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Abstract

Achilles Tendon Rupture (ATR) is one of the typical soft tissue injuries. Rehabilitation
after such a musculoskeletal injury remains a prolonged process with a very variable out-
come. Accurately predicting rehabilitation outcome is crucial for treatment decision sup-
port. However, it is challenging to train an automatic method for predicting the ATR
rehabilitation outcome from treatment data, due to a massive amount of missing entries
in the data recorded from ATR patients, as well as complex nonlinear relations between
measurements and outcomes. In this work, we design an end-to-end probabilistic frame-
work to impute missing data entries and predict rehabilitation outcomes simultaneously.
We evaluate our model on a real-life ATR clinical cohort, comparing with various baselines.
The proposed method demonstrates its clear superiority over traditional methods which
typically perform imputation and prediction in two separate stages.

1. Introduction

Soft tissue injuries, such as Achilles Tendon Rupture (ATR), are increasing in recent decades
(Huttunen et al., 2014). Such injuries require lengthy healing processes with abundant com-
plications, which can cause severe incapacity in individuals. Influences of various factors
such as patient demographics and di↵erent treatment methods are not clear for the re-
habilitation outcome due to large variations in symptoms and the long healing process.
Additionally, many medical examinations are not carried out for a large portion of patients
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since they can be costly and/or painful. Thus, accurately predicting the ATR rehabilitation
outcome at di↵erent stages using existing measurements is highly interesting, and can be
used for decision support for practitioners. Moreover, ATR is one example of a wider class
of medical conditions. In these situations, patients first need acute treatments, then go
through a long-term and uncertain rehabilitation process (Horstmann et al., 2012). Deci-
sion support tools for practitioners are in general of great need, and outcome prediction
plays an important role in the medical decision-making.

Predicting ATR rehabilitation outcomes is extremely challenging for both medical ex-
perts and machines. This is mainly due to large number of noisy or absent measurements
from various medical instruments. Medical tests and outcome scores for ATR involve a large
variety of metrics. The total number of those metrics is on the magnitude of hundreds. How-
ever, only a subset of all possible medical measurements are used for a patient. Thus, the
observations are very sparse. In this work, we use an ATR cohort which is collected from
multiple hospitals in the past five years. The sparsity of this cohort is the consequence of
several phenomena: firstly, they are aggregated from di↵erent studies realized by di↵erent
clinicians who have di↵erent procedures; secondly, some measurements can be painful, costly
or time-consuming such that not all patients are willing to take them. Such phenomena are
common in many medical cohorts. Moreover, among those measurements, many are noisy
and establish highly non-linear relationship to the rehabilitation outcome, which makes the
outcome prediction task di�cult.

Leveraging data-driven approaches, we design machine learning models to predict po-
tential ATR rehabilitation outcomes with sparse and noisy data for patients, and provide
decision support for practitioners. In particular, we develop a probabilistic model to address
two problems at once: imputing the missing values of the costly medical measurements for
patients, and predicting patients’ final rehabilitation outcome. We focus on predicting the
ATR rehabilitation outcome, while our framework can be further applied to a wider domain
of conditions beyond ATR.

Technical significance. We propose a novel probabilistic framework where probabilistic
matrix factorization is combined with a Bayesian Neural Network (BNN) for rehabilitation
outcome prediction with the noisy and sparse dataset. Our method shows clear improvement
for this task comparing to traditional methods. For outcome prediction with such a cohort,
traditional methods commonly need two stages: Firstly, missing values are imputed using
methods such as mean-imputing or zero-imputing; secondly, a linear model is used to predict
the outcome with the imputed data (Arverud et al., 2016; Bostick et al., 2010). These
methods commonly lead to a low prediction quality because of the low imputation quality
and the linear relationship assumption between measurements and outcomes.

Our framework simultaneously imputes the missing values and predicts the rehabilita-
tion outcomes. We first adopt a probabilistic latent variable model to predict the missing
entries in the hospital stay measurements. Prediction based methods, such as using la-
tent variable models, in general, demonstrate superior performance for data imputation
compared to traditional methods such as mean imputation (Sche↵er, 2002; Buuren and
Groothuis-Oudshoorn, 2010; Keshavan et al., 2010; Ma et al., 2018). These latent variables
summarize patients’ underlying health situation in a low-dimensional space and impute the
missing entries based on the patient status. We then combine the latent variable imputation
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model with BNN to predict ATR rehabilitation outcomes as one integrated probabilistic
model. BNN is highly flexible, thus can handle non-linear relationships between rehabilita-
tion outcomes and measurements. Moreover, our model is fully probabilistic, thus provides
uncertainty estimation of the prediction results. In an end-to-end manner, our framework
provides significant improvement in the clinical standard.

Clinical relevance. ATR rehabilitation is a prolonged process with unpredictable vari-
ation in the individual long-term outcome. The optimal and individualized rehabilitation
protocol is unknown and therefore inappropriate treatments may often be provided leading
to worse outcome for the patient and increased cost for society. In this case, prediction of
ATR rehabilitation outcome can shorten the healing process by helping clinicians to choose
e↵ective treatments based on varying patient characteristics.

There is a large number of ATR treatments and rehabilitation protocols and also assess-
ments made on the patients. Choosing suitable treatments for patients is still challenging.
Moreover, di↵erent measurements may vary in price and time to perform. Given imputed
values for measurements and the predicted values for outcomes with calibrated uncertainty
using our method, the clinicians can make decisions on the patient treatment and moni-
toring more easily. For example, if the model predicts an unobserved measurement value
with high confidence and the predicted value is in a clinical normal range, the clinician does
not need to measure this value anymore. Thus, time and cost are saved by not perform-
ing unnecessary medical assessments. Otherwise, if the prediction indicates any abnormal
situation or high uncertainty for an important measurement, it is worthwhile to apply this
medical instrument and obtain the measurement value for this patient. The predicted out-
come also helps the clinician to better estimate the patient status in general and aids the
treatment decisions.

The paper is structured as follows: We discuss related work (Section 2) and describe
the ATR cohort (Section 3). We then introduce the proposed model (Section 4). Finally we
evaluate our proposed method against multiple baselines. The experimental results demon-
strate clear improvement for ATR rehabilitation outcome prediction using our proposed
model (Section 5).

2. Related Work

Our work focuses on utilizing machine learning methods for ATR rehabilitation outcome
prediction. We use a latent variable model based on probabilistic matrix factorization to
address the missing entry problem, and then use the estimated patient state to predict the
rehabilitation outcome through BNN. There is very limited work on using machine learning
to address the ATR outcome prediction. We revisit the related work in the following three
aspects: ATR analysis, AI in a generic health-care setting and missing value imputation,
which is a key component for this type of applications.

Achilles tendon rupture analysis. Numerous studies have been carried out on under-
standing the treatment and rehabilitation of ATR due to its importance in health-care.
However, most studies are performed with a clinical approach, and use traditional statis-
tic analysis, typically linear regression. Machine learning based approaches have not been
widely adopted in the field of ATR research. As such, tools for rehabilitation outcome pre-
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diction using machine learning are of great interest. Here, we briefly review some related
work on ATR.

Olsson et al. (2014) employ linear regression to predict the rehabilitation outcome using
variables such as age, sex, body mass index (BMI) or physical activity. The result shows that
using traditional statistical models such as linear regression yields a limited prediction ability
despite having a wide range of clinically relevant variables. A more recent study shows
that assessing clinical markers of tendon callus production (procollagen type I N-terminal
propeptide (PINP) and type III N-terminal propeptide (PIIINP)) shortly after operation
can help improve the prediction of long-term patient-reported outcomes applying multiple
linear regression on Achilles Tendon Total Rupture Score (ATRS) one year post-injury (Alim
et al., 2016). Additionally, microcirculation in the tendon was also shown to be a strong
predictor of the patient outcome after ATR (Praxitelous et al., 2017). Although insightful,
this research also shows that some accurate measurements, such as microcirculation, can
be expensive or di�cult to obtain. Therefore, utilizing a large range of cost-e�cient data
to predict the rehabilitation outcome is desirable.

AI in health-care. There is a broad spectrum of machine learning methods used for
generic medical applications. When dealing with large amounts of data, deep learning
algorithms show promising results. For example, long short-term memory networks (LSTM)
and convolutional neural networks (CNN) has been applied to various clinical tasks such as
mortality prediction in ICU setting where the data are often gathered from sensor readings
(Suresh et al., 2017; Chalapathy et al., 2016; Jo et al., 2017; Purushotham et al., 2017).

However, health-care datasets often have a limited number of patients with large num-
bers of variables from di↵erent instruments. This often leads to datasets with many missing
entries. At the same time, being able to encode existing medical research results in new
models and providing interpretable results are desirable features in many health-care re-
lated applications. In this case, probabilistic models are needed. Depending on the medical
context, di↵erent types of models are used. For example, Lasko (2014) employs Gaussian
processes to predict irregular and discrete medical events. Schulam and Saria (2015) de-
sign a hierarchical latent variable model to predict the trajectory of an individual’s disease.
These models are developed for di↵erent medical contexts and are not directly applicable
to our application setting. In this work, we use ATR as an example and design a model to
predict patients’ rehabilitation outcomes after acute treatments.

Missing value imputation. Most real-life medical cohorts have a large amount of miss-
ing values. Traditional methods such as zero imputation or mean imputation ease the
analysis but may lead to low imputation accuracy. For the datasets with missing values,
matrix factorization based methods are shown to be e↵ective for many missing value impu-
tation applications (Shi et al., 2016; Troyanskaya et al., 2001), and frequently used for other
applications of the matrix completion problem, i.e., collaborative filtering (Ocepek et al.,
2015). Many e�cient algorithms have been proposed, such as Singular Value Thresholding
(SVT) (Cai et al., 2010), Fixed Point Continuation (FPC) (Ma et al., 2011), and Inex-
act Augmented Lagrange Multiplier (IALM) (Lin et al., 2010). Typically, these methods
construct a matrix factorization objective and optimize it using traditional convex optimiza-
tion techniques. Extensions, such as Singular Value Projection (SVP) (Jain et al., 2010)
and OptSpace (Keshavan and Oh, 2009) consider observation noise in the objective. How-
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ever, the sparse dataset can damage the performance of matrix factorization based methods
(Mnih and Salakhutdinov, 2008). In this case, probabilistic matrix factorization (Mnih and
Salakhutdinov, 2008) is an alternative solution for sparse and imbalanced datasets.

In this work, we combine a probabilistic matrix factorization approach similar to that
of Matchbox (Stern et al., 2009), with a supervised learning approach using models such as
Bayesian neural networks (Neal, 2012). Therefore, we can impute missing values based on
latent patient traits with the sparse ATR dataset and predict the rehabilitation outcome in
an end-to-end probabilistic framework.

3. Cohort

In our work, the cohort is a real-life dataset collected from multiple previous studies by an
orthopedic group (Valkering et al., 2017; Domeij-Arverud et al., 2016). A snapshot of the
dataset is shown in Figure 1. There are 442 patients in the dataset (N = 442). The number
of measurements is M = 297, and the number of the outcome scores is S = 63. We denote
the first N ⇥ M part of the dataset as the predictors, P, and the second N ⇥ S part as
the scores, S. The percentage of missing values is 69.5% in the predictors and 64.2% in the
scores.

Length Weight . . . DVT 2 . . . ATRS 12 sti↵
1 190 79.8 . . . ⇥ . . . 8
2 ⇥ 76.5 . . . 0 . . . ⇥
3 ⇥ ⇥ . . . 1 . . . 10
4 178 96.7 . . . 0 . . . ⇥

Figure 1: A snapshot of the Achilles Tendon Rupture (ATR) cohort. Each row represents
a patient’s medical record and each column represents a measurement. In this
example, DVT 2 refers to the presence of deep venous thrombosis after two weeks
and the ATRS 12 sti↵ measurements refer to the Achilles Tendon Rupture Score
(ATRS) metrics of sti↵ness after 12 months. ⇥ indicates the entry is missing.

Problem setting. We review a typical case of patient journey first and then introduce
the problems. ATR patients typically go to hospital to get a treatment immediately after
an injury. There, their demographic data are registered. As part of the treatment process,
they go through a number of tests from various medical instruments. Due to the complexity
of these tests (e.g. in terms of time, cost, pain, invasiveness, accuracy), not all patients go
through the same procedure. This leads to a lot of missing data and a lot of variation in
which measurements are missing. After the treatment, patients are discharged from the
hospital to heal. To monitor the healing process, they are asked to return to the hospital
for rehabilitation examination after 3, 6 and 12 months. Not all tests are applied for all
patients in the study, since not all patients return on time for rehabilitation examination.
Thus, the rehabilitation outcome scores also have a large amount of missing entries.

Based on the patient journey, we split these variables into two categories. The first one
contains patient demographics and measurements realized during their stay at a hospital.
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These measurements include features such as age, BMI, blood tests of various chemicals
related to tendon callus production, whether there was surgical intervention, or information
on post-operative treatment. Variables in this category are referred to as predictors in the
following text. The second category is the scores, and includes all metrics of rehabilitation
outcomes such as ATRS or Foot and Ankle Outcome Score (FAOS). An example snapshot
of the dataset is depicted in Figure 1. In this work, we will impute the predictors and
predict the scores.

4. Methods

We design an end-to-end probabilistic model to simultaneously impute the missing entries in
the predictors and predict the rehabilitation outcomes. The data imputation part is a latent
variable model which can be used separately or be part of the end-to-end model. For the
prediction part, we provide multiple alternatives of modeling choices, including Bayesian
linear regression and Bayesian neural networks, using either the learned latent variables
or the imputed predictors as inputs. In this section, we first introduce the basic data
imputation unit and then introduce our end-to-end model for simultaneous data imputation
and rehabilitation outcome prediction.

4.1. Measurement imputation

We first present the component of the model which aims to recover the missing measure-
ments in the predictors part of the matrix, P 2 RN⇥M . We formulate the missing data
imputation problem into a collaborative filtering problem. Typically, matrix factorization
models are used in collaborative filtering for recommender systems. They work by de-
composing the user-item interaction matrix into the product of two lower dimensionality
rectangular matrices to predict unseen ratings. Thus, this technique can be used for data
imputation. We adopt a probabilistic matrix factorization based method (Stern et al., 2009),
where the latent traits are used to model the personal preference of users and the ratings
for all items are predicted, but in this work we model the patient state and predict the
missing measurements. The result is a latent variable model with Gaussian distributions,
and its graphical representation is shown in Figure 2(a).

For N patients, M measurements, S scores and a latent space of size D, the model as-
sumes that the patient measurement a�nity matrix A 2 RN⇥M is generated from the
patient traits U 2 RN⇥D, which reflect the health status of the patient, and predic-
tor traits V 2 RM⇥D, which map di↵erent health status to measurements from vari-
ous medical instruments. We use Gaussian distributions to model these entries. Thus,
p(U|�2

U) =
QN

i=1
N (ui|µU,�2

U1), p(V|�2

V) =
QM

j=1
N (vj |µV,�2

V1). Not all measurements
are observed. The measurement imputation model is

p(P|U,V,�2

P) =
NY

n=1

MY

m=1

"
N (Pnm|uT

nvm,�2

P)

#I(n,m)

, (1)
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Figure 2: Graphical representation of the proposed models with probabilistic matrix fac-
torization and Bayesian linear regression (or BNN). Half-shaded nodes describe
partially observed variables. Panel (a) is the graphical representation of the prob-
abilistic matrix factorization model for data imputation only. Panel (b) shows
the model which uses the imputed measurements to predict the rehabilitation
outcome. Panel (c) shows the model which uses the patient traits, a latent rep-
resentation of the patient state, to predict the rehabilitation outcome.

where N (x|µ,�2) is the probability density function of the Gaussian distribution with mean
µ and variance �2. I is an observation indication matrix, defined as

I(n,m) =

(
1 if Pn,m is observed,

0 otherwise.
(2)

Thus, we can use the observed measurements to train the model, and use the generated
measurements a�nity A to impute the missing data. Eventually, we want the observed
entries in P to be as close as possible to the corresponding entries in A.

4.2. Simultaneous data imputation and outcome prediction

We present our proposed models which impute the missing entries and predict the rehabil-
itation outcome. Based on the model presented before, we add the second component to
predict the scores matrix S 2 RN⇥S using the patient information. The patient information
can be the imputed measurement matrix as shown in Figure 2(b), or the patient trait vector
which is a low-dimensional summary of the patient state as shown in Figure 2(c).
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Bayesian linear regression. We consider a Bayesian linear regression model first. The
score is modeled as

p(S | W,b,X) =
NY

n=1

SY

s=1

"
N (Sns | xnws + bs,�

2

S)

#I0ns

, (3)

p(W) = N (W | 0,�2

w1) ,

p(b) = N (b | 0,�2

b) ,

where the input X is either the predictors or the patient traits, W 2 RM⇥S and b 2 RS

are weights and bias parameters for Bayesian linear regression. S 2 RN⇥S indicates the
observed rehabilitation scores, which can be seen as the rehabilitation outcome Bmasked by
boolean observation indicator I0, described similarly to the previous section. For a patient
who has gone through the rehabilitation monitoring, our model can be used to predict
the missing scores. For a new patient who has just received treatment, our model can
predict the future healing outcome. In the case of the predictors (Figure 2(b)), we make
use of the observed values so that the input X is P̂ = I ⇤ P + (1 � I) ⇤ A, where I is the
N ⇥ M measurement observation indicator described in Section 4.1. In the case of the
patient traits (Figure 2(c)), we simply use Û as the input X. In fact, predictors P̂ contain
more information but also more noise, and Û can be seen as a summary of each patient’s
characteristics. Therefore, we do our experiments with either P̂ or Û as inputs for the
second component. Figure 2 displays the graphical model in these two cases.

Bayesian neural network. We also consider a BNN, i.e. a neural network with proba-
bilistic distributions on its weights and biases. In this case, we have the following conditional
distribution of the scores

p(S | ✓,X) =
NY

n=1

SY

s=1

"
N (Sns | NN(xn; ✓),�

2

S)

#I0ns

, (4)

where NN is a Bayesian neural network parameterized by ✓, the collection of all weights
and biases of the network. Typically, we consider fully connected layers with hyperbolic
tangent activations. For a network of L layers, we have

Hl = tanh
⇣
Hl�1Wl + bl

⌘
for l = 1, ..., L , (5)

where Hl is the output of layer l (H0 = X), Wl is the matrix of weights from neurons
of layer l � 1 to neurons of layer l, and bl is the bias vector for layer l. We start our
experiments by setting up priors on weights according to Xavier’s initialization (Glorot and
Bengio, 2010). That is, the prior variance of a weight w that feeds into the j-th neuron
of layer l depends on nlj,in, the number of neurons feeding into this neuron, and nlj,out,
the number of neurons which the result is fed to. For a weight wlij going from layer l � 1,
neuron i to layer l, neuron j, we have

p(wlij) = N (wlij | 0,�2

wlij
), (6)

�2

wlij
=

2

nlj,in + nlj,out
. (7)
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We limit the complexity of the networks that we evaluate a small number of hidden layers,
since there is a limited amount of data. A model with increased complexity would be more
prone to overfitting. The graphical model resembles the one in Figure 2, except that instead
of the weights W and biases b, we have the set of parameters of the network ✓. The exact
shape of the network is described in the experiments section.

Rehabilitation outcome prediction at various timestamps. As we discussed before,
the patient returns to hospital for rehabilitation monitoring after 3, 6, and 12 months. Thus
at di↵erent timestamps, we have di↵erent amounts of observed data. We move further in
the patient’s journey and apply changes to the previous model so that it can be used at the
3-month or 6-month mark. In the first case, we rearrange our inputs and move the scores
at 3 months from S to P. We denote these rearranged inputs P3 and S3. We apply the
same procedure for the 6-month mark and define P6 and S6. We demonstrate in the next
section that if we add more information from the healing monitoring, the performance of
the final healing outcome prediction (at 12 months) is clearly improved.

Inference. We run inference on this whole model in a end-to-end manner. We use vari-
ational inference with the KL divergence (Blei et al., 2017; Zhang et al., 2017). We imple-
mented all our models with the Edward library (Tran et al., 2016), a probabilistic program-
ming library. We use Gaussian distributions to approximate all posteriors.

5. Experiments

We evaluate our method in this section. We first verify our model and inference algorithm
using a synthetic dataset. We then focus on the real-world ATR rehabilitation cohort and
present preprocessing details. We compare our proposed method with multiple baselines.
Finally, we discuss all experimental results. The experimental results show that our pro-
posed end-to-end model clearly improves the predictive performance in comparison to the
baselines. Additionally, we evaluate the rehabilitation outcome prediction at various times-
tamps and show that the accuracy of the rehabilitation outcome prediction increases with
more observations.

5.1. Inference verification with synthetic data

We test our model and inference algorithm with a synthetic dataset first. We build this
synthetic dataset based on the generative process of the model and infer the latent param-
eters. We observe that our algorithms can successfully recover the latent parameters in all
di↵erent settings.

More precisely, we use N = 100, M = 30, P = 10, and a latent space of size D =
10. We generate the true patient and measurement traits by sampling from a normal
distribution with mean 0.5 and variance 0.5. As discussed in (Zhang et al., 2015), this
model is symmetric: parameters can rotate and inference can yield multiple valid solutions
for U and V. To ensure that we recover the true latent traits, we fix the upper square
of V to the D ⇥ D identity matrix to avoid parameter rotation. Also, we add Gaussian
noise with variance 0.1 to the resulting P matrix. We set priors matching this generative
process. For evaluation, we randomly split the data into a training and a testing set with
proportions 80%-20%.
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Figure 3: Synthetic data experiment. The
plot demonstrates the learned la-
tent traits with respect to the
ground-truth. For a point in the
figure, its x-coordinate is the true
trait value, and y-coordinate is
the corresponding recovered trait
value. Di↵erent colors represent
di↵erent latent traits. For brevity,
we don’t show all the recovered la-
tent traits.

By comparing the inferred latent variables with their ground-truth values, we see that
we can recover all of them. As an example, we show the ability of our end-to-end model
with linear regression on P (Figure 2(b)) to recover the patients’ latent traits and to predict
missing values in P and S. Figure 3 depicts examples of the recovered patient traits. We
can see that recovered values are close to true values because points in Figure 3 are close to
the diagonal of the square figure. Additionally, we evaluate the training and testing error
with the Mean Absolute Error (MAE). We obtain an average training error of 0.042 for P
and 0.027 for S, and an average testing error of 0.056 and 0.037 in the same order. These
results validate our model and inference algorithm. Next, we evaluate our model on the
real-life ATR dataset.

5.2. Preprocessing of the Achilles tendon rupture rehabilitation cohort

The cohort comes from clinical records with various formats, thus preprocessing is needed
before we evaluate our method. First, we convert the whole dataset to numerical values, for
example we convert the starting and ending time of the surgery to surgery duration. This
process is done under the supervision of medical experts and the whole list of variables that
we use are presented in the appendix. The ranges of measurements di↵er significantly due
to the various units in use. We normalize every variable to be in the range of [0, 1]. These
are a�ne transformations and the original value can be easily recovered. We do not fill in
the missing data in the preprocessing steps as it is one of the goals of our model.

5.3. Baselines

We compare our proposed method with seven variations of our proposed model with two
types of baselines. The first type of baseline uses traditional data imputation methods
to impute the missing values in P and predict S. The second one is a two-stage version
of our proposed model where data imputation and rehabilitation outcome prediction are
performed in a sequential manner.

Traditional data imputation. We first consider imputing the per-patient mean (Schef-
fer, 2002) to all missing values. For each patient, the mean value of their observations
belonging to the training set is imputed to all their missing measurements. We also apply

10



Simultaneous Measurement Imputation and Outcome Prediction for ATR

Component 2 Input BLR P BLR S BLR SATRS

P̂ 2-stage (mean) 0.228 ± 0.0014 0.230± 0.008 0.200 ± 0.010
P̂ 2-stage (OptSpace) 0.224± 0.0028 0.207 ± 0.009 0.193 ± 0.010
P̂ 2-stage (SoftImpute) 0.2049 ± 0.002 0.206 ± 0.008 0.192 ± 0.010
P̂ 2-stage (SVP) 0.316 ± 0.003 0.205 ± 0.012 0.200 ± 0.014
P̂ 2-stage (IALM) 0.237 ± 0.008 0.201 ± 0.011 0.201 ± 0.010
P̂ 2-stage (PMF) 0.164 ± 0.002 0.220 ± 0.006 0.201 ± 0.007
Û 2-stage (PMF) 0.164 ± 0.002 0.237 ± 0.006 0.208 ± 0.006
P̂ EE (proposed) 0.181 ± 0.001 0.202± 0.003 0.195± 0.005
Û EE (proposed) 0.178± 0.001 0.164± 0.004 0.146±0.005

Component 2 Input BNN P BNN S BNN SATRS

P̂ 2-stage (mean) 0.228 ± 0.0014 0.233 ± 0.005 0.202 ± 0.005
P̂ 2-stage (OptSpace) 0.224± 0.0028 0.203 ± 0.008 0.187± 0.009
P̂ 2-stage (SoftImpute) 0.2049 ± 0.002 0.201 ± 0.007 0.186 ± 0.008
P̂ 2-stage (SVP) 0.316 ± 0.003 0.194 ± 0.010 0.187 ± 0.010
P̂ 2-stage (IALM) 0.237 ± 0.008 0.187± 0.011 0.187 ± 0.009
P̂ 2-stage (PMF) 0.164 ± 0.002 0.207 ± 0.007 0.190 ± 0.007
Û 2-stage (PMF) 0.164 ± 0.002 0.208± 0.007 0.190 ± 0.007
P̂ EE (proposed) 0.158 ± 0.001 0.152±0.004 0.143±0.004
Û EE (proposed) 0.167±0.001 0.174±0.003 0.152± 0.003

Table 1: Mean Absolute Error (MAE) and standard deviation over 5 runs for outcome
prediction. Each time, we use random splits of the data with 80% data for training
and 20% data for testing. “EE” indicates end-to-end which is our proposed model.
“2-stage” is the baseline model where data imputation and rehabilitation outcome
prediction are performed in a sequential manner. BLR stands for Bayesian Linear
Regression and BNN stands for Bayesian Neural Network. For the 2-stage models,
the error on P remains the same because the matrix P is imputed once with the
mean imputation or the matrix factorization based methods. In addition, we
report the MAE for the ATRS separately. The target is that the MAE of SATRS

gets smaller than 0.1, because only a di↵erence larger than 0.1 is considered to be
clinical di↵erent.

traditional matrix factorization based methods: OptSpace (Keshavan et al., 2010), Soft-
Impute (Mazumder et al., 2010), Singular Value Projection (Jain et al., 2010) and Inexact
Augmented Lagrange Multiplier (Lin et al., 2010), to missing values. The predicted values
based on observations are imputed to all the missing values. We then use the imputed data
to predict rehabilitation outcomes using Bayesian linear regression and Bayesian neural
network.
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Two-stage version of the proposed model. We run inference on the probabilistic
matrix factorization part and only retrieve predictions for the first part of the dataset, P̂,
and the patient trait matrix Û. Then, we define the second model which uses either linear
regression or a neural network on this output to give the scores predictions, Ŝ. Inference is
run separately on each component. The intent is to compare our end-to-end model with its
direct multi-staged equivalent.

5.4. Results

We split the training and testing set to reflect the treatment journey. In all of our experi-
ments, we first pick training and testing data for P and S with the following strategy: we
randomly pick 80% of the patients, take all their available data for training and leave the
remaining 20% of patients for testing. In other words, we split the dataset on a per-patient
basis. We do this since the goal of our work is to predict the rehabilitation outcome after
a patient receives the initial treatment. All experiments are repeated 5 times, with all the
learned variables getting reset at each run.

We use grid search for hyper-parameter tuning, starting with the matrix factorization
part. We observe that the prior mean on the traits has little e↵ect on the end performance.
However, the prior variance on both traits and scores has a big impact on how the model
fits the training data. We evaluate latent space sizes D 2 [1, 20] as well as latent trait
variances �2

U and �2

V, ranging from 0.1 to 0.9 by steps of 0.2. We find the optimal D to be 8
and the optimal variance to be 0.5. Next, we tune the linear regression and neural network.
We start by tuning the linear regression then turn it into a neural network with growing
complexity by adding activation functions and layers as soon as we find that the model lacks
expressive power. We run grid searches on the prior means and variances of the weights and
biases as well as the observation noise on S. We notice that for the model to properly fit the
training data, weights need to have a very small variance. This is expected since the data
is very high-dimensional and the results of dot products need to be constrained in [0, 1]).
Doing so, we find that dividing the weight variance computed with Xavier’s initialization
by 103 and the prior observation noise by 104 yields the best results.

We report the performance of the rehabilitation outcome prediction in Table 1. The
Mean Absolute Error (MAE) on the testing set is used as metric for our results. In practice,
only a di↵erence larger than 0.1 is considered to be clinically di↵erent. Thus, results with
MAE within 0.1 are ideal. To compare with this standard, we evaluate prediction methods
only with 11 ATRS (10 criteria and the sum), whose results are shown in SATRS columns of
Table 1 and Table 2. We can see that our proposed end-to-end model with neural network
applied on the whole P matrix achieves the best performance for predicting rehabilitation
outcomes and its SATRS result is close to the ideal MAE target 0.1. We see that for
predicting S, using the patient traits Û works better in the case of linear regression, and
using the whole predictors matrix P̂ works better in the case of neural network. This
is certainly due to the fact that the dimensionality of P̂ makes it di�cult for a simple
model such as linear regression to extract the key features; a task that a more complex
neural network would manage better. In these experiments, we start with a neural network
that basically replicates the linear regression then gradually add complexity until we can’t
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improve the performance without overfitting. The optimal network we found has 1 hidden
layer with P (the number of columns of S) hidden units and a hyperbolic tangent activation.

Our proposed method shows clear improvement on the rehabilitation outcome prediction
over baselines. We can also see that latent variable models have a good performance on the
missing value imputation. Our proposed model is trained for the rehabilitation outcome
prediction, so SVP and IALM could have the better performance on the missing value
imputation than ours.

Discharge P̂ 3 Month P̂3 6 Month P̂6

MAE S3 0.177 ± 0.006
MAE SATRS�3 0.173 ± 0.005
MAE S6 0.172± 0.007 0.178± 0.006
MAE SATRS�6 0.167 ± 0.009 0.169±0.010
MAE S12 0.138 ± 0.006 0.140 ± 0.006 0.132± 0.006
MAE SATRS�12 0.111 ± 0.003 0.114 ± 0.004 0.108±0.003

Table 2: Rehabilitation outcome prediction performance comparison at various timestamps.
Our proposed model with Bayesian neural network is used for this evaluation. We
show that the final rehabilitation outcome prediction accuracy increases with time
and our model can be used for the rehabilitation outcome prediction at various
rehabilitation stages. SATRS is evaluated only with ATRS.

Evaluation of the rehabilitation outcome prediction at di↵erent timestamps.

Here we evaluate the ability of our model to predict scores at di↵erent timestamps when
we extend P to include scores at 3 months (yielding P3) and 6 months (yielding P6). We
report the performance per-timestamp of our model with P, P3 and P6 in Table 2.

We observe that including future measurements helps predicting the final scores. In-
cluding all the previously observed data in the predictors helps improving the accuracy of
future score predictions. Moreover, results of the ATRS prediction at 12 months are close
to 0.1 which is our target value.

Per-variable analysis. We further evaluate the prediction accuracy of our best perform-
ing model by looking the mean error for each variable. Taking the model with P̂ with BNN
as an example, Figures 4 and 5 display the errors and the number of data points available
for each variable.

In Figure 5, we show that the number of scores per period varies. In fact, each period
has at least 11 ATRS (10 criteria and the sum in blue) and 5 FAOS scores (in red). On top
of that, scores at 6 and 12 months both include additional tests such as the evaluation of the
heel rise angle (in green). The clinical practice uses scores at 12 months more because they
can reflect rehabilitation states better. Figure 5 shows that our model is able to predict the
rehabilitation outcome at 12 months better comparing to 3 and 6 months.

13



Simultaneous Measurement Imputation and Outcome Prediction for ATR

0

0.2

0.4
E
rr
or

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
0

200

400

Variable in P

C
ou

nt

Figure 4: Per-variable mean MAE and number of data points available for training for the
predictors P.
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Figure 5: Per-variable mean absolute error (MAE) and number of data points available for
training for di↵erent components of scores at di↵erent rehabilitation time. Blue
bars represent ATRS. Red bars represent FAOS. Green bars represent other test
scores.

6. Conclusions

We developed a probabilistic end-to-end framework to simultaneously predict the rehabil-
itation outcome and impute the missing entries in data cohort in the context of Achilles
Tendon Rupture (ATR) rehabilitation. We evaluated our model and compared its perfor-
mance with multiple baselines. We demonstrated a clear improvement in the accuracy of
the predicted outcomes in comparison with traditional data imputation methods. Addi-
tionally, the performance of our method on rehabilitation outcome prediction is close to the
ideal clinical result.
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Future work. There is still considerable work to be done in the interpretation of our
results, in a clinical sense. An analysis of the impact of each predictor in each model as in
Popkes et al. (2019) and a discussion on how these relate to the ATR clinical experiences
are desirable to strengthen this work from a medical point of view. Additionally, we are
keen to work closely with practitioners to validate our method in a real-life clinical context.
We would work on improving the accuracy and interpretability of our model to make it
beneficial for both patients and practitioners in real-life health-care process.

A computational aspect to be considered is to investigate in depth on the uncertainty
estimation of our model. The Bayesian framework o↵ers a way to compute uncertainties
when predicting outcome scores, however, in many tasks, these models have shown to be
over confident (Nalisnick et al., 2018). It would be useful for to know when a new patient
arrives, how well - with which certainty - we can predict their outcome scores.

The proposed method is a general framework that can be applied to numerous health-
care applications involving a long-term healing process after the treatment. In the future,
we would collaborate with more health-care departments, test and improve our method in
these applications.
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Appendix A. Variables

A.1. Predictors

0 ID
1 Study
2 Gender
3 Age
4 DIC age 40
5 Length
6 Weight
7 BMI
8 DIC BMI 27
9 Smoker
10 ln Age
11 ln Lenght
12 ln Weight
13 ln BMI
14 Inj side
15 Complication
16 Paratenon
17 Fascia
18 PDS
19 Surg comp
20 Treatment Group
21 Ort B
22 Plast
23 Healthy control
24 Plast foot
25 Vacoped
26 VTIS
27 TTS
28 ln TTS
29 TTS no of 24h cycles
30 ln TTS no of 24h cycles
31 TEST TTS 48h POL
32 TEST TTS 24h POL
33 TEST TTS 12h POL
34 DIC TTS by VTIS median
35 TRICH 48 84 TTS
36 TRICH 48 96 TTS
37 TRICH 48 72 TTS
38 NEW Time er to op start
39 DIC NEW Time er to op start
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40 DIC3 NEW Time er to op start
41 OLD Time er to op start
42 Op time
43 DIC op 34min
44 Op B Dic
45 OP GBG dic
46 Op time dic
47 OP NR
48 EXP
49 Q RANK B
50 Q RANK ABCD
51 NR of Op
52 DIC nr OP
53 ASS Y N
54 DIK SPEC
55 PP IPC Study B
56 Pump pat reg
57 Pump reg
58 Highest pump reg
59 DIC 86h highest pump reg
60 Pump comp
61 Incl Excl
62 DVT 2
63 DVT 6w
64 DVT 2w and 6w
65 DVT 2w or 6w
66 DVT 8w
67 Any dvt
68 Inf 2w
69 Inf 6w
70 Any inf
71 Rerupture
72 Adeverse events 1
73 Adeverse events 2
74 Adeverse events 3
75 Adeverse events 4
76 Preinjury
77 Post op
78 D PAS
79 Preinj 2cl
80 Preinj 3cl
81 Post op 2cl
82 Con Power I
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83 Con Power U
84 LSI Con Power
85 Total work I
86 Total work U
87 NEW LSI Total work
88 LSI Total work
89 Repetition I
90 Repetition U
91 LSI Repetitions
92 Height Max I
93 Height Max U
94 LSI Height
95 Height A I
96 Height A U
97 LSI Height Ave
98 Ecc Power I
99 Height Min I
100 Ecc Power U
101 Height Min U
102 LSI Height 2cl
103 LSI Height Min
104 LSI Ecc Power
105 Muscle vein thrombosis 2
106 Thompson 2
107 Wound 2
108 Podometer day1
109 Podometer day2
110 Podometer day3
111 Podometer day4
112 Podometer day5
113 Podometer day6
114 Podometer day7
115 Podometer day8
116 Podometer day9
117 Podometer day10
118 Podometer day11
119 Podometer day12
120 Podometer day13
121 Podometer day14
122 Podometer day15
123 Podometer day16
124 Mean podometer
125 Total podometer
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126 DIC podometer 16500
127 Podometer on day of microdialysis
128 Podometer on day minus 1
129 Podometer on day minus 2
130 Subjective load day1
131 Subjective load day2
132 Subjective load day3
133 Subjective load day4
134 Subjective load day5
135 Subjective load day6
136 Subjective load day7
137 Subjective load day8
138 Subjective load day9
139 Subjective load day10
140 Subjective load day11
141 Subjective load day12
142 Subjective load day13
143 Subjective load day14
144 Subjective load day15
145 Subjective load day16
146 Mean subjective load
147 DIC 43 Mean subjective load
148 Days until microdialysis
149 Load on day of microdialysis
150 Load on day minus 1
151 Load on day minus 2
152 Number of days with load prior to microdialysis
153 DIC 13 days with load
154 VAS day1 act
155 VAS day1 pas
156 VAS day2 act
157 VAS day2 pas
158 VAS day3 act
159 VAS day3 pas
160 VAS day4 act
161 VAS day4 pas
162 VAS day5 act
163 VAS day5 pas
164 VAS day6 act
165 VAS day6 pas
166 VAS day7 act
167 VAS day7 pas
168 VAS injured 2weeks
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169 VAS control 2weeks
170 Calf circumference injured 1
171 Calf circumference injured mean
172 Calf circumference control 1
173 Calf circumference control mean
174 Plantar flexion injured 1
175 Plantar flexion injured 2
176 Plantar flexion injured 3
177 Plantar flexion injured mean
178 Plantar flexion control 1
179 Plantar flexion control 2
180 Plantar flexion control 3
181 Plantar flexion control mean
182 Dorsal flexion injured 1
183 Dorsal flexion injured 2
184 Dorsal flexion injured 3
185 Dorsal flexion injured mean
186 Dorsal flexion control 1
187 Dorsal flexion control 2
188 Dorsal flexion control 3
189 Dorsal flexion control mean
190 Q1
191 Q2
192 Q3
193 Q4
194 Q5
195 EQ5D ix
196 VAS
197 VAS 2
198 Gluc2 2 i
199 Gluc2 3 i
200 Gluc2 4 i
201 GLUC injured mean
202 Gluc2 2 c
203 Gluc2 3 c
204 Gluc2 4 c
205 GLUC control mean
206 Lact2 2 i
207 Lact2 3 i
208 Lact2 4 i
209 LAC injured mean
210 Lact2 2 c
211 Lact2 3 c
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212 Lact2 4 c
213 LAC control mean
214 Pyr2 2 i
215 Pyr2 3 i
216 Pyr2 4 i
217 PYR injured mean
218 Pyr2 2 c
219 Pyr2 3 c
220 Pyr2 4 c
221 PYR control mean
222 Glyc2 2 i
223 Glyc2 3 i
224 Glyc2 4 i
225 GLY injured mean
226 Glyc2 2 c
227 Glyc2 3 c
228 Glyc2 4 c
229 GLY control mean
230 Glut2 2 i
231 Glut2 3 i
232 Glut2 4 i
233 GLUT injured mean
234 Glut2 2 c
235 Glut2 3 c
236 Glut2 4 c
237 GLUT control mean
238 Lac2 Pyr2 ratio 2 i
239 Lac2 Pyr2 ratio 3 i
240 Lac2 Pyr2 ratio 4 i
241 LAC2 PYR2 ratio injured mean
242 Lac2 Pyr2 ratio 2 c
243 Lac2 Pyr2 ratio 3 c
244 Lac2 Pyr2 ratio 4 c
245 LAC2 PYR2 ratio control mean
246 PINP injured
247 PIIINP injured
248 Bradford injured
249 PINP normalized Injured
250 PIIINP normalized injured
251 PINP uninjured
252 PIIINP uninjured
253 Bradford uninjured
254 PINP normalized Uninjured
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255 PIIINP normalized uninjured
256 Collagen
257 Glut 2 inj values
258 P ratio inj
259 DIC PIIINP
260 DIC PIIINP 3
261 P ratio uninj
262 FIL OP STUDY
263 Gly inv
264 RF injured
265 RF uninjured
266 BZ injured
267 BZ uninjured
268 MF injured
269 MF uninjured
270 T RF injured
271 T RF uninjured
272 T MF injured
273 T MF uninjured
274 T HR injured
275 T HR uninjured
276 Ratio MF RF injured
277 Ratio MF RF uninjured
278 B1 D66
279 Sthlm gbg
280 stepsxload day1
281 stepsxload day2
282 stepsxload day3
283 stepsxload day4
284 stepsxload day5
285 stepsxload day6
286 stepsxload day7
287 stepsxload day8
288 stepsxload day9
289 stepsxload day10
290 stepsxload day11
291 stepsxload day12
292 stepsxload day13
293 stepsxload day14
294 stepsxload day15
295 stepsxload day16
296 INC A42
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A.2. Scores

0 DIC TTS by valid ATRS80 median
1 Control 1yr
2 Heel rise average height injured 6mo
3 Heel rise average height control 6mo
4 di↵erence heel raise 6mo
5 Heel rise average height injured 1yr
6 Heel rise average height control 1yr
7 di↵erence heel raise 1yr
8 ATRS 3 Strenght
9 ATRS 3 tired
10 ATRS 3 sti↵
11 ATRS 3 pain
12 ATRS 3 ADL
13 ATRS 3 Surface
14 ATRS 3 stairs
15 ATRS 3 run
16 ATRS 3 jump
17 ATRS 3 phys
18 ATRS 3 Sum
19 ATRS item1 6month
20 ATRS item2 6month
21 ATRS item3 6month
22 ATRS item4 6month
23 ATRS item5 6month
24 ATRS item6 6month
25 ATRS item7 6month
26 ATRS item8 6month
27 ATRS item9 6month
28 ATRS item10 6month
29 ATRS total score 6month
30 ATRS 12 strength
31 ATRS 12 tired
32 ATRS 12 sti↵
33 ATRS 12 pain
34 ATRS 12 ADL
35 ATRS 12 Surface
36 ATRS 12 stairs
37 ATRS 12 run
38 ATRS 12 jump
39 ATRS 12 phys
40 ATRS 12m
41 valid ATRS 12m
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42 ATRS 2cl
43 FAOS 3 Pain
44 FAOS 3 Symptom
45 FAOS 3 ADL
46 FAOS 3 sport rec
47 FAOS 3 QOL
48 FAOS 6 Symptom
49 FAOS 6 Pain
50 FAOS 6 ADL
51 FAOS 6 Sport Rec
52 FAOS 6 QOL
53 FAOS 12 Pain
54 FAOS 12 Symptom
55 FAOS 12 ADL
56 FAOS 12 Sport Rec
57 FAOS 12 QOL
58 ATRS 12 pain log
59 ATRS 12 ADL log
60 ATRS 12 surface log
61 ATRS 12 phys log
62 FAOS 12 pain log
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