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Abstract

Blood glucose value prediction is an important task in diabetes management. While it is reported
that glucose concentration is sensitive to social context such as mood, physical activity, stress, diet,
alongside the influence of diabetes pathologies, we need more research on data and methodologies
to incorporate and evaluate signals about such temporal context into prediction models. Person-
generated data sources, such as actively contributed surveys as well as passively mined data from
social media offer opportunity to capture such context, however the self-reported nature and spar-
sity of such data mean that such data are noisier and less specific than physiological measures
such as blood glucose values themselves. Therefore, here we propose a Gaussian Process model
to both address these data challenges and combine blood glucose and latent feature representations
of contextual data for a novel multi-signal blood glucose prediction task. We find this approach
outperforms common methods for multi-variate data, as well as using the blood glucose values in
isolation. Given a robust evaluation across two blood glucose datasets with different forms of con-
textual information, we conclude that multi-signal Gaussian Processes can improve blood glucose
prediction by using contextual information and may provide a significant shift in blood glucose
prediction research and practice.

1. Introduction

Blood glucose prediction is an important problem. It is necessary in order to anticipate and mitigate
extremely high (hyperglycemic) or low (hypoglycemic) glucose events. The introduction of sensors
such as Continuous Glucose Monitors (CGMs), have allowed for data-driven, short-term glucose
prediction methods (for example, Plis et al. (2014); Fox et al. (2018)). Beyond improvement of such
time-series modeling methods, recent review of blood glucose prediction work has indicated major
areas where blood glucose prediction can be improved. This has included accuracy of the sensors,
delay of insulin action and glucose level estimation by the continuous glucose monitoring (CGM)
system, and the lack of models that account for social, contextual and emotional factors that are
known to affect glucose concentration (Oviedo et al. (2017)).

The mechanism of action for these multiple contexts that can have a prominent impact on blood
glucose levels, such as activities, mood, emotional states, lifestyle, etc., can vary. For example mood
and depression can act on blood glucose control via metabolic control, poor adherence to medi-
cation and diet regimens, changes in quality of life and/or healthcare expenditures (Lustman and
Clouse (2005)). Physical exercise can interact directly with glucose metabolism improves glucose
metabolism in lifestyle-related diseases like type 1 diabetes (Sato et al. (2003)). At the same time,
there exists limited research in incorporating and examining multiple types of contextual informa-
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tion into a blood glucose prediction task, in part due to lack of data on these contexts along with
blood glucose data.

Today, capturing this contextual information is becoming possible, through the increasing types
of sensors via which many types of explicit and implicit information are shared directly by individ-
uals. Some studies have included additional input signals related to physical activity, for example
through commercial sensors to infer energy expenditure via acquiring data on skin temperature, heat
flux, and galvanic skin response (Mignault et al. (2005); Oviedo et al. (2017)). However, energy
expenditure is highly dependent on the type of physical activity, and as well, accurate determina-
tion of energy expenditure is still a major challenge. While several simulation-based/physiological
modeling approaches for blood glucose prediction have incorporated exercise models and gastric
dynamics, data-driven models that incorporate other additional signals need more exploration. In
sum, studies that include additional signals are low in number, and they do not cover the full range
of possible context/side-information that have been demonstrated to be related to blood glucose
levels, such as emotional state.

Person-Generated Health Data (PGHD, which includes social media, wearable sensors, self-
reported information in forms of surveys, etc.) is increasingly available and can potentially illumi-
nate some of these factors that have been under-represented in empirical blood glucose prediction.
However, modeling such data is a non-trivial task due to several factors including: 1) Data quality.
PGHD is known as a highly varied, noisy, and sparse information source (Agarwal et al. (2011)).
Moreover, missing data is an intrinsic aspect of PGHD since people may not persistently or regularly
report their health data online or record them in mobile applications. While there are several motiva-
tions for users to record and report their health data, in most cases, people are not sufficiently keen
to generate data regularly, or they may self-censor the content due to privacy concerns (De Choud-
hury et al. (2014); Huang et al. (2017)), resulting in very sparse observations. Thus, the data is
not comparable to controlled clinical data or continuous body sensors (such as continuous glucose
monitoring), and missing data for extended and irregular periods of time is a major challenge. Fur-
thermore, the self-reported nature of PGHD means the data is often unstructured. Specifically for
text-based data, this is challenging as the latent meaning must be understood withstanding short test,
slang and colloquial phrases. 2) Temporal correlations. Physiological attributes smoothly evolve
over time. The temporal progression of such attributes suggests that these values gradually changes
over time. However, this evolution can involve several periodic patterns of short- and long-term de-
pendencies. Moreover, PGHD is generated irregularly, as described above. Therefore, how to model
these temporal dependencies poses another challenge. 3) Multi-signal temporal data. Health and
lifestyle information from PGHD can be in the form of both multi-view as well as multi-modal
information, over time. For example some contextual features, such as insulin dose occurence, may
provide multiple views into blood glucose (just like image-text pairs which have the same semantic
meaning). Other contextual data may be multi-modal and/or multi-variate (providing different co-
variates such as mood, that relate to blood glucose, and are provided in different modalities such as
text sentiment). Hence, developing a model that is capable of capturing and fusing multiple signals
that encompass both multiple views and modalities from sparse, noisy, and multi-variate temporal
data is a specific challenge.

To address all of these technical challenges and fill the need for blood glucose prediction with
contextual information, here we implement a Gaussian Process model for this novel multi-signal
task, which accounts for multiple contexts, mechanisms, and irregular context data from PGHD.
We test our method using two types of PGHD data which also represent multiple types of context;
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actively contributed surveys alongside CGM data, as well as social media data posts of glucose and
associated context. Social media data is less specific, and while the amount of data may be very
limited if specific features were curated (e.g. only physical activity or diet mentions), we show that
a users continuous context, defined by latent features from their stream, can still augment blood
glucose prediction. Surveys are actively contributed, so although they provide more specific infor-
mation, they may suffer from recall biases.

Clinical Relevance We evaluate how contextual information can be used in a blood glucose level
prediction. Though several years of medical research have shown the importance of daily lifestyle
and context on blood glucose variation, in addition to diabetes pathologies (Oviedo et al. (2017);
Sato et al. (2003)), this premise has not been investigated in detail due to data and methodological
limitations. We evaluate this idea using two different types of data, each providing different forms
of contextual information and content. Extensive experiments demonstrates the effectiveness of the
proposed approach in predicting future blood glucose values. While we demonstrate this approach
on available datasets, this work may provide a shift in thinking for glucose prediction research
and practice, potentially informing development of new tools for capturing more specific context
information alongside physiologic data.

Technical Significance In order to solve this problem, to incorporate and evaluate contextual in-
formation in blood glucose value prediction, this work demonstrates technical innovation that differs
from prior blood glucose research. The proposed non-parametric, non-linear approach addresses the
problem of fusing multiple signals, (i.e. blood glucose time series data and contextual information)
through combining information in consistent latent space representations. We note that this is dif-
ferent from multi-view or multi-modal tasks, as the contextual information is different in data mode
than glucose values, provides added information via relevant covariates as well as other views into
blood glucose values. We demonstrate that this multi-signal Gaussian Process approach is superior
to other common approaches for combining multivariate data, and to just using the blood glucose
data on it’s own, for blood glucose prediction. Finally, this allows us to evaluate and compare differ-
ent types of contextual information, which can inform future detailed studies of causal mechanisms.

2. Problem Formulation

The problem we study in this paper is to estimate the next blood glucose level of patients based
on their historical data. Intuitively, blood glucose prediction is modeled as a regression task, where
we forecast the future value of blood glucose based on a window of historical data. This prediction
is then computed recursively to estimate all the values in the prediction window. Besides, in blood
glucose prediction, the management and prevention of hypo/hyperglycemic events is particularly
of interest (instead of predicting exact blood glucose values) (Sparacino et al. (2007)), therefore
we also aim at predicting blood glucose level in hypoglycemic (low), euloglycemic (normal), and
hyperglycemic (high) glucose range categories. Following, we first introduce the notation used in
this paper and then formally define the problem of blood glucose level prediction.

LetUd = {uy,ug,...,u,} denote a set of n different users. For each user u, the historical blood
glucose values are given as v* = [v{, v¥, ..., v}'], where v}' denotes the blood glucose value of the
user v at timestamp k. v} ia a positive value if the k-th blood glucose value is observed, otherwise
0 (a missing value). We also have a target series V" of the same length where y* = [y}, v%, ..., v}
shows the blood glucose level of the user u (blood glucose value for regression task or blood glu-
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cose level in three categories for classification task) at the same observation points. Given the so-
cial/contextual side information of a user denoted by S* € Rt*s where ¢t and s denote the total
number of observation points and the number of features from side information, respectively, we
aim to learn a non-linear mapping to predict the next blood glucose level in the target series, namely
Yiy1-

Based of the above discussion, we now formally define the problem of blood glucose level
prediction with complementary side information as,

Given a set of user {U*}_,, their historical blood glucose values v, their target series y* and
side information S*, we aim at learning a parametric probability measure:

Yip1 = argmax p(ye+1[v*, y*, 8%, 0) (1)
Yyt+1€L

where 0 denotes a vector of all parameters of the model to be learned.

3. Methodology

In this section, we explain our method to model and make predictions from time series of user
blood glucose values. In particular, we exploit Gaussian Processes, a non-parametric and non-linear
method, to better capture temporal patterns of blood glucose values of users. Gaussian processes
have recently been applied to time series analysis due to their flexibility and ability to deal with
missing data naturally (Futoma et al. (2017); Chung et al. (2018)). In fact, Gaussian Processes have
been used in blood glucose prediction studies (Valletta et al. (2009), Albers et al. (2017)). The work
in these papers are different than the goal here though, based on combining contextual information
by concatenating it with the blood glucose data, and considers only select context variables that are
directly related to carbohydrate consumption and physical activity.

Here, as we consider the problem of how to broadly combine context data from PGHD and
blood glucose data, it should be noted that this does not directly map to the multi-view or multi-
modal paradigm; there are specific limitations and differences of existing methods in relation to
the task at hand. Many researchers have looked into the general problem of combining information
from multiple sources, especially in multimedia information retrieval. Two major approaches are
early fusion (Snoek et al. (2005); Xu et al. (2011)) and late fusion (Ye et al. (2012)). Early fusion
methods, such as the work in Snoek et al. (2005), construct a joint feature space by merging all the
extracted features from different views into a joint feature vector by concatenating all features. These
approaches often are limited in noisy and sparse scenarios, as noisy or missing features extracted
from one view will affect the joint features and result in reducing performance of the prediction
model. Besides, the multiple types of features considered can have different semantic interpretation,
like our case, of one feature being time series of blood glucose measures and a second contextual
features coming from social media text; simply merging all feature views would bring in a certain
extent of noise and ambiguity. In late fusion (Snoek et al. (2005); Ye et al. (2012)), on the other
hand, a model is learned based on each view separately and then results are integrated to make the
final decision. For example, Kapoor and Picard (2005) proposed a unified approach, based on a mix-
ture of experts, for classifying interest of children in a learning scenario using multiple modalities.
This approach generates separate class labels corresponding to each individual modality. The final
classification is based upon a hidden random variable, which probabilistically combines the sensors.
Accuracy of the late fusion approach can suffer because an individual feature space might not be
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sufficiently descriptive to represent the complex semantics of a task, especially in noisy, sparse and
missing data scenarios. Therefore, separate results would be suboptimal and the integration may not
result in the desired outcome. Finally, while it has been previously recognized that social media data
can be sourced for multi-view features (Tang et al. (2013)), these have not been utilized for tempo-
ral applications. Bringing together multiple signals in one latent space through Gaussian processes
specifically addresses challenges of the combining context which presents noisy and sparse, and
temporally inconsistent information, with multiple views and multiple modes, with blood glucose.

3.1. Preliminaries

Gaussian processes are the state-of-the-art, non-parametric regression method. A Gaussian Process
is formally defined as a collection of random variables where any subset of them taken together
jointly form a (multivariate) Gaussian distribution. A useful intuition is to view a Gaussian Pro-
cess as a distribution over functions (function-space view Rasmussen (2004)). Since a Gaussian
Process is a distribution over functions, sampling from a Gaussian Process results in the draw of a
single function. Gaussian Processes follow the Bayesian paradigm of updating prior beliefs based
on observed data to form posterior distributions. In the case of Gaussian Processes, these prior and
posterior distributions are distributions over functions, and therefore the Bayesian inference that
takes place occurs in function space.

Let D = {(x1,y1), (X2,92), ..., (Xn, yn) } denote a dataset of input values (i.e., feature vectors)
and their corresponding outcomes. A Gaussian process is defined as a stochastic model over the
latent function f that maps the inputs in x to their corresponding response variables. Formally, a
Gaussian process can be stated as,

f(x) = GP(m(x), k(xi, %)), @)

where m(x) is the mean function and k(x;, X;) is the kernel or covariance function, which describes
the degree to which the output values of f covariate at locations x; and x ;. Without loss of generality
we can assume a zero prior mean function everywhere, i.e. m(x) = 0. Hence, the kernel specifies
the high-level assumptions of the underlying function f.

Following Bayes’ theorem, to make a prediction on new data x* the predictive posterior can be
computed by,

p(FX, X, y) = /f p(F, E)p(EIX, y)df, 3)

where p(f|X,y) = ’% is the posterior over the latent space. The likelihood of the data X

given the latent space f 1s,

P(XIf,0) = 5 exp (~ ptr(K'XXT)) @

where A = /(2m)ND= x |K|P= is the normalization factor and K € R™ " is the kernel matrix
defined on X, i.e., K;; = k(x;,x;).

The key advantage of this approach is the use of Bayesian learning for mitigating problems
arising from over-fitting with small data as well as avoiding the need to select parameters of the
function approximators. In the case of binary classification, the output of latent function f(x) is
then squashed into the range [0, 1] via a logistic function w(x) = p(y = 1|x) = o(f(x)) in a
similar way to logistic regression classification.
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3.2. Multi-Signal Gaussian Process with Side Information

In this section we present how to incorporate complementary information sources to Gaussian pro-
cesses and show the corresponding inference and optimization in the proposed model. We limit our
discussion to the case that we have just one complementary signal. Extension to multiple signals
can be easily inferred.

In the case that our input comprises from two input sequences, i.e., x; = (v;,s;) , we first
learn a unified latent space Q which preserves an underlying pattern existing in both views. We
then build a classifier on the top of the learnt space. We use Gaussian processes to parameterize two
functions f, : Q — V and f; : Q — S which map the shared latent space to two input signals.
Here V denotes the input space representing blood glucose associated values and S represents so-
cial/contextual information of users. We base our model on a conditional independence assumption
that, given the latent variable Q, the two inputs V and S are independent. Thus, based on discussion
in the previous section 3.1, the predictive posterior can be written as,

P(Q,0,,05]V,8S) o< p(V|Q, 0,)p(S|Q, 05)p(Q), 5)

where the first and second terms are likelihood of data given the latent space and the third term is
the prior on the latent vectors which can be modeled via a Gaussian prior as,

p(Q) = 76 p( Z o ]|?) 6)

Learning model parameters is often performed by minimizing the negative log posterior, i.e.,
Eq.(5) with respect to latent space, i.e., Q, and the hyper-parameters, i.e., 8,, 65, which is,

1

£:£U+£5+§Z|Iqi|\2, )
A
D 1

Ly = 7 In|K,| + §w(K;lVVT), ®)
D 1

L= 7 In|K,| + 5tr(K;lssT)). )

Minimizing Eq.( 7) with respect to Q, #,,, and 6 will result in a low dimensional space which is
shared by both V and S inputs. Here we utilize an exponential (RBF) kernel to define the similarity
between two data points x;, X; as,

0
(i, ;) = Orean(—2 [x; — x5]%) (10

3.3. Optimization

We employed the Scaled Conjugate Gradient (SCG) to learn the optimal latent representation Q.
Specifically, the gradients of £, and L can be computed as,

gﬁf’ - %(anl - (K;1VVTK;1)) %Iflf’ (11
g(g; = %(anl — (K;lssTKgl))%ff. (12)

The gradient of Eq.(7) with respect to the latent representation is the sum of Eq.(11) and Eq.(12)
plus the gradient of the third part in Eq.(7).
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4. Experiments

In this section, we present the experimental details to verify the effectiveness of our proposed frame-
work. We implement the proposed approach on two different types of data, each providing different
types of contextual information: 1) high-resolution glucose sensor data with linked survey informa-
tion on diet and physical activity context information (“CGM data”) and 2) social media data, in
which users provide passive data that we use as context. The high-resolution CGM data along with
its surveys is more structured and continuous, yet only available for a very small population sample.
The social media data is available from a larger and broader set of users, and has passively con-
tributed context information which decreases recall and information biases. However, this data is
much more sparse, so we also evaluate the results according to different levels of sparsity. It should
also be noted that the CGM data is from users with type 1 diabetes only, while we do not precisely
know what kind of diabetes the social media users have. However, given the close attention to in-
sulin management and social features that span medication and other factors that are relevant to type
1 diabetes management (see previous exploration of this data (Akbari et al. (2018)), we deem it fair
to consider both of these datasets in this task.

In the following, we first benchmark our method on sensor data collected by CGM devices.
For the CGM data we focus on two tasks of 1) predicting blood glucose values for next 30 minutes
(regression task), and ii) predicting glycemic events in the same window (classification task). Due to
sparsity, we only focus on predicting the onset of glycemic events in the social media data. However,
we also conduct experiments to measure the impact of sparsity on prediction performance in this
dataset. For both datasets, we first explain different features extracted from contextual data and then
compare our method against state-of-the-art baselines.

4.1. Clinical Data: CGM Data

To evaluate our framework on a continuous glucose dataset which also has some contextual in-
formation, We utilized the OhioT1DM dataset (Marling and Bunescu (2018)) which includes data
collected from six patients with type 1 diabetes. For each subject, the following data were collected:
a blood glucose level from continuous glucose monitor (CGM) every 5 minutes; periodic finger
sticks blood glucose levels from; insulin doses, both bolus and basal; self-reported meal times with
carbohydrate estimates; self-reported times of sleep, work, and exercise; and S-minute aggregations
of heart rate, galvanic skin response (GSR), skin temperature, air temperature, and step count. To
forecast blood glucose values, we used the historical values of blood glucose collected via CGM as
main time series signal and insulin doses, both bolus and basal and self-reported meal times with
carbohydrate estimates as contextual side information. Due to misalignment of values in time di-
mensions, we do not use the other side information sources (these can all be binned to larger time
steps in future studies; we tried to use exact times where possible for this initial study).

4.1.1. PREDICTIVE ACCURACY

Here we describe the baselines used for evaluating our method on the regression and classification
tasks. For the classification task, we compared the following different approaches:

e LR: Asafirst baseline we used a logistic regression classifier, which is a linear classifier Shumway
and Stoffer (2011). Contextual features are included in the input vector.
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e KCCA: A kernelized version of Canonical Correlation Analysis (CCA), and thus this model can
conduct non-linear dimensionality reduction for data of two views (Thompson (2005); Akaho
(2006)). Canonical correlation is the most appropriate baseline to use, as it is applied to extract
common features from a pair of multivariate data. The kernalized version also is selected to
allow for non-linear relationships and to be more comparable to the proposed approach.

o GP: This is the simplest model based on Gaussian processes and models blood glucose level
detection as a time series prediction task using (only) historical blood glucose values.

e GP+Context: Our proposed approach that employs context - learned in a unified latent space
with blood glucose values.

Table 1 and Figure 2 (Appendix A) show the results of different methods on regression and
classification tasks, respectively. In the regression task, GP+Context shows the lowest error. For the
classification task, it is first noted that precision for detection of hypoglycemic events is the lowest.
This could be due to the relative rarity of such events in the dataset (Marling and Bunescu (2018)).
As show in Table 1, the performance of GP+Context approach in detecting abnormal glycemic
events, i.e., hypoglycemic and hyperglycemic, is superior to the other baselines. This is important
as the proposed method can detect adverse levels. KCCA demonstrates higher overall performance
as compared to other baselines while it also achieves highest performance in the euglycemic case.
In the regression task (forecasting blood glucose values instead of glycemic ranges), KCCA and
LR achieve the worst results. This can be explained by the fact that they cannot model the tempo-
ral dependencies among blood glucose values. GP+Context outperforms other baselines which is
attributed to the fact that it models temporal dependencies between blood glucose values as well as
utilizes the available contextual information to better predict future blood glucose values. Overall,
these observations demonstrate that the proposed model can learn an effective latent space from
both time series data and contextual information.

Table 1: Comparison of different approaches on glycemic event detection on CGM dataset

Hypoglycemic Euglycemic Hyperglycemic Overall
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall
LR 0.18 0.76 0.53 0.54 0.73 0.68 0.51 0.63
KCCA 0.26 0.82 0.86 0.75 0.74 0.75 0.72 0.76
GP 0.12 0.67 0.82 0.63 0.70 0.82 0.58 0.74
GP+Context 0.28 0.86 0.83 0.70 0.79 0.77 0.79 0.77

4.2. Social Media Data
4.2.1. DATA COLLECTION

Another available dataset which provides blood glucose values in concert with contextual infor-
mation comes from social media. We collected a dataset using the hashtag ‘#bgnow’, which is
widely-used by diabetics to share their blood glucose (BG) levels. Figure 1 shows examples of
tweets with this hashtag. As can be seen, individuals utilize this hashtag for self-reporting their BG
values on Twitter. As such, we consider these values as a sparse BG time series. For each user, we
construct his/her BG trajectories based on his/her self-reported BG values. To construct the dataset,
we initially collected all tweets containing ‘#bgnow’.
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Good morning [E;now is 320mg/dL before breakfast. | don't know how

it works or does not. #t1d

Figure 1: Example tweets from the #bgnow hashtag; the identity of users have been removed due
to privacy concerns.

Table 2: Dataset Statistics
# Users | #tweets | #BG values | # hypogelycemic | # euloglycemic | # hyperglycemic

306 1,909,171 12,014 1,936 95,9549 4,529

‘We next used these to find users with recent timeline data; we identified all distinct users who
posted via this hashtag, and then collected twitter timelines of these users for a one year period!.
This allows us to analyze their online activities on Twitter alongside their blood glucose values. To
remove the effect of non-active users, we removed users who posted less that 5 blood glucose values
as they do not have sufficient historical information. This results into a dataset of 306 individuals and
a total of 12,014 blood glucose values posted by them. These users have posted about 39 number
of blood glucose values, in average, where the average days between two posts is equal to 11 days.

To create the ground-truth, we next extracted the reported blood glucose values from the in-
cluded tweets. To do so, we defined a set of lexical rules to check the neighborhood window around
the hashtag ‘#bgnow’ and looks for numerical values and measurement units such as ‘320mg/dl’ (see
Figure 1). These values next were mapped to their corresponding categories of: hypoglycemic (less
than 70 mg/dl), euloglycemic (70 — 180 mg/dl), and hyperglycemic (more than 180 mg/dl) ranges.
Table 2 shows the statistics of our dataset.

Further, the text-content of tweets were utilized to extract features which we consider as side
information from social media. The contextual information available in social media platforms are
available in form of unstructured text, i.e., users post on the network. We extract social context of
users from these posts. To represent user context we extracted two types of features: user-centric
and content-centric features (see Appendix B).

1. This is due to limitation of Twitter API which only retrieves latest 3, 200 tweets for each user.
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Table 3: Comparison of different approaches on BG level prediction on Social Media Data.

Hypoglycemic Euglycemic Hyperglycemic Overall
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall
LR 0.38 0.06 0.54 0.76 0.51 0.45 0.50 0.52
KCCA 0.53 0.10 0.54 0.73 0.51 0.48 0.53 0.53
GP 0.39 0.49 0.41 0.36 0.40 0.33 0.40 0.40
GP+Social 0.71 0.43 0.62 0.84 0.63 0.51 0.64 0.63
GP+Context 0.86 0.53 0.88 0.83 0.72 0.88 0.82 0.80

4.2.2. PREDICTIVE ACCURACY

We utilized the same set of baselines to benchmark the performance of our method on the social
media dataset. Additionally we added GP+Social which extends a GP model by adding features
extracted from social media data of users, concatenating all features to form a single feature vector.
Table 3 depicts the result of blood glucose level prediction for different approaches in terms of preci-
sion and recall metrics. From the Table, the following points can be observed. (1) As in the previous
experiment on CGM data, GP achieves the lowest performance in the BG prediction task. This may
be attributed to the fact that it only uses the historical values of BG trajectories to estimate the next
BG level. Thus the extreme sparsity of reported values in social media makes it difficult to learn
the temporal patterns in BG values of patients (see next section for a detailed study). (2) Although
conventional machine learning, i.e., LR and KCCA, outperform the GP approach, they still have
low performance according to both metrics. Also as in the previous experiment, the feature-based
predictors would overlook temporal dependencies between BG values. Further, KCCA outperforms
the LR approach. This can be understood as KCCA performs joint feature selection on both views
and builds a latent space from both BG values and social media features. This is in contrast to LR
which utilizes early fusion of features, i.e., concatenation of features from both views to form a
feature vector. However, KCCA fails to perform optimally as it cannot consider temporal depen-
dencies from both the BG and context data. GP+Social, which uses social media data for prediction,
obtains 10% higher performance in both metrics compared to the ‘conventional” machine learning
methods. This is an interesting result and consistent with retrospective studies (Dao et al. (2017));
demonstrating that social media data of users implicitly indicates health status of patients (e.g. there
is a latent representation of health based on this data). Besides, leveraging Gaussian process with
context achieved higher performance as compared to KCCA, which shows there also exist temporal
patterns in posting behaviour/data of users which can effectively improve prediction. GP+Context
obtains the highest performance as it can effectively incorporate different views to learn better latent
representation as well as capturing temporal dependencies in the blood glucose prediction task.

4.3. On the Effect of Sparsity

While we demonstrated the approach on social media data due to availability of both blood glucose
and context information from this source, and potentially different types of context than in the
CGM data, the data is still fairly sparse. Accordingly, to investigate the effect of data sparsity on
this approach we generated two less sparse datasets.

To form each of these datasets, we intuitively select users that have more frequent posting be-
havior; i.e., from the initial cohort of users, we select users who have at least 25 BG values to form
Dataset-25 and those who have 50 BG values to form Dataset-50. For each user, we used a ran-

10
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dom one-week window as a hold out set for evaluation and trained the model on the rest of the
dataset. Table 4 depicts the performance of our model with different sparsity levels. As can be seen
from the table, sparsity has an adverse affect on average performance of the model in terms of both
precision and recall metrics. Precision may be highest on the overall dataset again due to the low
number of such events. However as expected, denser data significantly improves the performance
on identifying adverse events of euglycemic, hyperglycemic and overall blood glucose levels.

Table 4: The effect of sparsity on prediction performance.
Hypoglycemic | Euglycemic | Hyperglycemic Overall
Pre Rec Pre | Rec | Pre Rec Pre | Rec
Data-All | 0.86 | 0.53 0.88 | 0.84 | 0.72 0.88 0.82 | 0.80
Data-25 | 0.85 0.75 0.81 | 0.97 | 0.89 0.75 0.85 | 0.85
Data-50 | 0.85 | 0.79 | 092 | 094 | 0.90 | 0.89 0.90 | 0.90

4.4. Importance of Contextual Information

We also investigate the effectiveness of different contextual signals in forecasting future blood glu-
cose values. This is important for informing future studies of, and accounting for causal mech-
anisms of contextual information in relation to blood glucose values. To accomplish this for the
CGM data we used a forward step-wise procedure, to decrease computation time. We utilized his-
torical BG values as a base information signal and add one signal each time as contextual sig-
nal. Performance improvement obtained by adding each contextual information in regression task
is reported in Figure 3 (Appendix A). From the Figure, we have the following observations: (1)
Adding contextual information to BG values decreases the prediction error with a large margin
(11.6% lower RMS error as compared to no contextual information). (2) Different contextual in-
formation has varying effects on the RMS error with “Meal” and “Exercise” having the high-
est impact on performance (understandably, given their more direct relationship with glucose).
Overall, the results demonstrate that incorporating a variety of contextual information can im-
prove the prediction performance and further studies are needed to find the causal mechanisms
between these information and blood glucose. For the CGM data, the top ranked features were:
BG4, BG4y, BGs, BGs, basal, carbs, hypocorrection, snack, BGg, BG4 where BG1, BGo, etc.
are the values of blood glucose in historical windows of the previous 30 minutes, BG1 being the
most recent one. “Carbs” is the self-reported value which shows amount of carbohydrates and
“basal” is a value that shows amount of insulin intake for correction of blood glucose just before
meals. “Hypocorrection” is a meal that a user takes for correction of hypoglycemia.

We also examine the top effective features from social media in predicting future values of
BG. We first normalized the weight vector of a linear model for predicting blood glucose values
and then ranked the top 10 features in the trained model. The top ranked features were: “ha”,
“low”, “lovely”, “worse”, “proud”, “bad”, “bolus”, “gym”, ’cheese’, “coffee”. It should be noted
that all of the top features came from unigram text features. Moreover, these top social signal can
be categorized in three different categories: emotions (ha, lovely), lifestyle (cheese, coffee, gym),
and medical information (bolus). Worse, low and bad may be related to insulin directly or other
emotions.
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5. Conclusion

This paper introduced a method for using, for the first time, contextual information in tandem with
blood glucose values, for prediction of high/low/normal blood glucose events (social media data),
as well as continuous blood glucose values (CGM data). This work differs from existing work on
blood glucose prediction as we focus on the challenges of 1) integrating contextual data as multiple
views of information (to add context to the blood glucose value prediction problem) and 2) examine
the performance of different kinds of contextual data, from those that provide both multi-view, and
multi-modal variables that are not as consistent or specific as blood glucose data. Especially in
the case of social media features, the context data can be sparse and noisy. To address all of these
challenges, we leveraged Gaussian Processes for understanding the latent temporal representations
and prediction in this novel multi-signal task.

We conclude that contextual information can improve blood glucose prediction in addition to
just glucose value data, and those features directly known to relate to blood glucose. Examining
the importance of features also provides relevant findings regarding social context and glucose con-
centrations that can be explored and/or harnessed further. For example, in the CGM data, the self-
reported amount of carbohydrates (“carbs”) and amount of insulin intake for correction of blood
glucose just before meals (“basal”) are important features. While those two items are clearly di-
rectly related to blood glucose, also self-reporting of eating a meal that may be taken specifically
in cases of hypoglycemia (‘“hypocorrection”) is also more informative than some previous blood
glucose values themselves. Other less commonly examined features including self-reported sleep,
work, and physiological measures such as heart rate, GSR and skin temperature can also improve
blood glucose prediction, and indicates that studies of the causal mechanisms should be pursued.
We have not interpreted the relative positioning of the different blood glucose windows (i.e. why
the fifth previous window is more informative than the fourth), however cyclical behavior in blood
glucose may be related and should be studied further. In the social media data, the top features all re-
lated to text. while some have a clear link to insulin, diet or activity (e.g. “bolus”, “gym”, “cheese”,
“coffee”), it is worth noting the specificity of some of the diet items. Moreover, several of the top
six features are all more related to sentiment or mood (“ha”, “lovely”, “proud”). As far as we can
tell, this is the first empirical study of such mood features in relation to blood glucose, and this also
warrants further systematic study on these features specifically.

While applied to the problem of blood glucose prediction, this approach could be applied to
other medical time series prediction problems where multiple views, such as from social context, are
available and relevant. Results show that incorporating contextual information can improve blood
glucose value prediction above just the glucose values (in sparse data), and where less sparse data
is available this could still add some value. Accordingly, in future work, it would be very useful to
devise an approach to garner continuous blood glucose information alongside more continuous con-
textual/social information; perhaps by designing a new type of CGM. Then, more continuous values
for specific features can also be studied for their mechanistic relationships with blood glucose. The
work could also be used to combine low-level (e.g. physiologic measures) and high-level (social,
contextual information) collected by sensors such as wearable and quantified-self devices, to fore-
cast future health states of individuals in a comprehensive manner. Indeed, as this method exploits
Gaussian processes, a well-known non-parametric nonlinear approach for time series forecasting,
for learning the latent space from input variables, it can effectively model time series data collected
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by wearables and other devices which are used in daily life and can be linked and combined with
contextual information to improve predictions as well.

In a continuous forecasting scenario of blood glucose level prediction, multi-step prediction is
often required, and incorporating prior information of periodicities can be performed by utilizing
appropriate kernel functions. While we utilized the well-known Radial Basis Function (RBF) kernel
due to its proven effectiveness in several applications, such a simple covariance function may not
fully capture the unique characteristics of blood glucose variations in all real-life scenarios. Thus
combinations of different kernel functions could be explored to model a number of effects together
(Karunaratne et al. (2017)). For example, a squared exponential kernel coupled with a periodic
kernel can induce a recency effect to the periodic kernel. While we leave this direction for future
research, it could potentially improve the performance of blood glucose level prediction given the
multiple types of contexts and their temporal periodicities that can affect glucose values.
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Figure 2: Comparison of different methods in prediction future blood glucose values on the CGM
dataset.
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Appendix B

Feature Representation

The contextual information available in social media platforms are available in form of unstructured
text, i.e., users post on the network. We extract social context of users from these posts. To represent
user context we extracted two types of features: user-centric and content-centric features.

User-centric Features. User-centeric features represent a user’s behavior and characteristics. These
features are directly extracted from user timelines and demonstrate a users’ online posting be-
haviours. For instance, this would include features such as the number of posted tweets or user-
mentions (of a user in the tweets of others via @user-name). User-centric features can implicitly
represent user characteristics or differences at specific times (e.g. how active they are, etc.). Table 5
presents six distinct attributes we extracted and used in our prediction task.

Table 5: User-centric features extracted from timelines.

Feature | Description
Uy proportion of retweets
U avg. number of retweets/tweet
Uus proportion of hashtags
Uy proportion of tweets with hashtags
Uus avg. number of tweets/day
Ug total number of tweets

Content-centric Features. Before extracting content-centeric features, we conducted a series of
common prepossessing steps in order to reduce noise and sparsity in data. We first converted all
words to lower case form, removed stop words, replaced emoticons with words and performed
stemming. We replaced multiple occurrences of a character with a double occurrence, to correct for
misspellings and lengthening, e.g., looool (Agarwal et al. (2011)). We also removed simple re-tweets
from the training set in order to remove potential bias (Llewellyn et al. (2014)). Different content-
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based features are proposed for representing social texts. Here we use the commonly-used Uni-
gram as a base textual feature. In addition, inspired by recent advancements in word embeddings
(Mikolov et al. (2013a); Brown et al. (1992)), we extracted two other text-based features which can
better represent the topics discussed by users.

1. Unigrams. Content-centric features are employed to extract implicit states and behaviors of users
from their posts in social media platforms. We thus process the tweets published by users and rep-
resent each user based on these features. As a basic feature we used uni-grams for representations.
To do so, we first form a a vocabulary of size |V| = 12,904 where we only retain the terms which
appear more than 10 times in the corpus. All term frequencies are normalized with the total number
of tweets posted by the user.

2. Neural Embeddings (W2V-E). Recently, there has been a growing interest in neural language
models, wherein words are projected into a lower dimensional dense vector space via a hidden layer
(Mikolov et al. (2013a,b)). These models can provide a better representation of words compared
to traditional language models because they can also capture syntactic information rather than just
bag-of-words, handling non-linear transformations (Mikolov et al. (2013a)). In this low dimensional
vector space, words with a small distance are considered semantically similar. We use the skip-gram
model with negative sampling to learn word embeddings on the Twitter reference corpus (Mikolov
et al. (2013a)). We use a layer size of 50 and the Gensim implementationz.

3. Word Brown Clusters Word clustering techniques, such as Brown Clustering Brown et al.
(1992), have proven to be effective in mitigating term sparsity in open-domain and domain-specific
tasks Ratinov and Roth (2009); Yao and Sun (2016); Ye et al. (2016). This approach assumes that
similar words should appear in similar contexts. At each iteration, it merges semantically similar
words into a fixed number of classes based on the log-probability and incurs the least loss in global
mutual information.
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