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Abstract

Seizure detection from EEGs is a challenging and time-consuming clinical problem that
would benefit from the development of automated algorithms. EEGs can be viewed as
structural time series, because they are multivariate time series where the placement of
leads on a patient’s scalp provides prior information about the structure of interactions.
Commonly used deep learning models for time series do not offer a way to leverage structural
information, but this would be desirable in a model for structural time series. To address
this challenge, we propose the temporal graph convolutional network (TGCN), a model that
leverages temporal and structural information and has relatively few parameters. TGCN
applies feature extraction operations that are localized and shared over both time and space,
thereby providing a useful inductive bias in tasks where similar features are expected to
be discriminative across the different sequences. In our experiments we focus on metrics
that are most important to seizure detection, and demonstrate that TGCN matches the
performance of related models that have been shown to be state-of-the-art in other tasks.
Additionally, we investigate interpretability advantages of TGCN by exploring approaches
for helping clinicians determine when precisely seizures occur, and the parts of the brain
that are most involved.

1. Introduction

Epilepsy is a chronic neurological condition characterized by abnormal brain activity that
leads to seizures, periods of unusual behaviors and/or sensations, and sometimes even loss
of consciousness. Due to the unpredictable timing and nature of epileptic seizures, epilepsy
has an outsized impact on the quality of life of its patients. The definitive diagnosis and
the choice of therapy for epilepsy is based on the expert analysis of electroencephalograms
(EEGsS), high frequency recordings of electrical brain activity measured via 20+ electrodes
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placed on a patient’s scalp, collected over hours to days. At 200 Hz, this results in billions
of data points that must be manually inspected and evaluated by neurologists.

In fact, neurologists go through additional multi-year fellowship training in the reading
of EEGs to properly evaluate these signals. Even with the additional training, it takes
EEG neurologists two to three hours to evaluate just a single patient’s daily EEG records,
creating a significant bottleneck in the diagnosis and treatment of patients.

Clinical Relevance Automated systems for detecting seizures and analyzing EEG signals
could help significantly alleviate this bottleneck. A sufficiently accurate seizure detection
system could aid providers in several ways: by screening and potentially characterizing
EEGs that are likely to contain seizures, by integrating into an assisted reading tool for
clinicians, or by performing real-time seizure detection in settings such as the intensive care
unit (ICU) where an EEG expert is usually not available.

Much effort has gone into the development of seizure detection algorithms in the past
decade (Ahammad et al., 2014; Fiirbass et al., 2015; Golmohammadi et al., 2017b,a; Shoeb
and Guttag, 2010; Thodoroff et al., 2016; Williamson et al., 2012). Traditional approaches
leverage signal processing techniques in combination with hand-engineered features such as
entropy, Fourier transform coefficients, and wavelets (Ahammad et al., 2014; Fiirbass et al.,
2015; Shoeb and Guttag, 2010; Williamson et al., 2012; Wilson et al., 2004). Deep learning
represents a promising alternative to traditional approaches because it removes the need
for hand-crafted features, and offers the potential to perform better by learning from larger
datasets.

However, one aspect of EEGs that makes them difficult to analyze with deep learning
is the structure of leads placed on a patient’s scalp; this property is not straightforward
to leverage with common model architectures. EEGs are an example of a structural time
series (Figure 1), which have the form (X, A) where X € RT*P*¢ contains c-dimensional
observations across T time steps for p sequences, and A € {0, 1}P*P represents the graph
topology of the p sequences. (In the remainder of the paper, we refer to the different
time series, which are nodes in the graph, as either nodes or sequences.) Structural time
series arise in numerous applications besides EEG, including economics, traffic analysis,
and human kinematics. The structural information represented by A is a form of prior
knowledge, and an ideal model would leverage this information to learn more efficiently and
generalize better. Few deep learning models can do so, and this provides the motivation for
our work.

Convolutional models have been very successful on a variety of time series tasks (Bai
et al., 2018; Oord et al., 2016; Wang et al., 2017). One particularly successful model type is
the temporal convolutional neural network (TCNN) (Lea et al., 2017). This model applies
1D convolutions at each layer, similarly to how standard 2D CNNs process image data,
and is sometimes augmented with residual connections and dilated convolutions. Recent
studies have shown that this straightforward model architecture is highly effective on a wide
variety of time series classification tasks (Wang et al., 2017), and that it is competitive with
recurrent neural networks (RNNs) even on tasks where an unbounded receptive field was
thought to be crucial (Bai et al., 2018). However, as we explain concretely in the related
work section, TCNN is not designed to leverage structure.
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Figure 1: Structural time series. A: Example of a structural time series with p = 6 se-
quences. Solid lines depict graph structure, dashed lines indicate temporal ad-
jacency. B: Depiction of the receptive field of a feature extraction operation in
TGCN. TGCN applies operations that are spatially and temporally localized. In
this case, the top node’s neighborhood is being processed. C: Graph topology of
the p = 21 EEG leads in our dataset.

Technical Significance In this work we propose the temporal graph convolutional net-
work (TGCN), a deep learning model that leverages spatial information in structural time
series. In order to properly utilize the graph topology of structural time series, TGCN
applies feature extractors that are localized and shared over both the temporal and spatial
dimensions of the input (Figure 1B). TGCNs thus have a built-in invariance to when and
where patterns occur, which is a useful inductive bias for applications where similar features
are discriminative when observed in different sequences. We show that the ability of this
architecture to leverage spatial information leads to performance on par with other state
of-the-art models. Additionally, we investigate methods for explaining TGCN predictions;
in particular, we use the properties of TGCN to produce rich visualizations that shed light
on when precisely, and where in the brain seizures occur.

2. Temporal graph convolutional networks
2.1. The TGCN model

TGCN is a model that takes structural time series as input. A structural time series is
represented as (X, A) where X € RT*PX¢ is a multivariate time series (7" is the number of
time steps, p is the number of sequences, and ¢ is the number of channels), and A € {0, 1}*P
is an adjacency matrix. A can be symmetric for undirected graphs, or asymmetric for
directed graphs, and has 1’s on its diagonal.

At layer [ of the model, TGCN computes a hidden representation h! € RT>pxe ip a
hierarchical manner by the composition of multiple spatio-temporal convolutional (STC)
layers, which are described below. Hidden representations contain features for each of the
input sequences, so that the graph topology of the input is maintained at each layer. After
several STC layers, the model can produce node-level predictions by outputting h’, the
representation at the final layer. Alternatively, it can produce single outputs (scalar or
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vector) by aggregating information over h” through a combination of a spatial aggregation
operation (e.g., mean, max) and additional fully connected layers.

The main innovation of TGCN is that it uses feature extraction operations that are
shared over both time and space. The motivation for this design is to reduce the number
of parameters, prevent overfitting, make gradient-based learning easier, and enforce useful
invariances. It should be noted that localized and shared feature extraction was at the core
of CNNs when they were developed for computer vision (LeCun et al., 1999). Replicating
the behavior of standard 2D CNNs on lattice-like graphs (i.e., images) is difficult in the
context of structural time series because of the arbitrary graph topology. In this respect,
TGCN is unique among time series models (Figure 2).

2.2. Spatio-temporal convolutional layers

STC layers perform localized feature extraction that is shared over both the temporal and
spatial dimensions of the input. This is an analogue of 2D convolutions over lattice-like
graphs, but for structural time series. The key challenge for designing such operations
is the different number of neighbors at each node, due to the arbitrary graph topology
of structural time series. Graph neural networks (GNNs) manage a similar obstacle by
using neighborhood aggregation schemes (Kipf and Welling, 2016; Hamilton et al., 2017;
Xu et al., 2018), i.e., by operating on each node independently and then aggregating the
results across each node’s neighborhood. Similarly, STC layers operate on each sequence
independently, and then aggregate the results across neighboring sequences. As a result,
they simultaneously process information spatially and temporally.

We now describe the operation that is performed in each STC layer. The notation
below assumes that the input to layer I is h!=! € RTZ_Iprcl_l, where T'! is the number
of time points at the previous layer, and hé_l € RT™'*¢™" represents the hidden features
associated with sequence 7. We consider two propagation rules for STC layers, and in our
experiments investigate which is most effective.

Both rules begin by applying a 1D convolution (denoted by *) with filter Wilm to each
sequence of hidden features hé_l, resulting in an intermediate set of features denoted by
al. Note that filter W/ , is shared across all sequences in the layer I. The two rules
differ in how they handle the aggregation of features from a node and its neighbors. Rule
A aggregates features from the node’s neighborhood, including the node itself, and then
applies a nonlinearity g. The aggregation operation (e.g., mean, max) is performed along
the spatial dimension, so that the temporal and channel dimensions are retained. Rule B
first aggregates features across a node’s neighbors, and then combines these features with
the node’s own features by concatenating them and passing them through an additional
nonlinear operation, parameterized by Wéomb. This prevents the node’s feature from being
“diluted” by the features from its neighboring nodes. Note that the distinction between
these two propagation rules is similar to the distinction between rules proposed for graph
convolutional network (GCN) (Kipf and Welling, 2016) and GraphSage (Hamilton et al.,
2017).

The two rules for computing features for node i at layer [ are:
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Rule A (1)
ab =W/ ;¥ hifl

! = AGGREGATE({d/, for j in N(i)})
hi = g(2)

Rule B (2)

L= Wilnt * hé_l
| = AGGREGATE({d}, for j in N (i) \ i})

7

h’i = 92( Wéomb * 91([257 a'lz]) )

The neighborhood of node i is defined as N (i) = {j s.t. A;; = 1}, i.e., it is the set of
nodes that have an edge to i. The only parameter for rule A is the convolutional kernel

wl, e R!'*¢'*¢™" ' The two parameters for rule B are W/ . and the second convolutional

in nt’
kernel Wéomb € Rt2**(2x¢) Ty ryle A the hyperparameters are the choice of nonlinearity
g, the temporal kernel size !, and the number of channels ¢!. Rule B has the additional
hyperparameter tlz, which could simply be set to 1 or ¢, as well as the possibility of a second
nonlinearity. For the two rules, note that filters are shared both spatially and temporally.
The adjacency matrix of the sequences is used when we aggregate features across N (i).
An interesting property of STC layers is the independence between the number of parame-
ters and the input adjacency matrix A, which allows a TGCN model to accept inputs with
arbitrary graph topologies. This property is critical for the investigation in section 5 of

dropping leads to interpret model predictions.

2.3. k-step reachable spatio-temporal convolutional layers

The STC layer proposed above aggregates information from nodes with a direct edge to the
node it is operating on. We propose utilizing the concept of k-step reachability matrices to
further incorporate information from nearby nodes that are reachable within k steps. The
k-step reachability matrix A(k) is a binary matrix, which indicates nodes that can reach
one another in at most k steps. To obtain it from A, we use the operation A(k) = 1(AF)
where A* is the adjacency matrix raised to the kth power, 1(-) is an element-wise indicator
function, and A(0) = I. Setting k > 1 enables information to spread through the graph
using fewer layers; setting k& = 0 creates an STC layer that operates on each sequence
separately. We incorporate k as an additional hyperparameter for each STC layer. To
reflect this in the STC propagation rules described above, N (i) should be replaced by

Ni(i) = {j st A(k); = 1}.
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Figure 2: Comparison of localized and shared feature extraction operations across different
models. Example inputs are shown for each model type. Receptive fields for
one or more feature extraction operations are depicted as bounding boxes, where
different colors indicate different sets of parameters. Dark colored nodes are those
whose neighborhoods are being processed. A: CNN has feature extractors that
are localized and shared over both spatial dimensions. B: GCN operates on
arbitrary graphs and has localized and shared feature extractors. C: TCNN has
feature extractors that are localized and shared over time, but are not spatially
localized. D: 2D TCNN has feature extractors that are localized and shared over
time. They are also localized and shared over space, but spatial information is
lost when nodes are put into a single ordering. E: SCNN has feature extractors
that are localized and shared over time, but not shared spatially. F: TGCN has
feature extractors that are localized and shared over both time and space.

2.4. Pooling layers

For TGCN, we also explore the possibility of using pooling (max or mean) along the tempo-
ral dimension. This enables the model to leverage information across a wider time window
without substantially increasing the number of layers. Like standard CNNs for computer
vision, TGCNs can have alternating STC layers and pooling layers.

3. Prior work

3.1. Related models

In this section, we discuss convolutional models for time series and neural network models
for graph data, because both have strong connections with TGCN. We also highlight how
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each model type leverages structural information, because it is challenging to utilize for non
lattice-like graphs.

The most generic convolutional model for time series, the temporal convolutional neural
network (TCNN), applies 1D convolutions over the temporal dimension at each layer (Lea
et al., 2017). In doing so it combines information from all sequences in the first hidden
layer without explicitly modeling the interactions between sequences. An extension that
incorporates spatial information into TCNN is to apply 2D convolutions to subsets of neigh-
boring sequences (Golmohammadi et al., 2017b). We term this model 2D TCNN, as it is
architecturally similar to a TCNN but with 2D convolutions; it effectively approximates the
true graph structure by placing nodes in a single ordering, possibly with repetitions. The
structural convolutional neural network (SCNN) was proposed specifically to leverage struc-
tural information in time series (Teh et al., 2018). It performs spatially localized feature
extraction by learning a separate set of filters for operating on each node’s neighborhood.

GNNs (Kipf and Welling, 2016; Hamilton et al., 2017; Xu et al., 2018) have important
connections with TGCNs. GNNs operate on data where each input example is an arbitrarily
structured graph, and each node has a vector of features. GNNs use neighborhood aggre-
gation schemes to gradually integrate information from nearby nodes, and thereby learn
node representations on arbitrary graph data. Many GNN variants, such as GCNs (Kipf
and Welling, 2016) and GraphSage (Hamilton et al., 2017), involve an aggregation step fol-
lowed by a combination step: in each layer an operation is performed independently on each
node, the results are aggregated across nodes’ neighborhoods, and the aggregated features
are then combined with the node’s own features. TGCN requires a similar neighborhood
aggregation scheme to handle the adjacency information in structural time series.

Figure 2 provides graphical depictions of the models discussed above. The primary
differences across the models are the input data structure and the degree of localized and
shared feature extraction. Through this comparison, we show that TGCN is unique in its
ability to perform localized and shared feature extraction for structural time series, making
it an analogue to CNNs for lattice-like graphs and GNNs for arbitrary graphs.

Related ideas appear in independent works outside the domain of seizure detection. To
address the problem of properly leveraging spatio-temporal structure, several recent works
have developed different mechanisms to combine aspects of temporal models (CNNs and
RNNs) and GNNs for problems in traffic forecasting (Yu et al., 2017; Zhao et al., 2018) and
action recognition (Yan et al., 2018; Li et al., 2018).

3.2. Automatic seizure detection

Many researchers have developed seizure detection algorithms in the last decade (Ahammad
et al., 2014; Fiirbass et al., 2015; Golmohammadi et al., 2017b,a; Shoeb and Guttag, 2010;
Thodoroff et al., 2016; Williamson et al., 2012). The task has typically been tackled as a
per-epoch classification problem. Epochs in the literature range from sub-second to tens
of seconds, and features (e.g., entropy, Fourier transform coefficients, wavelets, learned
features, etc.) are computed from either the current epoch or neighboring epochs, and are
used to classify the particular epoch of interest as seizure or non-seizure. The most accurate
algorithms in the literature use traditional feature extraction and leverage patient-adaptive
techniques, e.g., using patient-specific thresholds (Fiirbass et al., 2015; Shoeb and Guttag,
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2010). Our work, like several other prominent studies, addresses the problem of cross-
patient seizure detection (Golmohammadi et al., 2017b,a; Thodoroff et al., 2016; Wilson
et al., 2004).

Modern deep learning approaches have also been explored for automatic seizure de-
tection, and typically make efforts to utilize the structural information of EEGs (Golmo-
hammadi et al., 2017b,a; Thodoroff et al., 2016). EEG montaging is a technique used by
clinicians, which involves analyzing logical configurations of the EEG leads to aid localiza-
tion and lateralization of EEG activities; some studies have therefore preprocessed the data
by taking the difference between neighboring pairs of leads (Shoeb and Guttag, 2010). How-
ever, all leads have multiple neighbors, so there are numerous montages to choose from, and
each one captures spatial information imperfectly. One study integrated CNNs and RNNs
in a model that used 2D convolutions to capture spatial and temporal information simul-
taneously, an idea that we refer to above as 2D TCNN (Golmohammadi et al., 2017b).
Another study pre-processed data to create an image-like representation of EEGs, thereby
overcoming the complex graph structures of the EEG leads and enabling the use of standard
2D CNNs (Thodoroff et al., 2016); the image-like representation of EEGs was generated by
interpolating a 16 x 16 image of the measurement from each lead.

Table 1: Dataset summary.

Number of patients Total hours Number of seizures

Training 995 14,741 18,436
Tuning 30 2,831 134
Test 38 4,083 171
Total 1,063 21,655 18,741

4. Experiments
4.1. Data collection

Scalp EEG data for this study was acquired from patients who underwent epilepsy diagnosis
at the adult epilepsy monitoring unit (EMU) of the Cleveland Clinic Foundation between
2005 and 2017. EEG data was collected using standard 10-20 montage, with 21 total leads
(see Appendix for the list of leads) sampled at 200 Hz. Clipped EEG data consisting of
baseline and seizure segments were acquired from 656 patients. Long-term and continuous
EEG data spanning the entire duration of EMU stay (weeks of recordings) was acquired
from 398 patients. Temporal location of epileptic events such as seizures and interictal
abnormalities were marked by a trained epileptologist. IRB approval was obtained prior to
study initiation.

While both clipped and long-term EEG data was used for training the algorithm, only
long-term EEG data was used for testing. Table 1 summarizes the contents of our dataset.
A total of 995 patients were used for training the models, where clipped data came from
613 patients and continuous data came from 382 patients. The models were tested on long-
term EEG data from a hold-out test set of 38 patients. In total, we used approximately
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15,000 hours of data for training and 4,000 hours for testing. Hyperparameter tuning was
performed on an independent tuning dataset of 30 patients with a total of 2,800 hours.
There is no patient overlap across the training, tuning, and test datasets. Due to the low
number of seizure events (positives), we subsampled the training dataset by filtering out
90% of the negative examples.

4.2. Data pre-processing

In order to have uniformly sized inputs for our models, sessions were split into 96 second
epochs. The per-epoch classification approach is common, but this window duration is
relatively long. Our choice of 96 second windows was motivated by the fact that the
average seizure length is around 50 seconds; in a clinical setting such a system could be
run every couple seconds, and the slightly longer history should be beneficial to the model.
Each epoch’s label was determined using clinician annotations, with positive examples being
those epochs in which a seizure begins. This prediction target was chosen because clinicians
are primarily interested in being notified when a seizure starts.

As a pre-processing step for the model, the EEG samples of size 19,200 x 21 were
transformed into the frequency domain using the short time Fourier transform (STFT)
with windows of size 64 and with overlap 32. Frequency transformations like STFT are
common for high-frequency time series, in the domain of EEGs (Ahammad et al., 2014;
Fiirbass et al., 2015; Shoeb and Guttag, 2010; Williamson et al., 2012) and also others such
as speech processing. Epileptologists analyze EEGs through their frequency information
because seizures are known to involve electrical activity in a particular frequency band, so
we expect the STFT to extract informative features. After performing the STFT, we retain
the log magnitudes and omit the phase information, resulting in a tensor of size 599 x 21 x 33.

4.3. Architecture exploration

In order to understand the role of the various hyperparameters involved in a TGCN’s archi-
tecture, we compare five different configurations (Table 2). There is a large hyperparameter
search space, but these configurations give a sense of the importance of some hyperparam-
eter choices.

Each model has four blocks that consist of one or more STC layers, and are followed by a
pooling layer. Nonlinearities are preceded by batch normalization (Ioffe and Szegedy, 2015),
and the two fully connected layers use dropout (Srivastava et al., 2014) with probability 0.2.
We train the models using cross-entropy loss, stochastic gradient descent with momentum,
and decay the learning rate after every 100 gradient steps. We use the ReLLU nonlinearity in
all models. We explore each configuration with both propagation rules (A and B) described
in section 2.2. For both rules we aggregate features across node’s neighborhoods using the
max operation, and for rule B we set t, = 1 in all STC layers.

When characterizing model performance, we are motivated by the use case of an alarm
system, where clinicians are notified when a patient has a seizure. We collect five metrics:
area under the receiver operating curve (AU-ROC), area under the precision-recall curve
(AU-PR), F1, sensitivity at 97% specificity, and sensitivity at 99% specificity. The first
three metrics are standard for measuring performance in classification tasks, but for an
alarm system in a clinical setting, the last two metrics are most relevant: a low false alarm
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Table 2: TGCN architecture configurations. Models with each of the following architec-
tures are trained and compared to one another. Convolutions are performed with
padding to retain the size along temporal dimension. STC k-t-¢ denotes an STC
layer with spatial kernel size k, temporal kernel size ¢, and ¢ channels.

TGCN Architectures
I \ 11 \ 1T \ v \ \
Raw input Raw EEG (19,200 x 21)
Pre-processing STFT (599 x 21 x 33)
STC 0-3-32
STC 1:3:32 | -0 1882 1 STCO332 1 g 559
STC 1-3-32 STC 1-3-32 | STC 1-3-32
Block 1 STC 1-3-32 STC 1.3.32 | STC 1.3.32 STC 1-3-32
STC 1-3-32
max pooling along temporal dimension (300 x 21 x 32)
STC 0-3-64
STC 1364 | oo 1804 1 STOOS0 | gr 564
STC 1-3-64 STC 1-3-64 | STC 1-3-64
Block 2 STC 1-3-64 STC 1.3.64 | STC 1-3-64 STC 1-3-64
e - STC 1-3-64
max pooling along temporal dimension (150 x 21 x 64)
STC 0-3-128
STC 1-3-128 | D10 13128 | STC 03128 | gy 3 195
STC 1-3-128 STC 1-3-128 | STC 1-3-128
Block 3 STC 1-3-128 STC 1-3-128 | STC 1.3.198 STC 1-3-128
e - STC 1-3-128
max pooling along temporal dimension (75 x 21 x 128)
STC 0-3-256
STC 1.3.956 STC 1-3-256 | STC 0-3-256 ITC 0.3-256
STC 1-3-256 STC 1-3-256 | STC 1-3-256
Block 4 STC 1-3-256 STC 1-3-256 | STC 1-3-256 STC 1-3-256
e - STC 1-3-256
max pooling along temporal dimension (38 x 21 x 256)
average pooling along spatial dimension (38 x 256)
flatten (9,728 units)
For producing fully connected 512
scalar prediction fully connected 512
fully connected 1
sigmoid

10
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rate is critically important for clinicians to rely on such a tool, because it is infeasible to
respond to a tool that creates too many distracting false alarms.

Each of the models were trained on the training set and evaluated on the tuning set
(Table 1). Due to the time required to train models, only one of each configuration was
trained. The experiment results are summarized in Table 3. The results show that the best
performance is achieved by rule B and configuration II, but that there isn’t a consistent
pattern in one rule outperforming the other, or in additional layers improving accuracy.
This may be due to noisy results arising from our relatively small tuning set. For simplicity,
due to the strong performance of configuration Il and propagation rule B, we use this model
in subsequent experiments.

Table 3: TGCN configurations on the tuning set. The recorded performance is the best
level achieved during training. Results are obtained from single runs. The best
performance according to each metric is bolded.

Config. Rule AU-ROC AU-PR F1 Sens. @ 97% Spec. Sens. @ 99% Spec.

I A 0.965 0.289  0.376 0.842 0.684
B 0.971 0.265  0.351 0.805 0.729
I A 0.966 0.308  0.433 0.835 0.729
B 0.969 0.364 0.450 0.872 0.752
I A 0.970 0.268  0.348 0.827 0.729
B 0.959 0.273  0.358 0.812 0.722
v A 0.967 0.316  0.432 0.842 0.737
B 0.957 0.177  0.265 0.797 0.654
v A 0.960 0.268  0.352 0.820 0.699
B 0.957 0.258  0.348 0.805 0.699

4.4. Comparison with related models

In section 4.3 we experimented with some of the hyperparameters that lead to a TGCN
with strong performance. Here, we put TGCN’s performance in context through compar-
isons with several related models that take different approaches to leveraging structural
information.

TCNN applies convolutions along the temporal dimension, and neglects to utilize struc-
tural information. TCNN with montage is a TCNN that operates on differenced sensor
data instead of raw sensor data (see Appendix for details). 2D TCNN approximates the
graph structure using a single ordering, setting up a list of leads and applying 2D con-
volutions (see Appendix for details), as in (Golmohammadi et al., 2017b). 2D TCNN
with montage is a 2D TCNN that operates on differenced sensor data (see Appendix for
details). SCNN has separate filters for operating on each node’s neighborhood, making it
well suited for structural time series (Teh et al., 2018). In order to have comparable archi-
tectures, these models were trained with four blocks of convolutional layers, using the same

11
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number of channels as the TGCNs in the previous experiments. We performed identical
preprocessing with the STFT, applied similar optimization-related hyperparameters, and
used the tuning set to determine the best number of layers.

Each of the models were trained 10 times, and the best model from each run (chosen
according to the tuning set) was run on the test data. We characterize the performance of
these models by the mean and standard deviation of their performance. Table 4 shows the
results of these experiments. 2D TCNN appears to have the highest mean sensitivity at 99%
specificity, whereas SCNN seems to have the highest mean sensitivity at 97% specificity.
TGCN’s mean performance is roughly in the middle for AU-ROC and sensitivity at 99%
specificity, but on the lower end for sensitivity at 97% specificity. However, there is relatively
high variance between runs, so that when taking the standard deviations into account, the
models appear to perform quite similarly.

There are several possible methods for improving the performance of TGCN (as well as
the baseline models) that we did not explore. For simplicity, we did not explore integrating
RNNs, adding residual connections, or using other techniques for managing the large class
imbalance. We also emphasize that it is not possible to draw a direct comparison between
these performance metrics and those presented in other studies, because of the strong de-
pendence on the cohort in the test set. However, since the primary goal was to observe the
relative difference in performance between TGCN and other models, these factors should
not alter our conclusions.

Table 4: Comparison of TGCN with baseline models. Each entry shows the mean and
standard deviation across 10 runs.

AU-ROC Sens. @ 97% Spec. Sens. @ 99% Spec.

TCNN 0.926 £ 0.019 0.648 + 0.042 0.466 £ 0.034
TCNN montage 0.935 £ 0.006 0.645 £ 0.059 0.455 £ 0.054
2D TCNN 0.927 £ 0.011 0.645 + 0.033 0.485 £ 0.042
2D TCNN montage 0.917 4+ 0.026 0.653 £ 0.089 0.470 £0.074
SCNN 0.931 £ 0.031 0.669 £ 0.061 0.460 £ 0.039
TGCN 0.928 £ 0.008 0.635 £ 0.022 0.467 £ 0.038

5. Model explainability

Analyzing EEG is a time-consuming task that can only be performed by expert readers.
The classification models developed in the previous section provide a way of accelerating
this process by identifying 96 second windows when seizures likely occurred. However,
an important obstacle to the adoption of deep learning in healthcare applications is the
lack of transparency into how models make decisions. Techniques for explaining model
predictions can be useful to help establish trust with clinicians, to better understand the
model’s shortcomings, and even for generating new clinical insights (Ting et al., 2017).

In this section we explore two explainability approaches for TGCN, and demonstrate
that we can extract rich contextual information from the windows when seizures occurred.
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Specifically, we can help clinicians determine when precisely the seizure occurred, and the
part of the brain that was most involved. To demonstrate this approach, we show exam-
ples where we ask an epileptologist to look at the same EEGs that were analyzed by the
algorithm, and give their clinical diagnosis.

The dominant paradigm for interpreting deep learning models is input attribution, which
explains a prediction by assigning an importance level to each of the input features. Gradi-
ent backpropagation-based methods are most common (Smilkov et al., 2017; Sundararajan
et al., 2017; Simonyan et al., 2013), and they are applicable here because TGCNs are fully
differentiable, and the STFT operation is differentiable as well. We calculate gradients of
the model logit with respect to the raw waveforms, and average the gradients across five
models; we find that this leads to better visualizations than a single model, because single
models tend to highlight only a subset of salient parts of the input. Since the sign of the
gradient is of no importance, we take the absolute value after averaging.

Fpl-F7 AW
F7-T7 N AANVVANANAAA vy
T7-P7 - MY

P7-01 = v
Fpl-F3 v

F3-C3 == MWNNANANA A
C3-P3 ~ AAPANAA

P3-01

Fz-Cz = A

Cz-Pz o A~
Fp2-F4

F4-C4

C4-P4

P4-02

Fp2-F8

F8-T8

T8-P8

P8-02

Time

Figure 3: EEG attribution overlay plot. The EEG sample is visualized using the 10-20
montage, and with the waveform intensity proportional to the attribution score.

Figure 3 shows an EEG sample with the attribution scores overlaid. It depicts a 96
second window where a seizure occurred, and the intensity of the waveforms indicates which
parts of the EEG were most influential on the model’s prediction. The EEGs are visualized
using the 10-20 montage, so we also add the attribution scores for pairs of leads that are
differenced.

A clinician who evaluated this seizure noted that the patient was initially asleep, until
higher frequency EEG and muscle artifacts from patient arousal occurred at around 40-45
seconds into the sample. The high frequencies are most prominent in the left part of the
brain, and evolve into high amplitude sharp waves; they are present primarily in the Fpl, F7
and F3 leads, and proceed for the remainder of the sample. The visualization corroborates
this description, especially through its emphasis on the activity beginning at 40 seconds,

13



TEMPORAL GRAPH CONVOLUTIONAL NETWORKS

and the subsequent emphasis on high frequency activity in the left part of the brain (the
top half of Figure 3).

Our second approach for interpreting TGCNs relies on their capacity to accept inputs
with different graph topologies. We investigate whether it is possible to perform spatial lo-
calization of seizures in the brain by ignoring sets of leads, and observing how their omission
impacts the model’s prediction. We call this method sequence dropout. Two methods for
performing sequence dropout are ignoring one lead at a time, and simultaneously ignoring
multiple leads from one part of the brain. Sequence dropout is similar to the model-agnostic
technique of input occlusion (Zeiler and Fergus, 2014), except that examples modified by ze-
roing leads entirely are less likely to resemble realistic EEG samples. The ability to use this
method is an advantage for TGCN, arising from its unique method of processing structural
time series.

Sequence dropout is likely to provide the most insight for focal seizures, i.e., those that
are confined to a small region of the brain. Figure 4 shows an example of sequence dropout
applied to a focal seizure. In our visualization, the intensity at each location is determined
by the reduction in the model’s logit when the corresponding lead or set of leads is omitted
from the input. (For the particular sets of leads that were used in Figure 4B, see the
Appendix.) As with the above method, we run sequence dropout using an ensemble of
models.

A clinician who analyzed the seizure depicted in Figure 4 noted that it occurred over
the right part of the brain, and is particularly visible in the leads F8, F4, and T8. The
visualization in Figure 4A clearly places emphasis on the leads in the right temporal part
of the brain, especially F8, T8 and FT10, corroborating the clinician’s description. Figure
4B also gives high attribution to the right side of the brain, primarily in the right temporal
region, but also to some extent in the right frontal region.

Both of the model explainability techniques reveal rich information that was not avail-
able during training. Model inputs that were 96 seconds in length were marked as positive
or negative, but the model was never given precise timing or localization of seizures. These
model attribution techniques enable finer temporal and spatial localization of seizures, which
can be regarded as semi-supervised learning tasks.

Due to the difficulty of these problems, both techniques have shortcomings. The gradient-
based method is limited by the fact that it does not highlight all salient information in the
input; since the score is based on relative gradient magnitudes, some parts of the input that
contain evidence for a seizure may nonetheless receive low attribution. For the sequence
dropout method, even when leads that are most involved in a seizure are ignored, activity
in the other leads (e.g., muscle artifact that is characteristic of a seizure) can be strongly
indicative that a seizure is occurring. Furthermore, both attribution approaches confront
the obstacle that it is fundamentally unclear how to ascribe importance to different parts
of an EEG sample.

6. Conclusion

In this paper we proposed the temporal graph convolutional network (TGCN), a deep
learning model for structural time series. Unlike other approaches for analyzing time series
data, TGCN applies feature extraction operations that are shared over both time and space.
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Figure 4: Seizure localization with sequence dropout. The intensity shown is determined
by the reduction in the model’s prediction when the corresponding leads were ig-
nored. A: Dropping one lead at a time. B: Dropping sets of leads that correspond
to different regions of the brain.

Localized and shared feature extraction enforces a useful invariance for certain applications,
and provides a useful inductive bias for our task of automatic seizure detection from EEGs.
In our experiments, we showed that deep learning models can achieve strong performance in
automated seizure detection, and that TGCN’s performance matches that of several related
models.

Our attribution visualizations provide novel approaches to better understand how deep
learning models perform seizure detection on EEG data. They shed light on the “black
box” that is a deep learning model, suggesting that our models focus on similar features
of EEGs as clinicians do. Deep learning-based seizure detection algorithms, along with
the model explainability techniques that we presented, could significantly aid clinicians
in accelerating the labor-intensive and time-consuming process of interpreting EEGs and
diagnosing epilepsy.

The methods developed in this work could also be applied to other structural time series
data. TGCN unites ideas from graph neural networks (GNNs) and convolutional models
for time series, making it well suited for graph-structured time series. These types of time
series data exist elsewhere in medicine, e.g., in multi-lead electrical signals from the heart
such as EKGs, sleep study data such as PSGs, and pressure waveforms from intrathoracic
catheters.

TGCN is particularly promising for problems where multiple datasets with similar but
not identical configurations needs to be pooled, such as if one wants to train a model using
a pooled dataset from hospitals that used different lead setups in EEG sessions. It may also
prove to be less prone to overfitting when applied to smaller datasets, where memorization
of the training set is a larger concern.
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Appendix

Table 5: List of EEG leads analyzed.

Leads analyzed Inputs for TCNN Input ordering for Input ordering for 2D

with montage 2D TCNN TCNN with montage
C3 Fpl - F7 Fpl Fpl - F7
C4 F7-T7 F7 F7-T7
Cz T7 - P7 T7 T7-P7
F3 P7-01 pP7 P7-01
F4 01
F7 Fpl-F3 Fpl-F3
F8 F3-C3 Fpl F3-C3
Fz C3-P3 F3 C3-P3
FT9 P3-01 C3 P3-01
FT10 P3
Fpl Fz - Cz 01 Fz - Cz
Fp2 Cz - Pz Cz - Pz
01 Fz
02 Fp2 - F4 Cz Fp2-F4
P3 F4-C4 Pz F4-C4
P4 C4-P4 C4-P4
P7 P4-02 Fp2 P4-02
P8 F4
Pz Fp2 - F8 T4 Fp2 - F8
T7 F8- T8 P4 F8- T8
T8 T8 - P8 02 T8 - P8
P8 - 02 P8 - 02
Fp2
FT9 - F7 F8 FT9 - F7
FT10 - F8 T8 FT10 - F8
P8
02
FT9
F7
FT10
F8
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Table 6: Lead groups for brain regions. The groups were used for generating Figure 4B
from the sequence dropout experiment.

Region Leads Included

Left frontal Fpl, F3, Fz
Right frontal Fp2, F4, Fz
Left temporal F7, T7, FT9

Right temporal F8, T8, FT10

Left parietal P7, P3
Right parietal P8, P4
Left occipital o1, P7
Right occipital 02, P8
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