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Abstract

Brief, intense exercise can improve health due to its acute effect on the autonomic nervous
system, particularly the sympathetic nervous system. Salivary amylase is a marker of
sympathetic activity during exercise, but it requires specialized equipment to measure. We
investigate the feasibility of estimating the amylase response from heartbeat data recorded
by commodity sensors. We collect heartbeat and amylase data for n = 71 sessions of
intense exercise performed in a commercial setting. Our machine learning model exploits
structure in the heartbeat signal: by identifying and removing the contribution of the
parasympathetic nervous system, we obtain a residual with sympathetic information, to
which we apply a convolutional neural network. This model has better accuracy than
existing measures of exercise response, such as maximum heart rate, even though it doesn’t
use metadata such as age and gender. This suggests sympathetic activity may be (weakly)
discerned from heartbeat data. With a larger dataset, a practical measure of sympathetic
response to exercise could potentially be developed. Our quantification of parasympathetic
activity is more powerful than existing approaches and may have independent value.

1. Introduction

Intense exercise elicits a much different physiological response than moderate exercise. At
low and moderate intensities, energy demands are satisfied by the oxidative (aerobic) path-
way, and the initial increase in heart rate is accompanied by withdrawal of the parasym-
pathetic nervous system. At high intensities, the glycolytic (anaerobic) energy pathway
predominates; sweating, lipolysis, gluconeogenesis, and other characteristic responses are
driven mostly by activation of the sympathetic nervous system rather than further parasym-
pathetic withdrawal (White and Raven, 2014; Michael et al., 2017a; Koistinen and Laitinen,
2004). Intense training has been shown to improve insulin sensitivity, blood pressure, aer-
obic capacity (VOamax), and body composition (Batacan et al., 2017; Jelleyman et al.,
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2015; Jelleyman, 2018; Kessler et al., 2012; Milanovié et al., 2015). Even a single bout of
intense exercise can have acute health benefits, such as enhancing glucose control (Marliss
and Vranic, 2002; Jelleyman, 2018) or inhibiting the growth of colon cancer (Devin et al.,
2019). Intense exercise interventions are safe (Wewege et al., 2018; de Jong et al., 2003; Carl
et al., 2016) and have the potential to improve outcomes for numerous patient populations
(Weston et al., 2014; Jelleyman et al., 2015; Elliott et al., 2015; Hannan et al., 2018).

It is hard to measure if the desired response to intense exercise was actually achieved.
Subjective measures, such as RPE (rate of perceived exertion) or RIR (repetitions in re-
serve), are common in athletic training. However, these measures are often unreliable in
patient populations unaccustomed or indisposed to exercise (Unick et al., 2014; Aamot
et al., 2014; Strzelczyk et al., 2001). As previously mentioned, the activity of the sympa-
thetic nervous system is of fundamental importance. There are many methods of measuring
sympathetic activity, but none is considered a gold standard (Grassi and Esler, 1999). The
most common measure of sympathetic tone is the concentration of plasma epinephrine
(a.k.a. adrenaline) or norepinephrine. Unfortunately, this requires invasive, confounding
blood draws and complex laboratory analysis. The cardiac preejection period has been
proposed as a valid, noninvasive measure of sympathetic activity (Michael et al., 2017a).
Unfortunately, it is recorded by bioimpedance cardiography, which is sensitive to the pos-
tural changes and heavy breathing that occur during exercise. Measurements can also be
made at the periphery. Microneurography involves electrodes inserted directly into mus-
cle or skin nerves, which prohibits large movements during exercise (Vallbo et al., 2004).
Electrodermal activity (EDA) of sweat glands correlates with sympathetic activity during
exercise (Boettger et al., 2010; Posada-Quintero et al., 2018). However, peripheral mea-
surements are not uniform across the body (Shoemaker et al., 2018,7), the most accurate
measurement locations are not convenient (van Dooren et al., 2012), and are affected by
local phenomena, such as vasoconstriction (Edelberg, 1964).

Salivary a-amylase (briefly, “amylase”) has been identified as a marker of sympathetic
tone, especially during exercise (Chicharro et al., 1998; Koibuchi and Suzuki, 2014; Nater
and Rohleder, 2009); (nor)epinephrine activates (j-adrenergic receptors in the salivary
glands, which causes granules of this enzyme to be released. Below a minimum thresh-
old of intensity — which seems to coincide with the accumulation of lactate in blood (Calvo
et al., 1997; Bocanegra et al., 2012; Akizuki et al., 2014) — the change in amylase is neg-
ligible. Above that threshold, it rises proportionally with intensity (Li and Gleeson, 2004;
De Oliveira et al., 2010). Amylase is typically measured by immunoassay of saliva sampled
by passive drool. It can also be immediately measured by point-of-care devices (Shetty
et al., 2011). However, both methods incur nonneglible marginal cost due to nonreusable
materials. Because salivary flow rate changes during exercise (Rohleder and Nater, 2009;
Bosch et al., 2011), the point-of-care devices are prone to substantial error, if used without
careful adherence to protocol (Peng et al., 2016).

Practitioners have resorted to metrics based on heart rate, because it is cheap and practi-
cal to measure with commodity sensors. These metrics include average and maximum heart
rate, the decrease in heart rate 60 seconds after exercise (HRR60), and the rate at which
heart rate returns to baseline (HRR7). With sensors capable of recording the times between
individual heartbeats, an assortment of heart rate variability (HRV) metrics, such as SDNN,
RMSSD, PNN50, and LF, can be calculated during or after exercise (Shaffer and Ginsberg,



2017). Though these metrics may be useful for monitoring recovery, assessing fitness, or
related tasks, their utility as measures of the sympathetic response to intense exercise is lim-
ited. LF — the weight placed on low-frequency (0.04 — 0.15 Hz) components of the Fourier
decomposition of the heartbeat signal — was previously thought to reflect slower-responding
sympathetic tone, but is now understood to be parasympathetically driven (Reyes del Paso
et al., 2013; Thomas et al., 2019; Moak et al., 2007). During exercise, HRV reaches a
near-minimum at a relatively low intensity, analogous to parasympathetic tone (Michael
et al., 2017a; Boettger et al., 2010). Following exercise, HRV recovery, unlike sympathetic
withdrawal, is substantially delayed by duration (Michael et al., 2017¢) and moderate in-
tensity (Michael et al., 2017b). Similarly, HRR60 primarily, though not entirely, reflects
parasympathetic reactivation (Kannankeril et al., 2004). HRR7 seems to have a stronger
dependence on sympathetic tone (Buchheit et al., 2007); in skeletal muscle, accumulated
metabolites stimulate metaboreceptors, which in turn maintain sympathetic tone (Fisher
et al., 2013). HRR7, along with the other recovery metrics, require monitoring from 10
minutes to hours after the cessation of exercise, during which upright posture and further
activity may confound results. Following the publication of this paper, we became aware
of the recently-developed Sympathetic Activity Index (Valenza et al., 2018), which decom-
poses the heart rate signal using Laguerre basis functions. We will discuss this statistic in
Section 4.6.

Since intense exercise is hard to monitor, it is hard to prescribe. Exercise intensity
is typically specified as a percentage of some unknown, estimated quantity, such as max-
imum perceived exertion, maximum heart rate, or VOgmax. The error in this estimate
is amplified when prescribing intense exercise at 95% VOsmax rather than moderate ex-
ercise at 60% VOgmax. Such imprecision stokes lingering concerns of overexertion during
intense exercise. Mann et al. (2013) review the large variation of physiological responses
to “poorly standardized” exercise protocols. Imprecise dosing of exercise raises concerns of
overexertion and results in worse health outcomes. The SMARTEX heart study (Ellingsen
et al., 2017a) found intense exercise was not better than moderate exercise for rehabilitat-
ing cardiac-failure patients, because some patients did not exercise at the correct intensity.
In their view, “tight control of prescribed exercise intensity and intended load increase was
somehow lost in the translation from a small proof-of-principle study to a larger multicenter
trial of the efficacy under conditions closer to standard clinical practice” (Ellingsen et al.,
2017b).

1.1. Our contribution

We investigate the feasibility of measuring sympathetic response without specialized equip-
ment. Using machine learning, we develop an algorithm which estimates the change in
amylase enzyme activity (from before exercise to after, denoted as AAmylase) from heart-
beat data readily collected during exercise. This is a supervised regression problem: the
input is an arbitrary-length sequence of interbeat intervals, and the label is AAmylase, a real
value with units U/mL. We also consider the associated comparison problem: determining
if one workout resulted in greater AAmylase than another workout.

To train and evaluate the algorithm, we collect a realistic, albeit noisy, dataset. Previous
studies were conducted in laboratories or elite athletic settings, involved a narrow popu-



lation of participants, exerted tight control over their diet and schedule, and specified a
small number of exercises (primarily cycling). Our dataset is collected in commercial group
training sessions, involves a diverse group of participants, observes them in their day-to-day
exercise routine, and involves a wide variety of exercises. However, there may be substan-
tial noise in both the heartbeat data (due to sensors slipping in full-body exercises) as well
as the amylase measurements (due to changes in salivary flow and inadvertent misuse of
equipment). Whereas laboratory settings have a tendency to produce optimistic results,
our study is designed to produce pessimistic ones.

Our machine learning model is informed by the physiology of the autonomic nervous sys-
tem. The parasympathetic system contributes a substantial, high-frequency component to
the heartbeat signal. Heart rate variability (HRV) is a fairly reliable indicator of parasym-
pathetic activity. By removing an HRV-derived component from the heartbeat signal, we
obtain a residual with information about sympathetic activity. Multiple HRV metrics may
be computed from second moments of the interbeat intervals. To quantify the parasym-
pathetic contribution, rather than using an existing HRV metric, we allow more general,
parametrized metrics of the same underlying moments. The generalization is mild enough
to still consider them variability metrics rather than arbitrary statistics. The parameters
of this metric are (pre)trained upon the data. Subsequently predicting AAmylase from the
residual is a straightforward application of convolutional neural networks.

Clinical Relevance. A practical measure of sympathetic response could greatly im-
prove the clinical practice of intense exercise. For doctors and researchers, a measure could
ease the development and specification of intense exercise regimens. For patients and ath-
letes, it could help ensure that improvements to health and fitness are actually being made.
We initiate the study of this problem in the hope of motivating further research. On our
dataset, as a measure of sympathetic response, heart rate (the predominant metric) is no
better than random guessing. Our model achieves a modest but discernible improvement.
However, our dataset is too small (n = 71) to train a practically usable model.

Technical Significance. Our work restores some optimism that heartbeat data con-
tains information about sympathetic activity. Our novel approach of eliminating parasym-
pathetic influence from the heartbeat signal proves useful; a naive application of CNNs is
not as accurate. Our generalization of HRV metrics may have some independent utility for
quantifying parasympathetic activity.

1.2. Outline

In Section 2, we describe the cohort and the data collection process. In Section 3, we
present basic statistics of our dataset. These suggest our estimation problem is challenging,
and motivate the use of machine learning. In Section 4, we present our machine learning
algorithm, and compare it to previous work. In Section 5, we present the results of fitting
our algorithm to the data. In Section 6, we review our findings and offer guidance for future
research.

2. Study Design

Our goal is to collect a dataset in which the participants and their activities are realistically
observed rather than tightly controlled. This makes the data noisier, and in turn makes the



estimation problem harder. However, a model trained upon this data has a better chance of
transferring to practical use. Importantly, the goal of our study is just to estimate amylase,
not to bolster its physiologic validity as a measure of sympathetic response.

2.1. Cohort Selection

The participants in this study are members of a commercial fitness facility in New Jersey.
This membership is evenly split between genders and has an average age of 45, not including
minors who are not eligible for study. Approximately 80% of the members are white and 20%
of the members are of another race. No competitive or professional athletes are included.

Each exercise session is performed as part of an hour-long, instructor-led class. The
workout is relatively brief, typically between 10 and 15 minutes. It is preceded by a warmup
involving dynamic exercises, static stretching, and weightlifting practice. The workouts in-
volve a wide variety of exercises, including bodyweight movements, rowing, cycling, running,
gymnastics, dumbbell exercises, and barbell lifts. Most of the workouts are driven by one of
two goals: to complete the workload as quickly as possible (“time priority”), or to complete
as many rounds as possible within a given time (“task priority”). The workout prescrip-
tions are generated semirandomly, to avoid repetition of exercises and to keep participants
engaged. The workout prescriptions are just guidelines; participants make modifications,
such as reducing the weight, so they can complete the workout.

Most of the workouts are intended to be intense, though longer workouts are necessarily
less intense than the shorter ones. A small fraction of the workouts focus on “assistance”
exercises which are performed attentively with large rest periods and lower overall difficulty.
Relatively low AAmylase is expected for these workouts. They may be thought of as
informal controls, with relatively low changes in amylase. Another portion of the workouts
are performed competitively while being judged; relatively high AAmylase is expected for
these.

2.2. Data collection

The study began in February 2019 and lasted 4 weeks. Participants consented to the study
after being informed of all aspects of the data collection process. During their first session,
they were instructed how to use the necessary equipment. Participants arrived at class as
they usually would; we did not control their food intake, time of day, or any other factors.
However, they were instructed to arrive 10-15 minutes prior to class in order to initiate
data collection. Participants performed their own measurements, having been individually
instructed on proper protocol. (Since they exercised throughout the day, it was not feasible
to supervise them at all times.) Roughly 5 minutes before the class started, they measured
their amylase by inserting a saliva measurement stick (pictured in Figure 1) under their
tongue for 30 seconds. They took special care to saturate the stick with saliva, to avoid
problems with salivary flow rate. The stick was then read with a portable colorimetric meter
(Shetty et al., 2011). They then securely wore a Polar H10 (single-lead ECG cheststrap)
heart rate monitor. The HRM connected to their personal smartphone via Bluetooth. To
ease data collection and improve compliance, we implemented a custom iOS application, in
which the participant could enter all their information, and the HRM could log its data. The
interface of this application is presented in Figure 2. For the entire class, users remained
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Figure 1: Data collection equipment. Left: pouches of saliva swabs. Center: point-of-care
salivary amylase meter, with a single saliva swab. Right: Polar H10 cheststrap
heart rate monitors.

within 15 meters of their phone, to prevent the HRMs from disconnecting. Roughly one
minute after the main portion of the workout, prior to cooling down, the participants gauged
their rate of perceived exertion, and again measured their amylase. Participants noted if any
unusual circumstances befell the workout or their preparation for it; these include illness,
injury, a high temperature in the gym, or an atypically large dose of caffeine. Finally, users
submitted all of the data through the application. Using the start and end times of the
data collection, we ensured that data was collected continuously.

We excluded samples on the following grounds. (1) User error: the user did not follow
proper protocol (e.g. forgot to measure their amylase at the cessation of exercise.) (2) HRM
error: the heart rate monitor prematurely disconnected from the phone. (3) Application
error: an unknown technical error was encountered while using the i0OS application. (4)
Too much noise: the heart rate monitor slipped or malfunctioned, resulting in excessively
noisy measurement.

3. Basic Data Preprocessing and Analysis

In total, 71 workouts were successfully recorded from 19 participants. Though small by
the standards of modern machine learning, this is relatively large compared to previous
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Figure 2: Screens of the iOS data collection application used in the study. A: The user con-
nects to a Bluetooth heart rate monitor. B: Heart rate is prominently displayed.
Starting amylase is recorded, and the green “start workout” button is pressed.
C: Heart rate is continuously updated during the workout, after which the red
“end workout” button is pressed. D: The remainder of the data (age, gender,
ending amylase, and RPE) are collected.

Total workouts | 85
User errors 3
HRM errors 2
App. errors 6
Too much noise | 3
Dataset size 71
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Figure 3: Basic statistics of the dataset. As the table shows, substantial number of errors
were encountered during data collection. The mean age is 37. The mean absolute
magnitude of AAmylase is 40. The mean absolute deviation of AAmylase is 29.4.

studies. It is enough to cover a wide variety of exercise plans performed at varying degrees
of intensity. In this section, we review the salient features of the dataset, and gain some
intuition for the machine learning model.

3.1. Noise

The RR interval data are noisy. The noise consists primarily of isolated ectopic beats which
spike below or above the otherwise-smooth curve. Ectopic beats are known to impede
calculation of heart rate variability (Lippman et al., 1994). Accordingly, we eliminated the



ectopic beats with the following noise filtering algorithm. First, we calculate a median filter
on the entire RR interval sequence using a window size of 24. Next, we measure the relative
deviation of the original RR interval from the filtered value. If this is more than 20%, then
we consider the RR interval ectopic and replace it with the filtered value. If more than 15%
of the beats are ectopic, then we exclude the entire sample from subsequent analysis. Three
samples were excluded in this manner.

The AAmylase measurements are similarly noisy. Immediately following intense ex-
ercise, participants were sometimes forgetful or simply too tired to completely adhere to
the measurement protocol. On occasion, saliva measurements were performed in duplicate.
Based on these measurements, we estimate that the inherent noise in the AAmylase values
is roughly 10. For similar reasons, RPE was essentially ignored; participants rarely changed
it from its default value of 5. No such omissions were made for age or gender.

3.2. Heart Rate and AAmylase

As expected, there does not seem to be a discernible relationship between basic heart rate
metrics and AAmylase, even when controlling for age. Figure 6 illustrates the lack of
correlation. This is consistent with the consensus that heart rate is not a reliable measure
of the response to exercise, at least across individuals.

Heart rate variability (HRV) measures the activity of the parasympathetic nervous sys-
tem in terms of the variation of time between heartbeats. Higher variation corresponds
to higher PS activity. The most commonly used HRV statistics are RMSSD (root mean
square of successive differences) and SDNN (standard deviation of normal-to-normal in-
tervals). See the equations in Section 4.3 for formal definitions, or Shaffer et al. (2014);
Shaffer and Ginsberg (2017) for reviews of the subject. In Figure 6, we display, for a variety
of workouts, SDNN computed over sliding windows of 24 beats. Other metrics behaved
similarly. In this section, we simply note that HRV, in of itself, is not related to AAmylase.
All the workouts have similar minimum, maximum, and mean SDNN. However, there is a
dynamic relationship between HR and HRV, which we will examine in the next section.

4. Machine Learning Algorithm

4.1. Problem formulation

Let the length-T sequence of interbeat RR intervals be = [z1,...,27]. Each z; € RT has
millisecond units. So, if R-peak t occurs half a second after R-peak t —1, then x; = 500. Let
AAmylase € R (now abbreviated as just A) be the difference in amylase incurred during
exercise. Our goal is to find a function f which minimizes the following mean absolute error
in predicting A:

E|f(z) — Al
We also consider the induced pairwise comparison problem.
P((A<A) = (f(z) < f(2)))

In our present context, these problems are challenging for the following reasons:
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Figure 4: Top: a tachogram of the raw heartbeat data of a single workout. RR inter-
vals are recorded, and converted to instantaneous heart rate via the equation
HR = 60000/RR. The workout is 30 jump-rope double-unders and 15 dumb-
bell snatches, for as many rounds as possible within 10 minutes. The main
working portion is near the end of the session, and is preceded by a substan-
tial warmup. The data are presented without any smoothing or noise filtering.
The large amount of noise may be partially attributed to jumping. Bottom: the
previous tachogram processed by the noise filtering algorithm.
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Figure 5: Various heart rate metrics, age and AAmylase do not seem to correlate. Bright
green denotes young age, and black denotes old age. Five workouts resulted in
negative AAmylase; these remain in the dataset, but are clipped off the plot for
visual clarity. Maximum heart rate is estimated as HRmax = 208 — 0.7 - Age
(Tanaka et al., 2001). Heart rate metrics are not a good measures of sympathetic
response, even taking age into account.

e The sequences are long — typically longer than 7000 elements — and are highly
nonstationary, with long-range dependencies. This precludes the use of many RNNs,
which are typically trained on short segments, lest they become a serial computational
bottleneck.

e The signal-to-noise ratio is somewhat low. As discussed in Section 3.1, there is noise
in both the inputs and the outputs. There is only a single point of supervision A for
each sequence .

e Age, gender, and starting time are excluded from the predictive model. We do this
to avoid overfitting, and are interested to see if AAmylase can be estimated from
heartbeat data alone.

4.2. Key Intuitions

Let us motivate the design of our machine learning model by examining the relationship
between HR and HRV in Figure 6. Large gaps between HR and (inverse) HRV seem
to be a necessary condition for high AAmylase. That is, high AAmylase seems to be
contingent upon sudden increases in HR despite no decrease in HRV. In workouts with
low AAmylase, changes in HR seem to be mirrored by changes in HRV. It makes some
visual sense to subtract (inverted) HRV to obtain the S activity that would explain the
unaccounted HR changes. This idea makes some physiologic sense as well, due to the
complementary relationship between the PS and S systems (Figure 7) . The physiology
suggests another telltale clue: HRV increasing while HR remains elevated.

The overall model takes the form f(x) = s(h(z) — (hopowvoz)(x)), where z are squared
differences of x, v is a generalized HRV metric, p is the pretrained parasympathetic layer,
h(r) = 60000/r converts from RR intervals to instantaneous HR, = h(x) — h(p) is the
residual, and s is the sympathetic layer. We describe the model architecture below.

10
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Figure 6: Heart rate (red) and SDNN (a measure of parasympathetic activity, gray) com-
pared for workouts with different amylase changes (given by A in the top left).
The vertical axis of SDNN is flipped for visual clarity. All of these workouts,
except for the one with A = 6, illustrate an interesting pattern. When A is low,
changes in HR are mirrored by changes in SDNN. When A is high, HR and SDNN
become decoupled: SDNN remains flat while HR may continue to increase. This
manifests as the red line spiking above the gray line. HR changes that do not
coincide with SDNN changes may be sympathetically driven.
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Figure 7: Schematic relationship of the parasympathetic (PS) and sympathetic (S) ner-
vous systems during intense exercise. The left figure, following White and Raven
(2014), shows that PS withdraws mostly at moderate intensities, and S activates
mostly at high intensities. The right figure, from Michael et al. (2017a), shows
that PS is faster-acting than S; it withdraws before S activates, and reactivates
before S withdraws.

4.3. Pretrained Parasympathetic Layer

To eliminate the parasympathetic influence on heart rate, it is tempting to simply subtract
an existing HRV metric from heart rate. However, this is not quantitatively satisfactory for
multiple reasons. First, it is not clear which HRV metric to use. Second, doing this in the
manner of Figure 6 would involve translating and scaling the metric; these operations would
have to be calibrated to the data. Finally, simply subtracting HRV may not be the best
way of removing information from the signal. Ideally, the residual should be independent
of parasympathetic activity, in that predicting the former from the latter should not be
possible. Rather than attempting to ameliorate these issues by hand, we employ machine
learning.

Squared differences. We observe that the most commonly-used HRV metrics can be
expressed in terms of the squared differences z; ; = (z; — x;)?. This is obvious for RMSSD
and PNN50. In the following equation for SDNN, p = % Y i<m Zi is the mean, and we
invoke the usual decomposition of variance.

1 1
RMSSD? = Z($i+1 —z;) = m Z iyit1

<m <m

m? - SDNN? =m Z:(xZ —u)?=m Z z? — m2u?

i<m i<m

1 9 9 1

=3 sz + 2 — 2wy = 5 sz

.3 2%

1 1

PNN50 =— Z 1(|zip1 — i 2 50) = — Z 1 (zii41 > 50°)
i<m i<m
Put another way, the squared differences are sufficient statistics for HRV. However, these

statistics do not capture all the information in the heartbeat signal. This restriction is

12



beneficial because if the (purportedly) parasympathetic model overlaps too much with re-
maining layers, it becomes less interpretable, and may fail its purpose of isolating a useful
residual. We will soon discuss why squared differences, rather than the more typical mean
and moments x;x;, are being used.

Generalized HRV metric. The architecture of this part is as follows. For each window of
size m, with stride 1, compute z. Optionally apply a nonlinearity for statistics like PNN50.
(We do not do this.) Then, take a linear combination of the entries or z. We initialize this
to the constant 1/(2m?) matrix, to compute SDNN. We use a window size of m = 24, which
is considered an ultra-short-term measure of HRV.

Parasympathetic contribution. Let us momentarily ignore the unit conversion h. To
make x — p(v) difficult to predict from v, we pretrain p to predict = from v, by minimizing
mean squared error. In this way, & becomes the unpredictable part of . We expect this
prediction will be difficult and that z — p will be substantial. The HRV metrics could have
also been written in terms of the mean and second moments x;x;, but this data would allow
x to be easily recovered. The squared differences do not reveal much about the mean of x.
This makes p(v(z(+))) a kind of autoencoder.

Now let us examine the use of h. Because z and p have units of RR intervals, there
is an implicit bias for p to more closely fit low-intensity periods, which is when we expect
more parasympathetic activity. This is because when HR is high, RR intervals are small,
so the squared error is limited. For the sympathetic layer, we want the opposite numerical
tendency, so we use units of heart rate. Computing h(x — p) leads to near division-by-zero
where x is close to p. Instead, we use h(z) — h(p).

Finally, we discuss the actual architecture of p(v). Since the parasympathetic system
is high-frequency and fast-acting, we use 3 layers of convolutions of size 4 with linear
activation.

4.4. Sympathetic Layer

The sympathetic layer is designed to be sensitive to the sharp increases and prolonged el-
evations coincident with sympathetic response. These sequential, spatially-local patterns
can be recognized by one-dimensional convolutions. To increase the receptive field (i.e. to
allow for some amount of sequential dependence), we employ dilated convolutions (Oord
et al., 2016). We stack a block of dilated convolutions, each followed by a standard convo-
lution with a stride length of 2, which halves the output dimension. To mute the output
in uninteresting regions, we use gated convolutions, which doubles the number of convolu-
tion parameters (Dauphin et al., 2017). Together, the convolution layers output a single
response value for each segment The cumulative sympathetic response is just the sum of the
responses for each segment. This locality assumption is plausible, but could be reexamined
in future work.

Compared to the parasympathetic layer, the sympathetic layer has a generic architec-
ture. This is appropriate because the theory of how the sympathetic nervous system affects
heartbeat intervals is much less well-developed. Though the chosen architecture seems to
make the sympathetic layer work well, it is possible that other choices may work better.
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4.5. Implementation details

We split the dataset into training and evaluation sets of equal size. To avoid imbalances,
we reject splits where the means of AAmylase differ by more than 5. (Due to the small
size of the dataset, this is a potential concern.) We pad or left-truncate the variable-length
sequences to a uniform length of 7000.

We implement our model in TensorFlow 1.13. For both pretraining and training, we
use the Adam optimizer with the default learning rate. For pretraining, we use the entire
training set in each batch; for training, we use just a single example. We run both pretrain-
ing and training for 60,000 steps. During training, we freeze the parasympathetic layer’s
parameters. For both the regression and comparison problems, we use ¢1 loss. To examine
the potential of overparametrization, we informally varied the number of parameters in the
sympathetic layer.

4.6. Related Work

Most work on classifying cardiologic signals starts with nearly-continuous ECG waveforms
sampled at approximately 200Hz (Hannun et al., 2019; Lehman et al., 2018). The goal
is often to detect arrythmia or determine risk of myocardial infarction. We use coarser
RR interval data for the following reasons. It isn’t possible to access raw waveforms from
consumer-grade monitors; the Bluetooth standard provides only for heart rate and RR in-
tervals. During intense exercise, the waveform is likely to be extremely noisy, since even the
extracted RR intervals are noisy. Lastly, sympathetic response is relatively slow compared
to parasympathetic response and other ECG dynamics, so the time scale of RR intervals is
more appropriate.

Most algorithms for assessing autonomic function from RR intervals originate from the
field of signal processing. The algorithms are handcrafted, not learned, for the sake of
simplicity, interpretability, and computational efficiency. Even though RR interval data is
relatively abundant, machine learning algorithms which process them are somewhat uncom-
mon. In 2002, the PhysioNet challenge involved generating artificial RR interval sequences
and discriminating them from real ones (Moody, 2002). Tsipouras et al. (2005) classify
heartbeats using a handcrafted classifier which sequentially operates on windows of RR
intervals. Gjoreski et al. (2017) employ a 7-layer fully-connected ReLU network upon the
raw RR intervals. (Faust et al., 2018) apply an LSTM to detect atrial fibrillation. Asl et al.
(2012) extracts time-series features before using a neural network.

Our extraction of a sympathetic residual should not be confused with (and in fact is
diametrically opposed to) residual networks in deep learning (He et al., 2016). The layers of
these networks have skip connections which add the original input to their transformation
of the input. With a skip connections, the parasympathetic layer would output x + p rather
than just p. Skip connections seem to ease optimization because, if many such layers are
stacked, then each individual layer can be very close to an identity transformation, with
each p modeling a slight change (or “residual”) of the input. By contrast, the point of
our approach is to eliminate the extraneous parasympathetic component from the original
input.

Various consumer devices calculate proprietary scores for workouts. Some of these scores
purportedly measure the response to intense, anaerobic exercise. These scores encode some
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Figure 8: Example of heart rate 60000/z in red and parasympathetic contribution 60000/p
in purple.

intuitions about exercise intensity and may have some motivational purpose. Since they do
not correspond to any real physiologic quantity, it is difficult to assess the validity of these
scores relative to a gold standard. It is also difficult to assess the relevance of these scores
to health outcomes. It is easier to reason about the outcomes associated with amylase
response, since it is part of the neuroendocrine system.

Following the publication of this paper, we became aware of the recently-developed
Sympathetic Activity Index (Valenza et al., 2018). This expresses the RR interval sequence
as a sum of orthogonal Laguerre functions, where lower and higher frequency functions
correspond to the sympathetic and parasympathetic systems, respectively. They fit these
functions using supervised learning, but in a very different manner than our paper. To
fit the low-frequency sympathetic functions, they administered atropine to seven subjects,
which blocks their parasympathetic systems, and had them perform supine-to-stand tests.
Similarly, to fit the high-frequency parasympathetic functions, subjects performed the same
tests with blocked sympathetic systems. By obtaining data on each system independently,
they more cleanly fit their model. However, they do not utilize a quantitative ground-truth
measure for sympathetic response; they simply consider the sympathetic system as “active”
while standing.

5. Machine Learning Results

First, we examine the results of pretraining. The quantitative error incurred during pretrain-
ing is not pertinent, so we examine some of the qualitative aspects of the learned features.
In Figure 8, we see that parasympathetic contribution roughly accords with SDNN in Fig-
ure 6, but is more sparse. In Figure 9, we see that the learned HRV metric is substantially
different than the known ones. Now we examine the accuracy of the algorithm on the re-
gression and comparison problems. As a baseline method, we consider a plain CNN, whose
architecture is the same as the sympathetic layer. We also consider what happens if we
didn’t pretrain the parasympathetic layer, but merely subtracted RMSSD from HR. For
the comparison problem, we consider using maximum heart rate as a ranking. We find that
our algorithm is superior to all of these baseline approaches. This suggests that both our
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Figure 9: The matrix of weights on the squared differences z; ;. Each entry was initialized to
the same value, but after training, there is clearly nonuniformity. The algorithm
seems to take advantage of the flexibility afforded by the additional parameters,
with a nontrivial weight pattern, and both positive and negative weights.

modeling effort and pretraining is worthwhile. However, the accuracy of all the methods is
still relatively poor. We believe this is simply due to the small amount of training data.

6. Discussion

Before discussing the our results, we recognize the following limitation: the wvalidity of
AAmylase as a marker of exercise intensity is outside the scope of our study. This question
is examined by previous works mentioned in the introduction. Importantly, the validity
of AAmylase may depend on the patient population. For example, cardiac rehabilitation
patients are often prescribe S-receptor antagonists, which inhibit both heart rate and likely
amylase response. We are presently focused on the purely quantitative prediction task.
Our main result is that AAmylase is (weakly) discernible solely from heartbeat data.
This is supported by the nontrivial regression and comparison accuracy of our model. A
secondary result is that it seems easier to predict AAmylase after attempting to subtract
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Algorithm Training Regression Error | Evaluation Regression Error
Plain CNN 8.02 26.29
No Pretrained PS | 12.28 19.21
Our Algorithm 10.04 15.12
Algorithm Training Comparison Error | Evaluation Comparison Error
Max HR 0.48 0.52
Plain CNN 0.11 0.53
No Pretrained PS | 0.37 0.41
Our Algorithm 0.28 0.34

Figure 10: Quantitative evaluation of the algorithm. Our algorithm is superior in both the
regression and comparison problems.

parasympathetic contribution. It is possible that that this is simply due to the larger number
of parameters in the pretrained model. However, this is unlikely, since the sympathetic layer
already has a large number of parameters, and its performance was not substantially affected
by adding more parameters.

Considering the small size of our dataset, this work should be considered a pilot study.
We identify, formalize, and initiate study of a machine learning problem, but do not ad-
equately solve it. Accordingly, we offer a methodological suggestions for future studies:
Point-of-care devices are not recommended for large-scale use. Delicate use of the devices
is necessary, and probably would not occur without careful instruction and/or supervision.

7. Conclusions and Future Work

This paper made the following contributions. (1) We initiated the study of a new supervised
learning problem. (2) We collect a dataset large enough to conduct a pilot study. (3) We
generalize HRV metrics to allow them to express parasympathetic contribution to heart
rate. (4) We train and evaluate a physiologically-informed machine learning model. It
outperforms baseline methods used by practitioners.

Due to the relatively small size of our dataset, our quantitative results should be con-
sidered preliminary. We are interested to see if they generalize to a larger-scale study.

References

Inger-Lise Aamot, Siv Hege Forbord, Trine Karlsen, and Asbjgrn Stgylen. Does rating of
perceived exertion result in target exercise intensity during interval training in cardiac
rehabilitation? a study of the borg scale versus a heart rate monitor. Journal of science
and medicine in sport, 17(5):541-545, 2014.

Kazunori Akizuki, Syouichirou Yazaki, Yuki Echizenya, and Yukari Ohashi. Anaerobic
threshold and salivary a-amylase during incremental exercise. Journal of physical therapy
science, 26(7):1059-1063, 2014.

17



Babak Mohammadzadeh Asl, Ahmad R Sharafat, and S Kamaledin Setarehdan. An adap-
tive backpropagation neural network for arrhythmia classification using rr interval signal.
Neural Network World, 22(6):535, 2012.

Romeo B Batacan, Mitch J Duncan, Vincent J Dalbo, Patrick S Tucker, and Andrew S
Fenning. Effects of high-intensity interval training on cardiometabolic health: a system-
atic review and meta-analysis of intervention studies. Br J Sports Med, 51(6):494-503,
2017.

Olga L Bocanegra, Miguel M Diaz, Renata R Teixeira, Silvio S Soares, and Foued S Es-
pindola. Determination of the lactate threshold by means of salivary biomarkers: chro-
mogranin a as novel marker of exercise intensity. Furopean journal of applied physiology,
112(9):3195-3203, 2012.

Silke Boettger, Christian Puta, Vikram K Yeragani, Lars Donath, Hans-Josef Mueller,
Holger HW Gabriel, and Karl-Juergen Baer. Heart rate variability, qt variability, and

electrodermal activity during exercise. Medicine € science in sports € exercise, 42(3):
443448, 2010.

Jos A. Bosch, Enno C.I. Veerman, Eco J. de Geus, and Gordon B. Proctor. -amylase as a
reliable and convenient measure of sympathetic activity: dont start salivating just yet!
Psychoneuroendocrinology, 36(4):449 — 453, 2011. ISSN 0306-4530. doi: https://doi.
org/10.1016/j.psyneuen.2010.12.019. URL http://www.sciencedirect.com/science/
article/pii/S0306453011000072.

Martin Buchheit, Paul B Laursen, and Said Ahmaidi. Parasympathetic reactivation after
repeated sprint exercise. American journal of physiology-heart and circulatory physiology,
293(1):H133-H141, 2007.

Felipe Calvo, José L Chicharro, Fernando Bandrés, Alejandro Lucia, Margarita Pérez, Julian
Alvarez, Luis L Mojares, Almudena F Vaquero, and Julio C Legido. Anaerobic threshold
determination with analysis of salivary amylase. Canadian Journal of Applied Physiology,
22(6):553-561, 1997.

Daniel L Carl, Pierce Boyne, Bradley Rockwell, Myron Gerson, Jane Khoury, Brett Kissela,
and Kari Dunning. Preliminary safety analysis of high-intensity interval training (hiit)
in persons with chronic stroke. Applied physiology, nutrition, and metabolism, 42(3):
311-318, 2016.

José L Chicharro, Alejandro Lucia, Margarita Pérez, Almudena F Vaquero, and Rosario
Urena. Saliva composition and exercise. Sports medicine, 26(1):17-27, 1998.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 933-941. JMLR. org, 2017.

Zuzana de Jong, Marten Munneke, Aeilko H. Zwinderman, Herman M. Kroon, Annemarie
Jansen, Karel H. Ronday, Dirkjan van Schaardenburg, Ben A. C. Dijkmans, Cor-
nelia H. M. Van den Ende, Ferdinand C. Breedveld, Theodora P. M. Vliet Vlieland,

18


http://www.sciencedirect.com/science/article/pii/S0306453011000072
http://www.sciencedirect.com/science/article/pii/S0306453011000072

and Johanna M. W. Hazes. Is a long-term high-intensity exercise program effective
and safe in patients with rheumatoid arthritis?: Results of a randomized controlled
trial.  Arthritis & Rheumatism, 48(9):2415-2424, 2003. doi: 10.1002/art.11216. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/art.11216.

VN De Oliveira, A Bessa, RPMS Lamounier, MG De Santana, MT De Mello, and F'S Espin-
dola. Changes in the salivary biomarkers induced by an effort test. International journal
of sports medicine, 31(06):377-381, 2010.

James L Devin, Michelle M Hill, Marina Mourtzakis, Joe Quadrilatero, David G Jenkins,
and Tina L Skinner. Acute high intensity interval exercise reduces colon cancer cell
growth. The Journal of physiology, 2019.

Robert Edelberg. Effect of vasoconstriction on galvanic skin response amplitude. Journal
of applied physiology, 19(3):427-430, 1964.

@yvind Ellingsen, Martin Halle, Viviane Conraads, Asbjgrn Stgylen, Havard Dalen, Charles
Delagardelle, Alf-Inge Larsen, Torstein Hole, Alessandro Mezzani, Emeline M Van Crae-
nenbroeck, et al. High-intensity interval training in patients with heart failure with
reduced ejection fractionclinical perspective. Circulation, 135(9):839-849, 2017a.

Oyvind Ellingsen, Martin Halle, Eva Prescott, and Axel Linke. Response by ellingsen
et al to letters regarding article, “high-intensity interval training in patients with heart
failure with reduced ejection fraction”. Circulation, 136(6):611-612, 2017b. doi: 10.1161/
CIRCULATIONAHA.117.029145. URL https://www.ahajournals.org/doi/abs/10.
1161/CIRCULATIONAHA.117.029145.

Adrian D Elliott, Kanchani Rajopadhyaya, David J Bentley, John F Beltrame, and
Edoardo C Aromataris. Interval training versus continuous exercise in patients with
coronary artery disease: a meta-analysis. Heart, Lung and Circulation, 24(2):149-157,
2015.

Oliver Faust, Alex Shenfield, Murtadha Kareem, Tan Ru San, Hamido Fujita, and U Ra-
jendra Acharya. Automated detection of atrial fibrillation using long short-term memory
network with rr interval signals. Computers in biology and medicine, 102:327-335, 2018.

James P Fisher, Ahmed M Adlan, Alena Shantsila, J Frederik Secher, Henrik Sgrensen, and
Niels H Secher. Muscle metaboreflex and autonomic regulation of heart rate in humans.
The Journal of physiology, 591(15):3777-3788, 2013.

Martin Gjoreski, Hristijan Gjoreski, Mitja Lustrek, and Matjaz Gams. Deep affect recog-
nition from rr intervals. In Proceedings of the 2017 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International
Symposium on Wearable Computers, pages 754-762. ACM, 2017.

Guido Grassi and Murray Esler. How to assess sympathetic activity in humans. Journal of
hypertension, 17(6):719-734, 1999.

19


https://onlinelibrary.wiley.com/doi/abs/10.1002/art.11216
https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.117.029145
https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.117.029145

Amanda L Hannan, Wayne Hing, Vini Simas, Mike Climstein, Jeff S Coombes, Rohan
Jayasinghe, Joshua Byrnes, and James Furness. High-intensity interval training versus
moderate-intensity continuous training within cardiac rehabilitation: a systematic review
and meta-analysis. Open access journal of sports medicine, 9:1, 2018.

Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison, Codie
Bourn, Mintu P Turakhia, and Andrew Y Ng. Cardiologist-level arrhythmia detection
and classification in ambulatory electrocardiograms using a deep neural network. Nature
medicine, 25(1):65, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European conference on computer vision, pages 630—645. Springer,
2016.

Charlotte Jelleyman, Thomas Yates, Gary O’Donovan, Laura J Gray, James A King, Kam-
lesh Khunti, and Melanie J Davies. The effects of high-intensity interval training on
glucose regulation and insulin resistance: a meta-analysis. Obesity reviews, 16(11):942—
961, 2015.

Charlotte Lauren Jelleyman. High-intensity physical activity for improving glucose regqula-
tion: can science justify IT? PhD thesis, Department of Cardiovascular Sciences, 2018.

Prince J Kannankeril, Francis K Le, Alan H Kadish, and Jeffrey J Goldberger. Parasym-
pathetic effects on heart rate recovery after exercise. Journal of investigative medicine,
52(6):394-401, 2004.

Holly S Kessler, Susan B Sisson, and Kevin R Short. The potential for high-intensity interval
training to reduce cardiometabolic disease risk. Sports medicine, 42(6):489-509, 2012.

Eri Koibuchi and Yoshio Suzuki. Exercise upregulates salivary amylase in humans. Ezper-
imental and therapeutic medicine, 7(4):773-777, 2014.

Docent Juhani Koistinen and Docent Tomi Laitinen. Effect of physical exercise on auto-
nomic regulation of heart rate. 2004.

FEric P. Lehman, Rahul G. Krishnan, Xiaopeng Zhao, Roger G. Mark, and Li-wei H.
Lehman. Representation learning approaches to detect false arrhythmia alarms from
ecg dynamics. In Finale Doshi-Velez, Jim Fackler, Ken Jung, David Kale, Rajesh
Ranganath, Byron Wallace, and Jenna Wiens, editors, Proceedings of the 3rd Ma-
chine Learning for Healthcare Conference, volume 85 of Proceedings of Machine Learn-
ing Research, pages 571-586, Palo Alto, California, 17-18 Aug 2018. PMLR. URL
http://proceedings.mlr.press/v85/lehmani8a.html.

TL Li and Michael Gleeson. The effect of single and repeated bouts of prolonged cycling
and circadian variation on saliva flow rate, immunoglobulin a and-amylase responses. J

sports Sci, 22(11-12):1015-1024, 2004.

NEAL Lippman, KENNETH M Stein, and BRUCE B Lerman. Comparison of methods
for removal of ectopy in measurement of heart rate variability. American Journal of
Physiology-Heart and Circulatory Physiology, 267(1):H411-H418, 1994.

20


http://proceedings.mlr.press/v85/lehman18a.html

Theresa Mann, Robert Patrick Lamberts, and Michael lan Lambert. Methods of prescribing
relative exercise intensity: physiological and practical considerations. Sports medicine,
43(7):613-625, 2013.

FErrol B Marliss and Mladen Vranic. Intense exercise has unique effects on both insulin
release and its roles in glucoregulation: implications for diabetes. Diabetes, 51(suppl 1):
S271-S283, 2002.

Scott Michael, Kenneth S Graham, and Glen M Davis. Cardiac autonomic responses during
exercise and post-exercise recovery using heart rate variability and systolic time intervalsa
review. Frontiers in physiology, 8:301, 2017a.

Scott Michael, Ollie Jay, Kenneth S Graham, and Glen M Davis. Higher exercise intensity
delays postexercise recovery of impedance-derived cardiac sympathetic activity. Applied
Physiology, Nutrition, and Metabolism, 42(8):834-840, 2017b.

Scott Michael, Ollie Jay, Kenneth S Graham, and Glen M Davis. Longer exercise duration
delays post-exercise recovery of cardiac parasympathetic but not sympathetic indices.
European journal of applied physiology, 117(9):1897-1906, 2017c.

Zoran Milanovi¢, Goran Spori§, and Matthew Weston. FEffectiveness of high-intensity in-
terval training (hit) and continuous endurance training for vo 2max improvements: a
systematic review and meta-analysis of controlled trials. Sports medicine, 45(10):1469—
1481, 2015.

Jeffrey P Moak, David S Goldstein, Basil A Eldadah, Ahmed Saleem, Courtney Holmes,
Sandra Pechnik, and Yehonatan Sharabi. Supine low-frequency power of heart rate vari-
ability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm,
4(12):1523-1529, 2007.

GB Moody. Rr interval time series modeling: the physionet/computers in cardiology chal-
lenge 2002. In Computers in Cardiology, pages 125-128. IEEE, 2002.

Urs M Nater and N Rohleder. Salivary alpha-amylase as a non-invasive biomarker for the
sympathetic nervous system: current state of research. Psychoneuroendocrinology, 34(4):
486—496, 2009.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-
ative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

Henry T Peng, Erin Savage, Oshin Vartanian, Shane Smith, Shawn G Rhind, Catherine
Tenn, and Stephen Bjamason. Performance evaluation of a salivary amylase biosensor for

stress assessment in military field research. Journal of clinical laboratory analysis, 30(3):
223-230, 2016.

Hugo F Posada-Quintero, Natasa Reljin, Craig Mills, Ian Mills, John P Florian, Jaci L. Van-
Heest, and Ki H Chon. Time-varying analysis of electrodermal activity during exercise.
PloS one, 13(6):e0198328, 2018.

21



Gustavo A Reyes del Paso, Wolf Langewitz, Lambertus JM Mulder, Arie Van Roon, and Ste-
fan Duschek. The utility of low frequency heart rate variability as an index of sympathetic
cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiol-
09y, 50(5):477-487, 2013.

Nicolas Rohleder and Urs M Nater. Determinants of salivary a-amylase in humans and
methodological considerations. Psychoneuroendocrinology, 34(4):469-485, 2009.

Fred Shaffer and JP Ginsberg. An overview of heart rate variability metrics and norms.
Frontiers in public health, 5:258, 2017.

Fred Shaffer, Rollin McCraty, and Christopher L Zerr. A healthy heart is not a metronome:
an integrative review of the heart’s anatomy and heart rate variability. Frontiers in
psychology, 5:1040, 2014.

Vivek Shetty, Corwin Zigler, Theodore F Robles, David Elashoff, and Masaki Yamaguchi.
Developmental validation of a point-of-care, salivary a-amylase biosensor. Psychoneu-
roendocrinology, 36(2):193-199, 2011.

J. Kevin Shoemaker, Stephen A. Klassen, Mark B. Badrov, and Paul J. Fadel. Fifty years of
microneurography: learning the language of the peripheral sympathetic nervous system
in humans. Journal of Neurophysiology, 119(5):1731-1744, 2018. doi: 10.1152/jn.00841.
2017. URL https://doi.org/10.1152/jn.00841.2017. PMID: 29412776.

Theresa A Strzelczyk, Rebecca J Quigg, Pamela B Pfeifer, Michele A Parker, and Philip
Greenland. Accuracy of estimating exercise prescription intensity in patients with left
ventricular systolic dysfunction. Journal of Cardiopulmonary Rehabilitation and Preven-
tion, 21(3):158-163, 2001.

Hirofumi Tanaka, Kevin D Monahan, and Douglas R Seals. Age-predicted maximal heart
rate revisited. Journal of the american college of cardiology, 37(1):153-156, 2001.

Bianca Lee Thomas, Nicolaas Claassen, Piet Becker, and Margaretha Viljoen. Validity
of commonly used heart rate variability markers of autonomic nervous system function.
Neuropsychobiology, 78(1):14-26, 2019.

Markos G Tsipouras, Dimitrios I Fotiadis, and D Sideris. An arrhythmia classification
system based on the rr-interval signal. Artificial intelligence in medicine, 33(3):237-250,
2005.

Jessica L Unick, Sarah Gaussoin, Judy Bahnson, Richard Crow, Jeff Curtis, Tina Killean,
Judith G Regensteiner, Kerry J Stewart, Rena R Wing, John M Jakicic, et al. Valid-
ity of ratings of perceived exertion in patients with type 2 diabetes. Journal of novel
physiotherapy and physical rehabilitation, 1(1), 2014.

Gaetano Valenza, Luca Citi, J. Philip Saul, and Riccardo Barbieri. Measures of sympathetic
and parasympathetic autonomic outflow from heartbeat dynamics. Journal of Applied
Physiology, 125(1):19-39, 2018. doi: 10.1152/japplphysiol.00842.2017. URL https://
doi.org/10.1152/japplphysiol.00842.2017. PMID: 29446712.

22


https://doi.org/10.1152/jn.00841.2017
https://doi.org/10.1152/japplphysiol.00842.2017
https://doi.org/10.1152/japplphysiol.00842.2017

Ake B. Vallbo, Karl-Erik Hagbarth, and B. Gunnar Wallin. Microneurography: how the
technique developed and its role in the investigation of the sympathetic nervous system.
Journal of Applied Physiology, 96(4):1262-1269, 2004. doi: 10.1152/japplphysiol.00470.
2003. URL https://doi.org/10.1152/japplphysiol.00470.2003. PMID: 15016790.

Marieke van Dooren, Joris H Janssen, et al. Emotional sweating across the body: Comparing
16 different skin conductance measurement locations. Physiology € behavior, 106(2):298—
304, 2012.

Kassia S Weston, Ulrik Wislgff, and Jeff S Coombes. High-intensity interval training in
patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-
analysis. Br J Sports Med, 48(16):1227-1234, 2014.

Michael A Wewege, Dohee Ahn, Jennifer Yu, Kevin Liou, and Andrew Keech. High-intensity
interval training for patients with cardiovascular diseaseis it safe? a systematic review.
Journal of the American Heart Association, 7(21):¢009305, 2018.

Daniel W White and Peter B Raven. Autonomic neural control of heart rate during dynamic
exercise: revisited. The Journal of physiology, 592(12):2491-2500, 2014.

23


https://doi.org/10.1152/japplphysiol.00470.2003

	Introduction
	Our contribution
	Outline

	Study Design
	Cohort Selection
	Data collection

	Basic Data Preprocessing and Analysis
	Noise
	Heart Rate and Amylase

	Machine Learning Algorithm
	Problem formulation
	Key Intuitions
	Pretrained Parasympathetic Layer
	Sympathetic Layer
	Implementation details
	Related Work

	Machine Learning Results
	Discussion
	Conclusions and Future Work

