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Abstract

Electroencephalography (EEG) is widely used in hospitals and clinics for the diagnosis of
many neurological conditions. Such diagnoses require accurate and timely clinical reports
to summarize the findings from raw EEG data. In this paper, we investigate whether it
is possible to automatically generate text reports directly from EEG data. To address
the challenges, we proposed EEGtoText, which first extracted shift invariant and tempo-
ral patterns using stacked convolutional neural networks and recurrent neural networks
(RCNN). These temporal patterns are used to classify key phenotypes including EEG nor-
mality, sleep, generalized and focal slowing, epileptiform discharges, spindles, vertex waves
and seizures. Based on these phenotypes, the impression section of the EEG report is
generated. Next, we adopted a hierarchical long short-term memory network(LSTM) that
comprises of paragraph-level and sentence-level LSTMs to generate the detail explanation
of the impression. Within the hierarchical LSTM, we used an attention module to localize
the abnormal areas in the EEG which provide another explanation and justification of the
extracted phenotypes.

We conducted large-scale evaluations on two different EEG datasets Dataset1 (n=12,980)
and TUH (n=16,950). We achieved an area under the ROC curve (AUC) between .658 to
.915 on phenotype classification, which is significantly higher than CRNN and RCNN with
attention. We also conducted a quantitative evaluation of the detailed explanation, which
achieved METEOR score .371 and BLEU score 4.583. Finally, our initial clinical reviews
confirmed the effectiveness of the generated reports.

© 2019 S. Biswal, C. Xiao, M.B. Westover & J. Sun.



LEARNING TO WRITE MEDICAL REPORTS FROM EEG RECORDINGS

1. Introduction

Electroencephalography (EEG) in the form of multivariate time series are widely used in
hospitals for the diagnosis of neurological conditions including seizure disorders, sleep dis-
orders, and brain disorders(Nuwer, 1997). Typically neurologists will visually inspect EEG
signals that measure the brain activity to reflect the condition of the brain (Bagic et al.,
2011), and then compose text report to narrate the abnormal patterns (i.e., EEG phenotypes
) and detailed explanation of those phenotypes. The clinical report writing is cumbersome
and labor intensive. Moreover, it requires a thorough knowledge and extensive experience in
understanding the EEG phenotypes, and how they evolve over time, and their correlations
with target diseases (Organization et al., 2004). To alleviate the limitation of manual report
writing, we investigate the approach of automatically generating EEG reports. This task
involves solving the following challenges.

o Capturing the complex patterns of the data. The complexity of pattern extraction from
raw EEG data includes encoding variable length EEG records, handling pattern shifts,
and capturing temporal patterns.

e Generate structured reports. EEG reports are structured hierarchically, with high-level
impressions that summarize the key phenotypes, and a detailed description of each im-
pression.

e Focused and interpretable narration. Reports need to provide intuitive understanding to
facilitate clinical decision making. For example, it is preferred that the report can connect
these output impressions and descriptions to raw EEG patterns.

Although there are a number of image/video captioning (Vincent et al., 2008; Xu et al.,
2015b) or medical image reporting generation methods (Jing et al., 2017b; Li et al., 2018)
being proposed, they tend to perform poorly on clinical time series report generation due
to two primary reasons. First, they often take fixed size data (e.g., images) as input and
generate short sentences (e.g., image caption), whereas clinical reports often consist of
multiple paragraphs based on variable-length input data(EEG). Second, clinical reports
need to align with clinical guidelines and have special structures, which cannot be acquired
by simply applying the aforementioned methods.

To fill in the gap, we propose EEGtoText, a framework that learns to generate hierarchi-
cally structured EEG reports given variable-length EEG recording as input. In particular,
EEGtoText is carefully designed as follows.

1. High-capacity encoding. EEGtoText first extracts features using stacked convolutional
neural networks and recurrent neural networks for capturing shift invariant and temporal
patterns, respectively. These features were then used to generate key phenotypes via
a multi-label classification module. The module outputs multi-label keyword such as
”abnormal”, ”sleep”, ”generalize theta slowing” etc.

2. Structured report generation with hierarchical LSTM. EEGtoText adopts a hierarchi-
cal long-short term memory networks (LSTM) that comprises of paragraph-LSTM and
sentence-LSTM to generate the longer-form parts of the medical report (details and
impression).
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EEG recording

Impression: Abnormal due to diffuse irregular theta slowing in the awake
state; and asymmetric background amplitude (left > right). No epileptiform
abnormalities were detected.

Detail: The best awake background showed mild diffuse irregular theta and
intermittent irregular delta slowing. The background amplitude was
reduced over the right hemisphere (10-20uv on the right vs 20-40uv on the
left). During i there was ion of the amplitude
asymmetry and increased diffuse slowing. Sleep was not captured. HV and
Photic stimulation were not performed.

Corresponding EEG text report

Figure 1: An example of medical report generation from EEG recording. The left box
shows EEG recording and right box show corresponding EEG text report. We propose our
EEGtoText framework which take an EEG input and produce text reports as shown in the
right side of the diagram.

3. Focused and interpretable narration with attention module. Within the hierarchical
LSTM, EEGtoText has an attention module to localize the regions in the detailed text
description and abnormal areas in raw EEG that explain the corresponding phenotypes.

e Clinical Relevance: Our proposed framework EEGtoText works towards the goals of
helping a cumbersome and labor intensive EEG report writing task. EEGtoText can
extract different EEG phenotypes and generate impression and details sections of the
EEG reports. This will also be highly beneficial in low-resource clinical settings where
there is a shortage of expert clinicians.

e Technical Significance: In this work, our framework EEGtoText can understand vari-
able length input such as EEG to produce multiple short paragraphs using an attention
based encoding of input features and hierarchical LSTM based decoders. Using the combi-
nation of phenotype classification and detail generation, our method is able to outperform
all other baselines to produce high-quality EEG text reports.

We conduct extensive empirical studies to demonstrate the efficiency of EEGtoText on
two large-scale EEG datasets. In the evaluation of phenotype classification, our results show
the EEGtoText outperformed the second best approach (CRNN with Attention) by 3.7% in
Spindle phenotype and by 1.4% on average across all tasks. In the evaluation of detailed
explanation, EEGtoText achieved METEOR score 0.398 and BLEU score 4.532. We also
perform qualitative evaluation of generated EEG reports by expert clinicians. This shows
that our proposed framework EEGtoText has the potential to able to generate high quality
EEG text reports from EEG datasets.

2. Related Work

Deep Learning in EEG Analysis Recent years, the analysis of EEG signals has gone
beyond traditional two step EEG feature engineering and classification (Lin et al., 2008;
Alomari et al., 2014; Shoeb and Guttag, 2010; Al-Fahoum and Al-Fraihat, 2014) to end-to-
end learning. Deep neural networks have been applied to both raw EEG signals and spectro-
gram representations (Bashivan et al., 2015; Tibor Schirrmeister et al., 2017; Schirrmeister
et al., 2017; Biswal et al., 2017; Thodoroff et al., 2016) or on clinical texts (Maldonado
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Figure 2: An overview of the proposed framework for generating EEG text report from
EEG sample. We use a CNN to create feature vectors from the EEG sample. These feature
vectors are used for phenotype classification and these phenotypes are used in Impression
generation. These feature vectors are passed to the attention module to generate a final
context vector for details decoder. The decoder generates text reports from the encoded
representation

et al., 2017) and demonstrated promising results in various health analytics tasks. While
careful feature engineering has led to good performances, it has been difficult to extend
these methods to wide variety of EEG related tasks.

Caption Generation There has been a large body of works that build connection be-
tween visual data (e.g., images or videos) and textual data (e.g., summary or caption) in
computer vision domain(Vinyals et al., 2015; Xu et al., 2015b; Rennie et al., 2017; Zhou
et al., 2017). For example, image caption generation using recurrent neural networks with
attention (Xu et al., 2015b), or dense caption generation with considering region-of-interest
of the image (Johnson et al., 2016). Some authors have shown that it is possible to generate
video captions by encoding video features using either a recurrent encoder (Donahue et al.,
2015; Venugopalan et al., 2015; Xu et al., 2015a) or an attention model (Yao et al., 2015).
Some works have focused on dense video captioning task where event are captioned in the
video (Zhou et al., 2018).

Medical Text Generation There has been increased interest in generating reports from
medical data such as images in the past years. There are two primary works in this sub-
domain of medical image captioning which use X-ray images to produce short descriptions
(Li et al., 2018; Jing et al., 2017a; Li et al., 2019). However, these methods cannot be
easily extended to time series(EEG) text report generation due to a few different reasons.
The primary difference is that EEG recordings are of variable length input, which poses
different challenges compared to X-ray images. Also, EEG reports usually contains two
different sections ”Impression section” and ”Detail section” which range from two to three
paragraphs which is longer compared to X-ray text reports.
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Table 1: Notations used in EEGtoText

Notation Definition
DO = {(X® YD) i-th EEG sample, i = 1,2...T
X(@ e RE*T  i-th EEG sample, where i=1,2... I samples, we denote it further
as X ignoring ¢
Y® = (S%,S5,.. .,S%) i-th paragraph/report sample, where i=1,2... I samples, we
denote it further as Y ignoring 4
x; i-th EEG epoch, where i = 1,2,...,T samples
f; i-th EEG feature vector extracted from i-th EEG epoch, where
1=1,2,...,T samples
S; j-th sentence in report, where j = 1,2,...,J samples, we de-
note it further as Sy, ignoring ¢

g; t-th attention vector for t-th EEG epoch and p-th pass over
attention module
M(®)  pth pass over the attention module

3. Methods

3.1. Data and Task Definitions

Data We denote EEG samples as D®) = {(X@ Y@)}_ . Here X € RE*T is the EEG
records for subject i, where C is number of electrodes and T is the number of discretized
time steps per recording. We represent the text report to be generated as a sequence of
sentences Y = ( ’i, é, e Sf,) and each sentence is a sequence of words and V is the
complete vocabulary of all words in the EEG reports.

Task Given an EEG sample X our goal is to generate an EEG text report consisting of
a sequence of sentences Y = (S§,S%, ..., Sf]) to narrate the patterns and findings in X (@,
This is done by maximizing the conditional probability of output sentences given input EEG

record and is parameterized by context vector  such that @ = argmin 3 logP(Y®|X®), 9).

3.2. The EEGtoText Framework

In this section, we propose EEGtoText framework that can generate structured medical
reports given clinical EEG time series data of a patient. Given multivariate time series
EEG records x; as input, EEGtoText firstly encodes them into feature vectors fj ... fy, then
predicts different impression phenotypes (i.e., themes of EEG patterns such normal, seizure
etc) based on the encoded EEG feature vectors f;. Next These impression phenotypes are
be passed as input into a template based method to generate the impression section of the
report which provides high-level structures of the EEG recording. The feature vectors gen-
erated are combined with the representation phenotype representations to generate context
vectors. Then the framework uses these context vectors to generate the detailed explanation
using hierarchical (paragraph- and sentence-) RNN 2. Below are the detailed description of
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each module.

Data Encoding Given EEG records as input, we first embed them into feature vectors
fi ... fr using neural networks. In particular, an EEG sample X consists of multiple EEG
epochs, each at length 1 minute. We represent these EEG epochs as X = x1,Xo,...,Xr and
embed each x; into a feature vector f; such that

fi = CNN(XZ) (1)

In this work, we adopt a CNN with convolutional-max pooling blocks for processing the
EEG data into feature space. We use Rectified Linear Units(ReLUs) activation function for
these convolutional networks, and with batch normalization (Szegedy et al., 2013).

Attention based neural networks have been successful in directing neural network to
focus on specific parts of input to produce accurate classification and high dimentional
output. Inspired by the design of dynamic memory networks (Xiong et al., 2016), we
designed our architecture to perform multiple passes over the attention module to create
the final context vector. This final context vector is passed to the decoder module. In this
attentional EEG encoder module, we process the context vector along with the keywords
produced by the EEG classification module. Intuitively, f;...fr can be considered as all
the information contained in the EEG and multi pass attention model extract facts or
information from the the f; ... fr to create the context vector m®).

These EEG feature vectors are multiplied with another representation q from keywords
K generated in the EEG keyword classification module, where q. The module for classifying
the EEG vector into Keywords K is described in next section. q is representation of the
keywords predicted and provides understanding of important patterns present in the EEG
data. Our intuition is that these keywords provide the required guidance for generating
context vector for detailed explanation generation.

We first calculate an attention vector g using EEG encoder feature vectors F =f; ... fp
and embedding vector generated from keywords K. As noted this is for p-th pass over
memory module.

ng) = [fl ® q; fi ® m(pil)] (2)
Z{ = MLP(:") (3)
S exp(Zy)

where ©® is the element-wise product and ; represents concatenation of the vectors. Since
this is the episodic memory, we go over multiple passes over the attention module. We

denote the passes over the attention module using superscript (p). After obtaining g(p )

., We
use a soft attention mechanism to obtain ¢?). This soft attention mechanism performs a

weighted summation of EEG feature vectors f; with corresponding attention gates g’

=2 fig] (5)

We use multiple passes of update to produce the output of this module m®). This
memory module gets updated with newly constructed context vector ¢, producing m®).
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We use a gated recurrent units(GRU) to compute this context vector ¢ . The input to the
GRU are current context vector ¢® and m®=1. The episodic memory m(®) for pass p is
computed using this following equation.

m® = GRU(c®), m®~Y) (6)

Impression Phenotype Classification In this module, we use the feature vectors learned
by the EEG encoder f; ... f7 to produce the impression phenotypes associated with the EEG
recording. These phenotypes K are passed to the template to fill in the template to produce
the impression section of the report. We denote these impression phenotypes as K which
are further used in the memory modules using a different representation. The phenotypes
which are used as labels this work are (1) Normal (2) sleep (3) Drowsiness (4) Generalized
Slowing (5) Focal Slowing (6) Epileptiform discharges (7) Spindles (8) Vertex Waves (9)
Seizures. We use the EEG feature vectors f; produced by EEG feature encoder as as input
for fully connected layer to produce the impression phenotype K.

P(K) = o(MILP(f;)) (7)

where ¢ indicates sigmoid function.

As mentioned earlier, EEG text reports contains two primary sections e.g., “Impression
section”, “Details section”. Impression section contains a summary of the report, so it is
usually very concise and contains specific keywords. We have taken a template based ap-
proach to generate the Impression section of the EEG report. This template was extracted
manually by reviewing EEG text reports. The impression phenotypes K predicted in this
module is used with the templates to create this “Impression section” of the report.

Detailed Explanation Generation We take an approach where we stack a paragraph
generator module on top of a sentence generator module. The paragraph generator is re-
sponsible for capturing the inter-sentence dependencies and guides the sentence generator.
The sentence generator is built using a combination of LSTM for language model, multi-layer
perceptron of integrating information and an attention model. The paragraph generator is
responsible for deciding the numbers of sentences and W-dimensional topic vector for each
of these sentences. Given a topic vector for a sentence, the sentence generator generates
words for that sentence.

Paragraph Generator: The paragraph generator is a LSTM with initial hidden and cell
states set to zero. It receives EEG feature vector which is processed using the memory
module. So the input for the paragraph generator is m) | and in turn produces a sequence
of hidden states h; € R, These hidden states are each for sentence in the paragraph.
First, a linear projection from h; and logistic classifier produce a distribution p; to decide
continue or stop. This decides if jth sentence is the last sentence of the paragraph. Then
we pass the hidden state h; through a two layer MLP to produce a topic vector O; € RP.
This topic vector O; is passed to sentence generator as the input.

Sentence Generator: This sentence generator module is another long short term mem-
ory(LSTM) network with hidden size H =512, which takes a topic vector O; as input passed
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from the paragraph generator. A ST ART token is also passed with topic vector to the start
input. The subsequent inputs are learned embeddings(hidden layer output) for the words.
At each time-step the hidden state of the last LSTM layer is used to predict the distribution
over the words in the vocabulary. We produce an EN D token to indicate the end of the
sentence. At the end of we concatenate the sentences to form the paragraph.

3.3. Training and Inference

Our training loss [(x, y) for the sample (z,y) is cross-entropy term on the final output word
distribution and ground truth words.

N
J(Y|X;0) == p(Vi]X;6) (8)
t=1

where py(Y;) is the probability of observing the correct word Y; at time t. The loss is
minimized with respect to parameters in the set @ which are the parameters of the end
to end model including CNN encoder, memory module and decoder module. At inference
time, we sample from the from the decoder using the feature representation encoded using
CNN encoder and memory module.

4. Experiments

In this section, we describe our experiments and show that EEGtoText is able to generate
text reports from EEG recordings. We evaluate the results using both quantitative and
qualitative measures. We first introduce the two different datasets(Datasetl and TUH)
used in our experiments and then discuss different experiments and analysis performed in
evaluation EEGtoText.

Table 2: Dataset Statistics

Datasetl Data | TUH Data
Number of Patients 10,890 10,865
Number of EEG Samples | 12,980 16,950
Total EEG length 4,523 hours 3,452 hours
Total number of Tokens 755,019 542,765

4.1. Data

We conducted experiments using the following datasets. More details about data are pro-
vided in table 2.

1. Datasetl EEG Report Data set: The dataset was collected at large medical center.
It contains 12,980 deidentified EEG recordings paired with text reports, which were
collected over four years of time.

2. TUH EEG Report Data set: We also evaluated our methods using the dataset from
Temple University Hospital EEG corpus (Obeid and Picone, 2016). It contains 16,950
sessions from 10,865 unique subjects.
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EEG Report Preprocessing For EEG text reports, it contains multiple sections as im-
pression, patient history, comparison, details section, EKG analysis. Here we only focus
on impression and detail sections since they outline patient conditions and are the target
for our report generation task. In addition, we also process the reports by tokenizing and
converting to lower-cases. We remove some tokens from the corpus if the frequency is less
than two.

4.2. Experimental Setup

We implemented EEGtoText in PyTorch 1.0 (Paszke et al., 2017).We use Adam (Kingma
and Ba, 2014) with batch size of 64 samples. We use a machine equipped with Intel Xeon
e5-2640, 256GB RAM, eight Nvidia Titan-X GPU and CUDA 8.0. While training the mod-
els, we use batch size of 128 and ADAM as the optimization method. For Adam to optimize
all models and the learning rate is selected from [2e-3, 1e-3, 7.5e-4] and f; is selected from
[0.5, 0.9]. We train all models for 500 epochs. We start to half the learning rate every 2
epochs after epoch 30. We used 10% of the dataset as a validation set for tuning hyper-
parameters of each model. We provide more details about hyperparameters in table 7 in
supplementary section. We provide the model configuration information in table 7. We
searched for different model parameters using random search method.

Baselines: We compare EEGtoText with the following baselines.

1. Mean-pooling(MP): We use CNN to extract features for different EEG segments and
combined using mean pooling. This mean pooled feature vector is passed to an 2 layered
LSTM to produce the text reports for EEG samples. (Venugopalan et al., 2014).

2. S2VT: We apply a sequence to sequence model which reads CNN outputs using an
LSTM and uses another LSTM to produce text reports.(Venugopalan et al., 2015)

3. Temporal Attention Network(TAM): In this model, we use CNN to learn EEG
features, and then pass them to a decoder equipped with temporal attention which
allows focusing on different EEG segments to produce the text report (Yao et al., 2015).

4. Soft Attention(SA) In this methods, we use a soft attention mechanism to allow the
decoder to be able to focus on EEG feature representations(Bahdanau et al., 2014).

Evaluation Metrics

To evaluate the phenotype classification component, we use area under the receiver
operating characteristic curve ROC-AUC and area under the Precision-Recall Curve PR~
AUC. To evaluate report generation quality, we use BLEU, METEOR, and CIDEr which
are commonly used to evaluate image/video caption generation tasks. Since METEOR
is always better than BLEU and ROUGE in terms of consistency with human judgement
(Kilickaya et al., 2016), here we consider METEOR as our primary metric for evaluating
EEG text generation.

¢ METEOR(M): Metric for Evaluation of Translation with Explicit Ordering (METEOR)
metric is based on the harmonic mean of unigram precision and recall, with recall weighted
higher than precision (Banerjee and Lavie, 2005). Higher METEOR scores are considered
better in different NLP tasks.
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CIDEr: CIDEr measures the consensus between candidate model generated description
and the reference sentences (Vedantam et al., 2015). Similar to METEOR score higher
CIDEr score is considered better.

BLEU: BLEU score is defined as the geometric mean of n-gram precision scores mul-
tiplied by a brevity penalty for short sentence(Papineni et al., 2002). Brevity penalty
gives a penalty on sentences which are shorter than the reference thus it prevents shorter
sentences from obtaining higher score. This score ranges from 0-100% and higher is
considered better.

4.3. Experiment 1: Impression Phenotype classification

We first evaluate the effectiveness in predicting target EEG keywords or phenotypes. In
clinical setting, these phenotypes can provide very quick insight into neurological state of
the patient. Here we describe the following EEG phenotypes.

Normality: This defines if the EEG recording was considered as normal or abnormal.
Sleep: It indicates if any sleep pattern was observed during the EEG recording duration.

Generalized Slowing (Gen. Slowing): Generalized slowing indicates if there was any
observed slowing of EEG pattern. Slowing is generally associated with different diffuse
encephalopathies.

Focal Slowing: It indicates focal dysfunction found in the EEG recording.

Epileptiform Discharges(Epi Discharges): Epileptiform discharges indicates the
presence of different spikes, sharp waves, triphasic waves, lateral periodic discharges(LPD),
generalized periodic discharges(GPD), generalized spike and wave patterns.

Drowsiness: Drowsiness indicates very slow frequency of 0.25 to 1.0 Hz in the frontal
and lateral frontal channels seen in the EEG.

Spindles: Spindles are bursts of oscillatory brain activity generated in the reticular
nucleus of the thalamus that occur during sleep.

Vertex Waves: Vertex waves are seen in sleep stages I and II. These are usually seen
as focal sharp transients in the EEG recording.

Seizure: Seizures indicate any presence of seizure like activities in the EEG recording.

The baseline models in evaluating phenotype prediction components are listed below.

¢ CRNN: In this baseline model, a RNN is used to process all feature vectors fi... fr

from CNN encoder. We take a the final step of the RNN and pass it through two fully
connected layers to produce the classification results.

¢ CRNN with attention: Based on aforementioned CRNN model, it has additional

attention mechanism attached to the RNN layer to produce the hidden layer outputs.

10
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Table 3: Classification Performances for Phenotype classification task on
Datasetl Test set

ROC-AUC PR-AUC
EEGtoText CRNN CRNN w/ Att EEGtoText CRNN CRNN w/ Att
Normality 0.915 0.884 0.893 0.891 0.869 0.855
Sleep 0.849 0.803 0.825 0.824 0.771 0.781
Gen Slowing 0.763 0.743 0.756 0.775 0.710 0.728
Focal Slowing 0.684 0.678 0.686 0.673 0.665 0.671
Epi Discharges 0.798 0.765 0.786 0.751 0.731 0.743
Drowsiness 0.748 0.728 0.742 0.753 0.712 0.731
Spindles 0.668 0.626 0.631 0.642 0.614 0.634
Vertex Waves 0.658 0.643 0.637 0.628 0.614 0.626
Seizure 0.794 0.761 0.778 0.775 0.728 0.745

Table 4: Classification Performances for Phenotype classification task on TUH
Test set

ROC-AUC PR-AUC
EEGtoText CRNN CRNN w/ Att EEGtoText CRNN CRNN w/ Att
Normality 0.878 0.843 0.858 0.871 0.845 0.853
Sleep 0.810 0.773 0.784 0.801 0.751 0.789
Gen Slowing 0.751 0.701 0.726 0.732 0.715 0.749
Focal Slowing 0.612 0.581 0.591 0.621 0.572 0.602
Epi Discharges 0.734 0.704 0.725 0.718 0.695 0.716
Drowsiness 0.753 0.731 0.739 0.748 0.738 0.744
Spindles 0.631 0.608 0.619 0.621 0.592 0.623
Vertex Waves 0.614 0.582 0.603 0.601 0.571 0.615
Seizure 0.743 0.705 0.726 0.739 0.712 0.721

EEGtoText has the phenotype classification module described earlier in the paper which
classifies the EEG recording into distinct phenotype categories. We describe the results of

this classification experiment in table 3.
Both Tables 3 and 4 show that EEGtoText outperforms the baselines in phenotype

classification tasks for most of the labels. The performance of EEGtoText varies across
different phenotypes quite a bit and it can be attributed to the distribution of the labels for
these specific phenotypes. We also observed that with larger sample size EEGtoText is able
to perform better compared other baselines. With more data for those specific phenotypes
such as Spindles, Vertex Waves, Focal Slowing, the overall performance will become better.

4.4. Experiment 2: Impression Section Generation

The impression section includes a few sentences to summarize the overall EEG recording for
the specific patient. Here we evaluate the capability of EEGtoText in impression generation
based on the METEOR, CIDEr, BLEU scores. The obtained results are described in table
5.

We can readily see that EEGtoText outperforms all baseline models across all datasets
except TAM method in TUH dataset for METEOR and BLEU@2 metric. The performance

11
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Table 5: Automatic evaluation results on Datasetl and TUH Testset for Impres-
sion Section generation task. First row presents performance on Datasetl and
second row on TUH data set.

Method METEOR CIDEr B@l B@2 Ba@3 B@4
0.323 0.367 0.714 0.644 0.563 0.443

MP 0.345 0.363 0.645 0.578 0.459 0.361
VT 0.325 0.319 0.741 0.628 0.529 0.462
0.361 0.364 0.724 0.613 0.543 0.438
TAM 0.382 0.334 0.749 0.668 0.581 0.378
0.369 0.381 0.714 0.647 0.492 0.461
SA 0.394 0.348 0.684 0.629 0.568 0.472
0.353 0.341 0.736 0.619 0.519 0.420
0.428 0.384 0.759 0.704 0.596 0.492
EEGtoText

0.358 0.455 0.758 0.639 0.611 0.483

gap between EEGtoText and closest baselines is around 3.5% for METEOR metric. This
experiment confirms that EEGtoText is able to generate high quality impression sections of
the EEG recordings better than other methods. Since we use a template based method to
generate the EEG Impression section, these results indicate that using the inherent structure

present in the report helps our method to produce high qulaity impression section of the
EEG report.

4.5. Experiment 3: Detail Description Generation

Detail sections of EEG reports usually contain granular details of the EEG recording in
terms of important neurological events happening during the recording. The event level
details create challenges for the task. To evaluate its quality, we leverage the same set of
metrics as in evaluating impression generation. The results are summarized in table 6.

Our results indicate that our model performs better than the baselines, showing that our
proposed framework is able to generate meaningful details section text from EEG recording.
We achieve METEOR score of 0.371 and 0.381 on dataset1 and TUH dataset which is better
than all other baselines. Similarly, we also outperform other methods in terms of BLEUQ4
scores. In order to generate more specific detailed description, in future work. we would
attempt to train our models at detailed events level.

4.6. Experiment 4: Qualitative Clinician Evaluation

In order to understand usefulness of our models for clinical practice we evaluated the results
by expert neurologist. We provided the experts with samples with ground truth report and
generated text report presented side by side. In this setup, we measure two metrics for the
generated texts. Expert neurologists are asked to provide two of the following scores.

e Quality score: This score is to evaluate overall quality of the generated report. The
possible range of this score is 0-5.
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Table 6: Automatic evaluation results on Datasetl and TUH Testset for Detail
Description Generation Task. First row presents performance on Datasetl and
second row on TUH data set.

Method METEOR CIDEr B@l B@2 Ba@3 B@4
0.216 0.326 0.638 0.567 0.442 0.349

MP 0.291 0.338 0.669 0.581 0.422 0.317
VT 0.228 0.365 0.542 0.521 0.418 0.378
0.217 0.385 0475 0421 0.384 0.328
TAM 0.319 0.378 0.642 0.586 0.541 0.432
0.364 0.392 0.662 0.562 0.465 0.362
SA 0.275 0.321 0.562 0.525 0.468 0.427
0.261 0.326  0.583 0.534 0.443 0.352
0.371 0.473 0.794 0.751 0.648 0.583
EEGtoText

0.381 0.457 0.832 0.736 0.626 0.512

v AN YA AN AU A A A ARA RS A M A
Abnormal EEG; awake and drowsy states due to the
it WA AN AN M WM A AN A presence of Generalized theta slowing of the
background focal delta slowing over the right temporal
MMWMN‘WWWWWMM“’WNM region. seizures were detected
b AT o A A Tt —

Seizures are highlighted

Figure 3: Examples showing EEG plot with generated report. In this plot, we highlight
the location with Seizures being attention module as shown in the diagram. Due to lack of
space we only 4 EEG channels 'FP1-F3’’F3-C3’,’C3-P3’,’P3-01".

W‘WWNWWVWWNWW Normal EEG. Intermittent fronto-temporal theta and delta

slowing and brief periods of atypical irregular delta activity
often within arousal background activity. Sleep stages N1
and N2 sleep.

Figure 4: This example shows another EEG plot with generated report. In this plot, we
highlight the location with sleep phenotype being highlighted by module as shown in the
diagram.

e Agreement score: This score indicates the agreement of the labels(keywords) present in
the generated report with the ground truth report. Similar to quality score, the range of
this score is 0-5 too.

13



LEARNING TO WRITE MEDICAL REPORTS FROM EEG RECORDINGS

Agreement Score Quality Score

Figure 5: Plot showing results of qualitative evaluation of generated reports by clinicians

These two metrics provide indication that these generated report and classification out-
puts are useful for clinical purposes. We obtained average agreement score of 4.16 and
average quality score of 3.75 in our clinical evaluation experiment as shows in figure 5.

5. Conclusion

In this work, we presented EEGtoText, a framework for understanding and generating EEG
text reports given EEG recording as inputs. In our extensive experimental evaluation, we
showed that EEGtoText performed well in phenotype classification tasks. We have also
showed that EEGtoText is able to generate impression and details section of the EEG
reports. As we have showed that EEGtoText can generate detailed EEG reports, in future,
we plan to extend EEGtoText to capture more granular details present in the EEG reports
to produce higher quality reports such as location, frequency of different patterns. Finally,
our proposed EEGtoText with it’s capacity to generate text reports can help aid in the
neurology clinical workflow for understanding and diagnosis of neurological conditions from
EEG recordings.
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6. Supplement

In the following table we have provided information about different hyperparameters which
are used in our model and experiments.

Table 7: Information about different parameters used in the model

Parameter Values
Number of layers in CNN 9
Initial Learning rate 0.1
Activation Function ReLU
Pooling Layer Max-Pooling
Paragraph LSTM dimensions 1128
sentence LSTM dimensions 256
dropout information 0.15
regularization information L1L2(0.01, 0.01)
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