoD-NST, is SPoD-Net with the non-negative soft-thresholding (NST) instead of the leaky
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Figure 6: Comparisons of networks: (a) Learning curves of the training of the first three
layers. (b) Test losses in each step of the training. The test loss is measured
every time after the new layer is trained. NST denotes SPoD-NST, where the
number in the parenthesis is the learning rate 7 of Opt;. We stopped the training
of SPoD-NST after three layers because of its instability in training.

soft-thresholding. We show the effectiveness of the leaky soft-thresholding by comparing
SPoD-LST with SPoD-NST.

Training We used the layer-wise training in Algorithm 1 for SPoD-LST and the two
baselines. In the algorithm, we used Adam (Kingma and Ba, 2014) as the optimizers Opt,
and Opt,. Here, we followed the setup proposed by Chen et al. (2018). For Opt,, we set the
learning rate n as n = 10~* for SPoD-LST and ISTA-LST, and n = 1073,107%, and 107> for
SPoD-NST. For Opt,, we set the learning rate for the parameters in the new layer to be
0.2n, and 0.02n otherwise. We set the number of training epochs to be 500 for both Opt,
and Opt,. In the experiment, we set the batch size in one epoch to be 20, and thus the
entire training step in each optimizer is 2,500. We set the shrinkage parameter v to be 0.3.

Result Figures 6 (a) and (b) show the results. Here, we report one result out of the four
data configurations because the results on other three cases were similar. There are two key
observations in the figures regarding (i) the use of the depth-wise separable convolution and
(ii) the use of the leaky soft-thresholding.

The first observation is the effectiveness of the depth-wise separable convolution. Fig-
ure 6 (a) shows that both SPoD-LST and ISTA-LST successfully minimized the training
loss (9). Here, we observed that ISTA-LST attained slightly lower training loss than SPoD-
LST. An important difference between these two networks can be found in Figure 6 (b). In
the figure, we measured the loss of the recovered images on the test set using (9) every time
after the new layer is trained. The figure shows the test loss of ISTA-LST was significantly
larger than SPoD-LST. This means that ISTA-LST has overfitted to the training set and
failed to generalize to the test set, while this was not the case for SPoD-LST. This difference
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comes from the fact that ISTA-LST has abc? parameters in one layer, while SPoD-LST
has only ab 4 ¢ parameters. Because ISTA-LST has many more trainable parameters, it
can easily overfit to the training set. In particular, in the experiment, we only had limited
number of observations, and it was therefore difficult for ISTA-LST to avoid overfitting. The
use of the depth-wise separable convolution significantly reduced the number of trainable
parameters, which enabled SPoD-LST to avoid overfitting caused by the limited number of
observations. We also note that the size of the trained networks differed significantly: while
the size of ISTA-LST was more than 13MB, the size of SPoD-LST was less than 50kB.

The second observation is the effectiveness of the leaky soft-thresholding. Figure 6 (a)
shows that the training of SPoD-NST failed when 7 = 1073 and 1 = 10~%. In these cases, the
training losses were kept constant even if the number of training steps increases. We observed
that this was because the signals were zeroed out, which made the gradients to be zeros
and stopped the training. By setting the learning rate to be sufficiently small (n = 1079),
we found that the signals were not zeroed out and the training did not stop. However, as
shown in Figure 6 (a), it enforces the training to be slow. Compared to SPoD-LST that can
use larger learning rate, the training loss of SPoD-NST decreased more slowly. This result
clarified the disadvantage of the non-negative soft-threshold. To train SPoD-NST, we need
to select appropriately small learning rate, which enforces the training to be slow. If we set
too large learning rate, the training can stop in very early stages. By contrast, SPoD-LST
that uses the leaky soft-thresholding does not require such careful tuning of the learning
rate, which makes the training of the network faster and more stable.

5.2. Comparison with FISTA

We now demonstrate the advantage of SPoD-Net by comparing it with FISTA. Specifically,
we show that SPoD-Net can recover images with comparable qualities as FISTA with more
than a hundreds times faster than FISTA.

Setup We used SPoD-Net with M = 10 layers. We prepared the training data of N = 100
using the same data augmentation as in the previous section, except that the size of each
image is set to 256 x 256 in this experiment. To train SPoD-Net, we used the same setup as
in the previous section. For each of three observations in the test set, we split each image of
size 512 x 512 into four patches of size 256 x 256 without overlap. In this way, we prepared
12 test observations. As the baseline, we adopted FISTA with the learning rate adjusted by
a line search. Because FISTA does not require any training, we merely applied it to each of
the test observations. To recover images, we ran FISTA for 10,000 steps.

Result Figure 7 shows the comparison of FISTA and SPoD-Net on their test losses
measured by using (9). In the figure, we summarized the results on all the 48 test observations
(12 observations for each of four data configurations). The figure clearly demonstrates the
advantage of SPoD-Net over FISTA. It shows that, with SPoD-Net with the depth M = 10,
we could recover images of almost the same quality as FISTA. The result indicates that
SPoD-Net could recover images significantly faster than FISTA: SPoD-Net required only
one forward propagation of the network of depth M = 10, while FISTA required more than
a thousand iterations. That is, SPoD-Net could recover images with more than a hundred
times faster than FISTA. Indeed, for the recovery of each test image, the 1,000 steps of
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Figure 7: Comparison of FISTA and SPoD-Net on the test loss measured by using (9). The
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Figure 8: Comparisons of the recovered images using FISTA and SPoD-Net. The figures
show the first image out of the 18 images in each observation.

FISTA took more than five minutes, while SPoD-Net took less than one second with a single
GPU GTX1080ti In Figure 8 as well as in Figure 3, we show examples of the recovered
images. In the figures, both FISTA and SPoD-Net could recover sharp images than the
original blurred observations. Moreover, the recovered images obtained from SPoD-Net were
visually comparable with FISTA. These results confirm the effectiveness of SPoD-Net that
can recover high quality images with significantly less computation than FISTA.

6. Conclusion

In this paper, we proposed SPoD-Net, a specifically tailored DNN for SPoD, as a computa-
tionally efficient surrogate of ISTA for recovering high quality images with much shorter
time. SPoD-Net is based on the idea of LISTA while incorporating two key improvements.
The first improvement is the use of tbe depth-wise separable convolution, which is a natural
choice for SPoD. With this improvement, we could parameterize the DNN by using very small
number of parameters. The second improvement is the use of the leaky soft-thresholding.
We observed that ordinary soft-thresholding can zero out signals in forward propagation,
which can stop the training of DNN. With the leaky soft-thresholding, we can avoid signals
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to be zeroed out, and can stabilize the training. In the experiments with the SPoD data,
we observed that these two improvements have led to better image recovery. Moreover, we
found that SPoD-Net could recover images with comparable quality as FISTA with more
than a hundred times faster than FISTA.
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Appendix A. Proof of Theorem 1

Proof We first bound the term ||Z[[;. By definition, ||Z|; = Z(a;a)ijpo(xé)i,j,k <

Z(xé)i’j’kzo(x5)¢7j7k — Z(x(;)i,j,mo(xé)i,j,k = ||zs||1. Next, we bound the term |ly; — a * 2.
By using the triangle inequality, we obtain

2

(13)

lye — ae x &> = [[(ye — a¢ * w6) — ae (& — 26)|* < (lye — ar * x| + llae * (& — z6)]))

For the second term, we further obtain |a; * (& — x5)|| < ||ar * I1pxwxe| = Ikt [ |
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