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Abstract
Sepsis is a life-threatening host response to infection that is associated with high mortality,
morbidity, and health costs. Its management is highly time-sensitive because each hour
of delayed treatment increases mortality due to irreversible organ damage. Meanwhile,
despite decades of clinical research, robust biomarkers for sepsis are missing. Therefore,
detecting sepsis early by utilizing the a✏uence of high-resolution intensive care records has
become a challenging machine learning problem. Recent advances in deep learning and
data mining promise to deliver a powerful set of tools to e�ciently address this task. This
empirical study proposes two novel approaches for the early detection of sepsis: a deep
learning model and a lazy learner that is based on time series distances. Our deep learning
model employs a temporal convolutional network that is embedded in a multi-task Gaussian
Process adapter framework, making it directly applicable to irregularly-spaced time series
data. In contrast, our lazy learner is an ensemble approach that employs dynamic time
warping. We frame the timely detection of sepsis as a supervised time series classification
task. Consequently, we derive the most recent sepsis definition in an hourly resolution to
provide the first fully accessible early sepsis detection environment. Seven hours before
sepsis onset, our methods improve area under the precision–recall curve from 0.25 to 0.35
and 0.40, respectively, over the state of the art. This demonstrates that they are well-suited
for detecting sepsis in the crucial earlier stages when management is most e↵ective.

1. Introduction

Sepsis is defined as a life-threatening organ dysfunction that is caused by a dysregulated
host response to infection (Singer et al., 2016). Despite decades of clinical research, sepsis
remains a major public health issue that is associated with high mortality, morbidity, and
related health costs (Dellinger et al., 2013; Kaukonen et al., 2014; Hotchkiss et al., 2016).

Currently, when sepsis is detected and the underlying pathogen is identified, organ
damage has already progressed to a potentially irreversible stage. E↵ective management,
especially in the intensive care unit (ICU), is of critical importance. From sepsis onset,
each hour of delayed e↵ective antibiotic treatment increases mortality (Ferrer et al., 2014).
Therefore, early detection of sepsis has gained considerable attention in the machine learn-
ing community (Kam and Kim, 2017; Futoma et al., 2017a). The task of detecting sepsis
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early has often been modeled as a multi-channel time series classification task. Clinical
data is commonly sampled irregularly, thus often requiring a set of hand-crafted prepro-
cessing steps, such as binning, carry-forward imputation, and rolling means (Calvert et al.,
2016; Desautels et al., 2016) prior to the application of a predictive model. However, these
imputation schemes lead to a loss of data sparsity, which may carry crucial information
in this context. Most existing approaches are incapable of retaining sampling information,
thereby potentially impeding the training and leading to lower predictive performance. Fu-
toma et al. (2017a) proposed a sepsis detection method that accounts for irregular sampling
by applying the Gaussian Process adapter end-to-end learning framework (Li and Marlin,
2016) and then training it using a long short-term memory (LSTM) classifier (Hochreiter
and Schmidhuber, 1997). Only recently have convolutional networks gained attention in
sequence modeling (Gehring et al., 2017; Vaswani et al., 2017). In particular, temporal
convolutional networks (TCNs; Lea et al. (2017)), have been shown to outperform conven-
tional recurrent neural network (RNN) architectures for many sequential learning tasks in
terms of evaluation metrics, memory e�ciency, and parallelism (Bai et al., 2018). In light
of these developments, we propose a deep learning model as an end-to-end trainable frame-
work for early sepsis detection that builds on both multi-task Gaussian Process (MGP)
adapters (which are an extension of Gaussian Process adapters to multi-task learning) and
TCNs. We refer to this model as MGP-TCN because it combines the uncertainty-aware
framework of GP adapters with TCNs. The contributions of our work are threefold:

• We present a lazy learner that is based on dynamic time warping and k-nearest neigh-
bors (DTW-KNN), which can be seen as a multi-channel ensemble extension of a
well-established data mining technique for time series classification. Moreover, we
develop MGP-TCN, which is the first model that can leverage temporal convolutions
on irregularly-sampled multivariate time series.

• We provide the first fully-accessible framework for the early detection of sepsis on a
benchmark dataset featuring a publicly available temporally resolved Sepsis-3 label
to enable community-based sepsis detection research1.

• We present a detailed experimental setup in which we empirically demonstrate that
our methods outperform the state of the art in detecting sepsis early.

Technical Significance Ours is the first work to combine the MGP adapter frame-
work (Bonilla et al., 2008; Li and Marlin, 2016) with TCNs (Lea et al., 2017), thus improving
memory e�ciency, scalability, and classification performance for sepsis early detection on
irregularly-sampled time series. We outperform the state-of-the-art method and improve
AUPRC from 0.25 to 0.35/0.40, respectively (measured 7 h before sepsis onset).

Clinical Relevance The delayed identification and treatment of sepsis is a major driver
of mortality in the ICU. By detecting sepsis earlier, our approach could significantly decrease
mortality, because timely management is essential in this context (Ferrer et al., 2014). An
early warning system that is based on our methods could prevent delays in the initiation
of antimicrobial and supportive therapy, which are considered to be crucial for improving
patient outcome (Kumar et al., 2006).

1. See https://github.com/BorgwardtLab/mgp-tcn for more details.
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2. Related Work

This section introduces the recent literature and current challenges for sepsis detection.

2.1. Supervised Learning on Medical Time Series

Supervised learning on time series datasets has been haunted by the crux that labels per
time point are often missing, especially in medical applications (Reddy and Aggarwal, 2015).
This hindrance also applies to the early detection of sepsis. In previous work, it was usually
circumvented by applying ad-hoc schemes to determine resolved sepsis labels (Calvert et al.,
2016; Mao et al., 2018; Kam and Kim, 2017). These papers used a global time series label,
such as an ICD disease code intended for billing, and they estimated sepsis onset with easily
computable ad-hoc criteria. However, when using such a patchwork label, it is unclear if the
patient actually su↵ered from an event at this time and not, for instance, one week later.

By extracting Sepsis-3, which is the most recent sepsis criterion (Singer et al., 2016)
that allows for temporal resolution, we contribute a solution to this issue that continues to
a↵ect the study of machine learning for healthcare. Even though some datasets (Futoma
et al., 2017a; Desautels et al., 2016) have high-resolution sepsis labels, they are currently
not accessible to the research community. This leads to reproducibility and comparability
issues. Thus, there are massive hurdles to overcome before novel approaches for sepsis
detection can be developed and thoroughly validated.

2.2. Algorithms for the Early Detection of Sepsis

Overview In the last decade, several data-driven approaches for detecting sepsis in the
ICU have been presented (Desautels et al., 2016; Calvert et al., 2016; Kam and Kim, 2017;
Futoma et al., 2017a; Shashikumar et al., 2017). Many approaches selectively compare
with simple clinical scores, such as SIRS, NEWS or MEWS (Bone et al., 1992; Williams
et al., 2012; Stenhouse et al., 2000). However, none of these scores are intended as specific,
continuously-evaluated risk scores for sepsis. Specifically, the SIRS criteria are now con-
sidered by clinicians to be unspecific and obsolete for the definition of sepsis (Beesley and
Lanspa, 2015; Kaukonen et al., 2015). As an alternative to these scores, Henry et al. (2015)
introduced a targeted real-time warning score (TREWScore) to predict septic shock, which
is a frequent complication following from sepsis. Notably, while many machine learning
methods have surpassed generic or simplistic clinical schemes, next to no papers actually
performed the hard comparison to other machine learning approaches in the literature. As
an exception, the application of LSTMs (Kam and Kim, 2017) have been shown to be an
improvement over the InSight model (Calvert et al., 2016), which is a regression model with
hand-crafted features. However, only reported metrics were compared, whereas potentially
di↵ering processing pipelines and label implementations (which are closed source) could
make a direct comparison problematic. These circumstances prompted us to baseline our
work against state-of-the-art machine learning methods and on exactly the same sepsis early
recognition pipeline, which we make publicly available.

State of the Art Sepsis detection methods are usually developed on real-world datasets
with prevalence values ranging from 6.6% (Kam and Kim, 2017) to 21.4% (Futoma et al.,
2017a). Despite this considerable class imbalance, to our knowledge, only Futoma et al.
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(2017a) and Desautels et al. (2016) report the area under the precision–recall curve (AUPRC),
in addition to the area under the receiver operating characteristic curve (AUC). Given the
class imbalance, AUC is known to be a less informative evaluation criterion (Saito and
Rehmsmeier, 2015). Thus, in terms of AUPRC, Futoma et al. (2017a) currently repre-
sent the state of the art in the early detection of sepsis. In a follow-up paper, Futoma
et al. (2017b) improved their performance by proposing task-specific tweaks, such as label-
propagation, additional feature extraction (e.g. missingness indicators), and separate task
correlation matrices for their Gaussian Process. However, these extensions pertain to the
input features and they modify the GP adapter framework as wrapped around their clas-
sifier, so they are orthogonal to our undertaking of improving the classifier inside the GP
adapter framework.

2.3. Gaussian Process Adapters

Li and Marlin (2016) showed that optimizing a Gaussian Process imputation of a time series
end-to-end using the gradients of a subsequent classifier leads to better performance than
optimizing both the classifier and the GP separately. This method, which is also referred
to as GP adapters, is not restricted to imputing missing data (Li et al., 2017). Recently,
Futoma et al. (2017a) demonstrated that GP adapters are a well-suited framework to han-
dle the irregularly spaced time series in early sepsis detection. Specifically, they confirmed
earlier findings (Li and Marlin, 2016) that in time series classification, GP adapters outper-
form conventional GP imputation schemes that require a separate optimization step, which
is not driven by the classification task.

3. Methods

In the following, we describe our proposed MGP-TCN and DTW-KNN methods2. First,
Section 3.1 gives a high-level overview of our deep learning method3, emphasizing the MGP
component (i.e., the first building block of the method) which as a whole was previously
applied by Futoma et al. (2017a). Section 3.2 then describes temporal convolutional net-
works (TCNs), the second building block. Finally, Section 3.3 describes DTW-KNN.

3.1. Multi-task Gaussian Process Temporal Convolutional Network Classifier

We frame the early detection of sepsis in the ICU as a multivariate time series classification
task. Specifically, we focus on the task of identifying sepsis onset in irregularly-sampled mul-
tivariate time series of physiological measurements in ICU patients. Our proposed model
uses a multi-task Gaussian Process (MGP) (Bonilla et al., 2008) that is intrinsically capable
of dealing with non-uniform sampling frequencies. In this setting, the tasks considered by
the MGP are the individual channels of the time series. More precisely, given irregularly-
observed measurements (values and times) {yi, ti} of encounter i, for evenly-spaced query
times xi, the MGP draws a latent time series zi following the MGP’s posterior distribution
P(zi|yi, ti,xi;✓) (see Equation 1). zi then serves as the input to a temporal convolutional
network (TCN, Section 3.2) that predicts the sepsis label. Making use of the Gaussian

2. Our notation uses regular font for scalars, bold lower-case for vectors, and bold upper-case for matrices.

3. Please refer to Supplementary Section A.1 for more details on the end-to-end MGP adapter framework.
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Measurements
{yi, ti}Ni=1

MGP
zi ⇠ P(zi|yi, ti,xi;✓)

TCN
pi = f(zi;w)

Loss
L(pi, li;✓,w)

r✓,wL
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n
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observed times queried times

yi observed values
zi MGP posterior
✓ MGP parameters
w TCN parameters
pi prediction
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Figure 1: Overview of our model. Raw, irregularly-spaced time series are provided to the
multi-task Gaussian Process (MGP) for each patient. The MGP then draws
from a posterior distribution, given the observed data, at evenly-spaced grid
times (each hour). This grid is then fed into a temporal convolutional net-
work (TCN) which, after a forward pass, returns a loss. Its gradient is then
computed by backpropagation through both the TCN and the MGP (green ar-
rows). All parameters are learned end-to-end during training.

Process adapter framework (Li and Marlin, 2016) enables us to optimize this entire process
end-to-end with respect to the final classification objective; that is, identifying sepsis. Fig-
ure 1 gives a high-level overview of the MGP-TCN model. The MGP’s posterior distribution
follows a multivariate normal distribution, i.e.

zi ⇠ N
�
µ(zi),⌃(zi);✓

�
, (1)

with mean and covariance

µ(zi) = (KD
⌦KXiTi)(KD

⌦KTi +D⌦ I)�1yi (2)

⌃(zi) = (KD
⌦KXi)� (KD

⌦KXiTi)(KD
⌦KTi +D⌦ I)�1(KD

⌦KTiXi). (3)

Here, KXiTi refers to the correlation matrix between the evenly-spaced query times xi and
the observed times ti, whileKXi represents the correlations between xi with itself. KD is the
task-similarity kernel matrix whose entry KD

d,d0 at position (d, d0) represents the similarity

of tasks (i.e., time series channels) d and d0. ⌦ denotes the Kronecker product, and KTi

represents an encounter-specific Ti⇥Ti correlation matrix between all observed times ti 2 ti
of patient encounter i, while D is a diagonal matrix of per-task noise variances satisfying
Ddd = �2

d and I refers to the identity matrix. The posterior mean µ(zi) also depends on the
observed values yi. We gather the MGP’s parameters in ✓ = {KD,�2

d|
D
d=1

, l} where l refers
to the length scale of the kernel function. For more details, please refer to Section A.1.

3.2. Temporal Convolutional Networks

This section outlines the details of a generic temporal convolutional network (TCN) architec-
ture. TCNs have recently been proposed (Lea et al., 2017) as an extension of convolutional
neural networks (CNNs), which are known to exhibit state-of-the-art performance in visual
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Figure 2: Schematic illustration of the TCN architecture. The input zi values (blue) of the
TCN classifier are computed by the multi-task Gaussian Process on a regular grid
(x0, . . . , xt) based on the observed values (yellow). Each temporal block skips an
increasing number of the previous layer’s outputs, such that the visible window

of a single node increases exponentially with increasing number of layers. Figure
recreated from Bai et al. (2018).

tasks (Cireşan et al., 2011, 2012). An empirical study by Bai et al. (2018) demonstrated
that TCNs show superior performance for sequence modeling tasks, as compared to recur-
rent neural networks. Please see Figure 2 for an illustration of our TCN architecture, for
which the subsequent sections provide more details.

Causal Dilated Convolutions TCNs are a simple but powerful extension to conven-
tional 1D-CNNs in that they exhibit three properties (Bai et al., 2018):

1. Sequence to sequence: The output of a TCN has the same length as its input.

2. Convolutions are causal: Outputs are only influenced by present and past inputs.

3. Long e↵ective memory: By using dilated convolutions, the receptive field, and
thus also the e↵ective memory, grows exponentially with increasing network depth.

For 1. and 2., we use zero-padding to enforce equal layer sizes throughout all layers while
ensuring that for the output at time t, only input values at this time and earlier times can
be used (see Figure 2). For 3., we follow the approach of Yu and Koltun (2015) by defining
the l-dilated convolution of an input sequence x with a filter f as

(x ⇤l f) (k) =
X

k=i+l·j
xi · fj , (4)

where the 1-dilated convolution coincides with the regular convolution. By stacking l-dilated
convolutions in an exponential manner, such that l = 2n for the n-th layer, a long e↵ective
memory can be achieved, as illustrated by Bai et al. (2018).
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Figure 3: For each encounter with a suspicion of infection (SI), we extract a 72 h window
around the first SI event (starting 48 h before) as the SI-window. The Sequential
Organ Failure Assessment (SOFA) score is then evaluated for every hour in this
window by combining physiological scores of six organ systems. Following the
SOFA definition, to arrive at a SOFA score we considered the worst organ scores
of the last 24 h.

Residual Temporal Blocks We stack convolutional layers of a TCN into residual tem-
poral blocks; that is, blocks that combine the previous input and the result of the respective
convolution with an addition. Thus, the output of a temporal block is computed relatively
with respect to an input. Here, we follow the setup of Lee (2018), which applies layer nor-
malization (Ba et al., 2016) to improve training stability and convergence, as opposed to the
weight normalization employed by Bai et al. (2018). Furthermore, we apply normalization
after each activation, similar to Lee (2018).

3.3. Dynamic Time Warping Classifier

Dynamic time warping (Keogh and Pazzani, 1999) for time series classification, using k-
nearest neighbor approaches (here referred to as DTW-KNN), is known to exhibit highly
competitive predictive performance (Dau et al., 2017; Ding et al., 2008). As opposed to
many other o↵-the-shelf classifiers, it can handle variable-length time series. Despite its
wide-spread use and demonstrated capabilities in data mining, DTW-KNN has (to the best
of our knowledge) never been used in sepsis detection tasks. We thus extend DTW-KNN
for the classification of multivariate time series, thereby introducing an additional novel
approach for the early detection of sepsis. More precisely, we address the multivariate
nature of our setup by computing the DTW distance matrix (containing the pairwise dis-
tances between all patients) for each time series channel separately. Each distance matrix is
subsequently used for training a k-nearest neighbor classifier. Instead of using resampling
techniques, the ensemble is constructed by combining all per-channel classifiers. Finally,
for the classification step, the final prediction score is computed as the average over all
per-channel prediction scores.
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4. Experiments

4.1. Dataset and Sepsis Label Definition

Our analysis uses the MIMIC-III (Multiparameter Intelligent Monitoring in Intensive Care)
database, version 1.4 (Johnson et al., 2016). MIMIC-III includes over 58,000 hospital ad-
missions of over 45,000 patients, as encountered between June 2001 and October 2012. We
follow the most recent sepsis definition (Singer et al., 2016), which requires a co-occurrence
of suspected infection (SI) and organ dysfunction. For SI, we follow the recommendations
of Seymour et al. (2016) to implement the SI cohort (please refer to Supplementary Sec-
tion A.2.2 for more details).

According to Singer et al. (2016), the organ dysfunction criterion is fulfilled when the
SOFA Score (Vincent et al., 1996) shows an increase of at least 2 points. To determine this,
we follow the suggestions of Singer et al. to use a window of �48 h to 24 h around a suspi-
cion of infection. Figure 3 illustrates our Sepsis-3 implementation. To detect sepsis early,
determining the sepsis onset time is crucial. We thus considerably refined and extended
the queries provided by Johnson et al. (2018) to determine the Sepsis-3 label on an hourly
basis4. If sepsis is determined by merely checking whether a patient fulfills the criteria upon
admission, similarly to how it is done by Johnson et al. (2018), then only those patients who
arrive in the ICU with sepsis would be defined as cases, not the—arguably more interesting
ones—that develop the syndrome during their ICU stay.

4.2. Data Filtering

Patient Inclusion Criteria We exclude patients under the age of 15 and those for
which no chart data is available—including ICU admission or discharge time. Furthermore,
following the recent sepsis literature, ICU encounters logged via the CareVue system were
excluded due to underreported negative lab measurements (Desautels et al., 2016). We
include an encounter as a case if at any time during the ICU stay a sepsis onset occurs,
whereas controls are defined as those patients that have no sepsis onset (they still might have
suspected infection or organ dysfunction, separately). To additionally ensure that controls
cannot be sepsis patients that developed sepsis shortly before ICU, we require controls not
to be labeled with any sepsis-related ICD-9 billing code. Following these inclusion criteria,
we initially count 1,797 sepsis cases and 17,276 controls. This works aims for sepsis early

detection, so we follow Desautels et al. (2016) and exclude cases that develop sepsis earlier
than seven hours into the ICU stay. This enables a prediction horizon of 7 h. To preserve
a realistic class balance of around 10%, we apply this exclusion step only after the case–
control matching (see next paragraph). Thus, after cleaning and filtering, we finally use
570 cases and 5,618 controls as our cohort; Table 1 shows the summary statistics. For the
variables, we used 44 irregularly-sampled laboratory and vital parameters5. Furthermore,
to be able to run all baselines, we had to apply an additional patient filtering step6.

4. Their provided code only checks whether a simplified version of Sepsis-3 is satisfied upon admission. For

instance, no increase in SOFA points is considered, but only one abnormally high value.

5. Please see Supplementary Section A.3 for more details.

6. Please see Supplementary Section A.8 for more details.

8



Early Recognition of Sepsis with MGP-TCNs

Table 1: Characteristics of the population included in the dataset. The mean sepsis onset
is given in hours since admission to the ICU.

Variable Sepsis Cases Controls

n 570 5,618
Female 236 (41.4%) 2,548 (45.4%)
Male 334 (58.6%) 3,070 (54.6%)

Mean time to sepsis onset in ICU (median) 16.7 h (11.8 h) —
Age (µ± �) 67.2 ± 15.3 64.2 ± 17.3

Ethnicity

White 411 (72.1%) 4,047 (72.0%)
Black or African-American 41 (7.2%) 551 (9.8%)
Hispanic or Latino 7 (1.2%) 147 (2.6%)
Other 57 (10.0%) 493 (8.8%)
Not available 54 (9.5%) 380 (6.8%)

Admission type

Emergency 504 (88.4%) 4,689 (83.5%)
Elective 60 (10.5%) 872 (15.5%)
Urgent 6 (1.1%) 57 (1.0%)

Case–control Matching In previous work, it has been observed that an insu�cient
alignment of time series of sepsis cases versus controls could render the classification task
trivial: for instance, when comparing a window before sepsis onset to the last window (before
discharge) of a control’s ICU stay, the classification task is much easier than when compared
to a more similar reference time in a control’s stay. This can be observed by the decrease
in performance of the MGP-RNN method when Futoma et al. (2017b) applied case–control
matching. Hence, to avoid a trivial classification task, we also use a case–control alignment
in a matching procedure. To accommodate the class imbalance, we assign each case to 10
random unassigned controls and define their control onset as the absolute time (in hours
since admission) when the matched case fulfilled the sepsis criteria. Futoma et al. (2017b)
used a relative measure; that is, the same percentage of the entire ICU stay as for control
onset time. However, we observed that cases and controls do not necessarily share the same
length of stay, which could introduce bias to the alignment that a deep neural network could
potentially exploit. For each case and its matched controls, we extract up to 48 h of input
data preceding their onset and after ICU admission.

4.3. Experimental Setup

Baselines We compare our methods against MGP-RNN, which is the current state-of-
the-art sepsis detection method (Futoma et al., 2017a,b). To enable a fair comparison, the
authors kindly provided source code for their pipeline such that their model could be trained
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from scratch on our dataset. Additionally, we compare against a classical TCN (here referred
to as Raw-TCN) that is not embedded in the MGP adapter framework. To this end, as a
preprocessing step, we first impute the times series using a carry-forward scheme (for more
details, please refer to Supplementary Section A.4). We train our DTW-KNN ensemble
classifier using the same imputation scheme.

Training We apply three iterations of random splitting using 80% of the samples for
training and each 10% for validation and testing. In each random split, the time series were
z-scored per channel using the respective train mean and standard deviation. For hyperpa-
rameter tuning, due to the costly evaluations, we apply an o↵-the-shelf Bayesian optimiza-
tion framework (instead of an exhaustive grid search) provided by the scikit-optimize

library (scikit-optimize contributers, 2018) with 20 calls per method and split. We select
the best model parameters and checkpoints in terms of validation AUPRC and we evaluate
them on the test splits. For all deep models, the hyperparameter spaces were constrained
such that the number of parameters each ranged from 20K–500K. To make it feasible to
analyze multiple random splits (despite a deep learning setup), we constrain each run to
take at most two hours. To prevent underfitting, we additionally retrained the best pa-
rameter setting of each method and split for a longer period of 50 epochs. Please refer to
Supplementary Section A.7 for more details.

Evaluation Due to substantial class imbalance (the overall case prevalence is 9.2%, or
roughly 1 case for 10 controls), we evaluate all models in terms of AUPRC on the test split.
In addition, we report AUC, mostly to comply with recent sepsis detection literature (see
also Section 2.2 for a discussion of the disadvantages of this measure). Because timely
identification of sepsis is of central importance, we evaluate the trained models in a horizon
analysis going back up to 7 h before sepsis onset. For example, to evaluate the prediction
horizon at 3 h in advance, for each encounter, the model (and imputation scheme) is only
provided with input data up until that moment. To assess the predictive performance, we
do not optimize the models to each respective horizon hour, which would result in eight
distinct specialized models. Instead, per method and fold, we train one model on all of the
available training data and challenge its performance by gradually restricting access to the
information closest to sepsis onset.

Implementation Details Additional information about the technical details of our im-
plementation and its runtime behavior are available in Supplementary Section A.9.

4.4. Results

Figure 4 depicts the predictive performance for the di↵erent time horizons. The x-axes indi-
cate the prediction horizon in hours before sepsis onset. The y-axes measure AUPRC (left)
and AUC (right). As previously discussed, we focus on evaluating AUPRC due to the
substantial class imbalance (9.2%).

We observe that both our novel model MGP-TCN and our DTW-KNN ensemble method
consistently outperform the current state-of-the-art early sepsis detection classifier MGP-
RNN. Especially for the early detection task of more than 4 h before sepsis onset, both
MGP-TCN and DTW-KNN outperform the state of the art with a significant margin, while
the latter shows slightly higher performance in this regime. For horizons that are closer
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Figure 4: We evaluate all methods using area under the precision–recall curve (AUPRC)
and additionally display the (less informative) area under the receiver operating
characteristic curve (AUC). The current state-of-the-art method, MGP-RNN,
is shown in blue. The two approaches for early detection of sepsis that were
introduced in this paper (i.e., MGP-TCN and DTW-KNN) are shown in pink
and red, respectively. Using three random splits for all measures and methods,
we show the mean (line) and standard deviation error bars (shaded area).

to sepsis onset, namely 0 h to 3 h prior to onset, all approaches except Raw-TCN exhibit
overlapping performance in terms of their variance estimates. Interestingly, Raw-TCN does
not yield competitive results for any setting that was considered in our experimental setup.
With increasing distance to the onset, its performance starts to approximate that of the
MGP-RNN classifier. Finally, approaches based on simple imputation schemes (i.e., Raw-
TCN and DTW-KNN) exhibit a much flatter trend in AUPRC when approaching sepsis
onset than the MGP-imputed ones.

5. Conclusion

Our proposed methods MGP-TCN and DTW-KNN exhibit favorable performances over all
prediction horizons and they consistently outperform the state-of-the-art baseline classifier
MGP-RNN. Compared to the classic TCN, we empirically demonstrated that TCN-based
architectures—in combination with MGPs to account for uncertainty associated with ir-
regular sampling—result in competitive predictive performance. Specifically, in terms of
AUPRC, with MGP-TCN and DTW-KNN, we improve the current state of the art from
0.25 to 0.35 and 0.40, respectively, 7 h before sepsis onset. This confirms that recent ad-
vances in sequence modeling may be transferred successfully to irregularly-sampled medical
time series. By contrast, the low performance of the Raw-TCN classifier suggests that a
more advanced, uncertainty-aware imputation scheme is helpful when transferring “deep”
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approaches to our scenario. Furthermore, we observed that simple imputation schemes lead
to a smaller gain in performance when approaching sepsis onset. This could be due to the
nature of the carry-forward scheme, which tends to remove relevant sampling information.

When comparing our findings with the recent literature, we observe that the low preva-
lence in our dataset (9.2%) makes the classification task substantially harder. For instance,
in terms of AUPRC, MGP-RNN performed better on its original dataset (to which we un-
fortunately have no access), which has a prevalence of 21.4% (Futoma et al., 2017a). In
terms of prevalence and preprocessing, to our knowledge the most comparable setup would
be the one by Desautels et al. (2016); however, we have made several requests to obtain their
methods and queries, which have proven to be unsuccessful. Interestingly, their reported
AUPRC dropped to roughly 0.3 already at 1 h before sepsis onset, where, for example, our
proposed MGP-TCN method still achieves an AUPRC of 0.51.

One of the most surprising results is the highly-competitive performance of our DTW-
KNN ensemble classifier, whose performance for earlier horizons exceeds all of the other
methods, despite its conceptual simplicity. While this is highly relevant for the early detec-
tion of sepsis, the DTW-KNN classifier su↵ers from some practical limitations that impede
online monitoring scenarios and its application to very large patient cohorts. Already for
our dataset, using a standard implementation, predicting at one horizon may require hun-
dreds of millions of pairs of univariate time series to be aligned, followed by their distance
computation, and the subsequent storing of results (which potentially a↵ects both runtime
and memory). We conjecture that DTW-KNN performs so well because of the mid-range
sample size, whereas deep models tend to perform best for even larger sample sizes. How-
ever, scaling DTW-KNN to cohorts of hundreds of thousands of patients currently appears
to be a computational challenge. This also a↵ects online classification in the ICU: for each
new measurement of a patient, the distances of each involved channel to all patients in the
training cohort have to be updated, and partially recomputed. Consequently, intermedi-
ate results of the distance calculations need to be stored, leading to a significant memory
overhead. The problem thus remains a “hot topic” in time series analysis (Oregi et al.,
2017).

In contrast, MGP-TCN does not su↵er from these limitations because only the network
weights have to be stored and classifying a new patient is constant in the total number of
patients. Thus, MGP-TCN can be easily applied to larger cohorts, which is likely to further
increase predictive performance. Moreover, obtaining online predictions only requires very
slight modifications. For more details on the scaling behavior, please refer to Supplementary
Section A.6.

6. Future Work

An additional source of validation of our findings would be to test our model on more
datasets. For the early detection of sepsis, this is normally not done because the derivation
of properly-resolved, time-based sepsis labels requires considerable preprocessing e↵orts.
For example, in our work, the dynamic sepsis labels first required the implementation of
an entire query pipeline. Due to this bottleneck, the value of providing publicly accessible
sepsis labels for further research, as we do in this work, cannot be overstated. In the future,
we also would like to extend our analysis to more types of data sources arising from the
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ICU. Futoma et al. (2017b) already employed a subset of baseline covariates, medication
e↵ects, and missingness indicator variables. However, a multitude of feature classes still
remain to be explored and integrated, each posing unique challenges that will be interesting
to overcome. For instance, the combination of sequential and non-sequential features has
previously been handled by treating non-sequential features as sequential features (Futoma
et al., 2017a). We hypothesize that this could be handled more e�ciently by using a
more modular architecture that handles sequential and non-sequential features di↵erently.
Furthermore, we aim to obtain a better understanding of the time series features used by the
model. Specifically, we are interested in assessing the interpretability of the learned filters
of the MGP-TCN framework and then evaluate how much the activity of an individual
filter contributes to a prediction. This endeavor is somewhat facilitated by our use of a
convolutional architecture. The extraction of short per-channel signals could prove very
relevant for supporting diagnoses made by clinical practitioners.
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Appendix A. Supplementary Material

A.1. Multi-task Gaussian Process Adapters

A.1.1. Multi-task Gaussian Processes

We first describe how our approach models an individual time series with potentially dif-
ferent sampling frequencies and missing observations. To this end, we use a Gaussian

Process (GP). GPs are a popular choice to model time series because they can handle vari-
able spacing between observations. In addition, they capture the predictive uncertainty

associated with missing data. To account for multivariate time series, we make use of a
MGP (Bonilla et al., 2008) with the tasks representing the di↵erent medical variables.

Given a patient encounter i fully-observed at Ti times, we “unroll” the di↵erent channels
of the time series, gathering the values of D variables in a vector
yi = (y11, . . . , yTi1, . . . , y12, . . . , yTi2, . . . , y1D, . . . , yTiD)

T , and collect all Ti observation times
in a vector ti. In clinical practice, this array is sparse and hence ine�cient to store explicitly;
we only use it here for notational convenience. Each encounter receives a binary label li
indicating whether the patient develops sepsis during this stay.
We model the true value of encounter i and variable d at time t using a latent function
fi,d(t). The MGP places a Gaussian Process prior over the latent functions to directly
induce the correlation between tasks using a shared correlation function k⌧ (·, ·) over time.
Assuming zero-meaned GPs, we have:

hfi,d(t), fi,d0(t
0)i = KD

d,d0 k
⌧ (t, t0) (5)

yi,d(t) ⇠ N
�
fi,d (t) ,�

2

d

�
, (6)

where KD is the task-similarity kernel matrix whose entry KD
d,d0 at position (d, d0) represents

the similarity of tasks d and d0, while �2

d denotes the noise variance of task d. An entire,
fully-observed multivariate time series of encounter i follows

yi ⇠ N (0,⌃i) (7)

⌃i = KD
⌦KTi +D⌦ I, (8)

where ⌦ denotes the Kronecker product, and KTi represents an encounter-specific Ti ⇥ Ti

correlation matrix between all observed times ti 2 ti of encounter i, while D is a diagonal
matrix of per-task noise variances satisfying Ddd = �2

d. Building on previous work on
modeling noisy physiological time series (Williams and Rasmussen, 2006; Futoma et al.,
2017a), we use an Ornstein–Uhlenbeck kernel as a correlation function; that is, k⌧ (t, t0; l) :=
exp(�|t�t0|/l), parametrized using a length scale l. For simplicity, we shareKD and k⌧ (·, ·; l)
and the per-task noise variances across di↵erent patients. Hence, the parameterization of
the MGP can be summarized as

✓ = {KD,�2

d|
D
d=1

, l} (9)

or D2+D+1 parameters. In a fully-observed setting, ⌃i is a D ·Ti⇥D ·Ti covariance matrix.
However, in clinical practice, only a subset of allD variables is measured at most observation
times. Thus, we only have to compute entries of ⌃i for observed pairs of time and variable
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type. So for encounter i, if the number of all observed measurements mi < D · Ti, we only
compute an mi ⇥mi covariance matrix.

Following Futoma et al. (2017a), we use the MGP to preprocess the sparse and irregularly
spaced multi-channel time series of a patient’s measurements to output an regularly-spaced
time series driven by the final classification task. To achieve this, let X be a list of regularly-
spaced points in time that starts with the ICU admission as hour zero and continues by
counting the time since admission (in our case) in full hours. Using this grid, for each
encounter we derive a vector xi = (x1, . . . , xXi) of grid times which will be used as query
points for the MGP. More specifically, x1 = 0 and xn+1�xn = 1 for all encounters. We use
the next full hour after the last observed point in time as the encounter-specific last grid time
xXi (for more details on how we select the patient time window, please refer to Section 4.3).
On a patient level, the MGP induces a posterior distribution over the D ⇥ Xi matrix Zi

of imputed time series values at the Xi queried points in time for D tasks. As previously
shown (Bonilla et al., 2008; Futoma et al., 2017a), when stacking the columns of Zi such
that zi = vec(Zi), the posterior distribution follows a multivariate normal distribution

zi ⇠ N
�
µ(zi),⌃(zi);✓

�
(10)

with

µ(zi) = (KD
⌦KXiTi)⌃�1

i yi (11)

⌃(zi) = (KD
⌦KXi)

� (KD
⌦KXiTi)⌃�1

i (KD
⌦KTiXi).

(12)

Here, KXiTi refers to the correlation matrix between the queried grid times xi and the
observed times ti while KXi represents the correlations between xi with itself.

A.1.2. Classification Task

So far, we have outlined how the MGP returns an evenly-spaced multi-channel time series
Zi when given a patient’s raw time series data {yi, ti}. To train a model and ultimately
perform classification, we require a loss function. As Li and Marlin (2016) stated first, if Zi

were directly observed, it could be directly fed into a o↵-the-shelf classifier such that its loss
could be simply computed as L(f(Zi;w), li) with li denoting the class label. However, Zi

is actually a random variable and so is the loss function. We account for this by using the
expectation Ezi⇠N (µ(zi),⌃(zi);✓)[L(f(Zi;w), li)] as the overall loss function for optimization.
The learning task then becomes minimizing this loss over the entire dataset. Thus, we
search parameters w⇤,✓⇤ that satisfy:

w⇤,✓⇤ = argmin
w,✓

NX

i=1

Eiz }| {
Ezi⇠N (µ(zi),⌃(zi);✓)

⇥
L(f(Zi;w), li)

⇤
(13)

For many choices of f(·) the expectation Ei in Equation 13 is analytically not tractable.
We thus use Monte Carlo sampling with s samples to approximate this term as

Ei ⇡
1

S

SX

s=1

L(f(Zs;w), li), (14)
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where

vec(Zs) = zs ⇠ N
�
µ(zi),⌃(zi);✓

�
. (15)

To compute the gradients of this expression with respect to both the classifier parameters
w and the MGP parameters ✓, we make use of a reparametrization (Kingma and Welling,
2014) and set zi = µ(zi) + R⇠, where R satisfies ⌃(zi) = RRT and ⇠ ⇠ N (0, I). In
this work, for the sake of simplicity, we use a Cholesky decomposition to determine R and
refrain from more involved approximative techniques (such as the Lanczos approach used
by Li and Marlin (2016)).

A.2. Sepsis-3 Implementation

Following Singer et al. (2016) and Seymour et al. (2016), for each encounter with a suspicion
of infection (SI), for the first SI event we extract the 72 hours window around it (starting
48 hours before) as the SI-window.

A.2.1. Suspicion of Infection

To determine suspicion of infection, we follow Seymour et al. (2016)’s definition of the
suspected infection (SI) cohort. The SI criterion manifests in the timely co-occurrence of
antibiotic administration and body fluid sampling. If a culture sample was obtained before
the antibiotic, then the drug had to be ordered within 72 hours. If the antibiotic was
administered first the sampling had to follow within 24 hours. Here, we follow Johnson
et al. (2018) to use the sampling to define the SI time, whereas Seymour et al. (2016)
indicated that the specific SI windowing is rather arbitrary and could be chosen di↵erently.

A.2.2. Organ Dysfunction

The SOFA score (Vincent et al., 1996) is a scoring system that is recommended by Sepsis-3
to assess organ dysfunction. Given that this is a particularly time-sensitive matter, we
evaluate the SOFA score (which considers the worst parameters of the previous 24 hours)
at each hour of the 72 hour window around suspicion of infection. More importantly, as
Sepsis-3 foresees, to ensure an acute increase in SOFA of at least two points, we trigger the
organ dysfunction criterion when SOFA has increased by two points or more during this
window.

A.3. List of Clinical Variables

Table A.1 lists all used clinical variables, comprising 44 vital and laboratory parameters.

A.4. Imputation Schemes

Here we provide more details about how the methods that do not employ an MGP were
imputed. For maximal comparability to the MGP sampling frequency, we binned the time
series into bins of one hour width by taking the mean of all measurements inside this window.
We then apply a carry-forward imputation scheme were empty bins are filled with the value
of the last non-empty one. The remaining empty bins (at the start of the time series) were
then mean-imputed (which after centering was reduced to 0 imputation).
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Table A.1: List of all 44 used clinical variables. For this study, we focused on irregularly
sampled time series data comprising vital and laboratory parameters. To ex-
clude variables that rarely occur, we selected variables with 500 or more obser-
vations present in the patients that fulfilled our original inclusion criteria (1,797
cases and 17,276 controls).

Vital Parameters

Systolic Blood Pressure Tidal Volume Set
Diastolic Blood Pressure Tidal Volume Observed
Mean Blood Pressure Tidal Volume Spontaneous
Respiratory Rate Peak Inspiratory Pressure
Heart Rate Total Peep Level
SpO2 (Pulsoxymetry) O2 flow
Temperature Celsius FiO2 (Fraction of Inspired Oxygen)
Cardiac Output

Laboratory Parameters

Albumin Blood Urea Nitrogen
Bands (Immature Neutrophils) White Blood Cells
Bicarbonate Creatine Kinase
Bilirubin Creatine Kinase MB
Creatinine Fibrinogen
Chloride Lactate Dehydrogenase
Sodium Magnesium
Potassium Calcium (free)
Lactate pO2 Bloodgas
Hematocrit pH Bloodgas
Hemoglobin pCO2 Bloodgas
Platelet Count SO2 Bloodgas
Partial Thromboplastin Time Glucose
Prothrombin Time (Quick) Troponin T
INR (Standardized Quick)
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Table A.2: Detailed information about hyperparameter search ranges. *: we fixed 10 Monte
Carlo samples according to Futoma et al. (2017a). **: the MGP-RNN baseline
was presented with a batch-size of 100, thus we did not enforce our range on
this baseline (Futoma et al., 2017a).

Model Hyperparameter Lower bound Upper bound Sampling distribution

All models
learning rate 5e�4 5e�3 log uniform
Monte Carlo Samples 10* not applicable

MGP-TCN
Raw-TCN

batch size 10 40 uniform
temporal blocks 4 9 uniform
filters per layer 15 90 uniform
filter width 2 5 uniform
dropout 0 0.1 uniform
L2-regularization 0.01 100 log uniform

MGP-RNN

batch size 100** not applicable
layers 1 3 uniform
hidden units per layer 20 150 uniform
L2-regularization 1e�4 1e�3 log uniform

A.5. Hyperparameter Search

Di↵erentiable models For the di↵erentiable models MGP-RNN, MGP-TCN, and Raw-

TCN an extensive hyperparameter search based on Bayesian optimization was performed
using the scikit-optimize package (scikit-optimize contributers, 2018). More precisely, we
relied on a Gaussian Process to model the AUPRC of the models dependent on the hyperpa-
rameters. The models were then trained at the hyperparameter values that matched one of
the randomly-selected criteria largest confidence bounds, largest expected improvement and
highest probability of improvement according to the Gaussian Process prior. A total of ten
initial evaluations were performed at random according to the hyperparameter search space,
followed by ten evaluations according to the Gaussian Process prior. During the hyperpa-
rameter search phase, the MGP-RNN model was trained for 5 epochs over the complete
dataset—since we observed fast convergence behavior—while the TCN based model were
trained 15 and 100 epochs for the MGP-TCN and the Raw-TCN model respectively.

DTW-KNN classifier The performance of the DTW-KNN classifier was evaluated on
the same validation dataset as the other models for k 2 {1, 3, . . . , 13, 15}, while relying
on the training dataset with 0 hours before Sepsis onset. The k value yielding the best
AUPRC on the validation dataset was selected for subsequent evaluation on the testing
dataset. Similar to the other classifiers, we do not “refit” the k-nearest neighbors classifier
by removing data from the training dataset to generate the horizon plots.
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A.6. Additional Information on Scaling

Li and Marlin (2016) demonstrated that the MGP adapter framework is dominated by
drawing from the MGP distribution. Thus, in our case, inverting ⌃i 2 RD·Ti⇥D·Ti has a
computational complexity of O(D3

· T 3

i ) (Golub and Van Loan, 2012). Notably, classifying
a patient only depends on the length of the current patient time series and the number of
tasks/variables; it does not depend on the number of patients in the training dataset; that
is, it has a complexity of O(1) in the number of patients.

By contrast, while a naive implementation of DTW-KNN has a very low training com-
plexity (O(1), due to its character as a “lazy learner”), the complexity at prediction time is
very high. To classify a single instance, the k-nearest neighbors classifier requires the dis-
tances of the instance to all N training points. Moreover, the runtime of a single distance
computation using dynamic time warping (DTW) is O(DT 2), where D represents the num-
ber of channels in the time series and T is the length of the shorter time series. Overall, this
leads to a runtime complexity of O(NDT 2) for a single prediction step, which can quickly
become infeasible for large-sized heath record datasets, especially if online predictions are
desired. Consequently, already for N � D2T , the complexity of the DTW-KNN approach
will exceed that of the MGP-TCN. Furthermore, the cubic complexity in the prediction
step can be ameliorated by using faster approximation schemes (Li and Marlin, 2016).

A.7. Supplementary Results

To enforce a maximum time of two hours per call for each method (in order to make di↵erent
hyperparameter searches on several folds feasible), MGP-RNN trains for 5 epochs, MGP-
TCN for 15 epochs, and Raw-TCN for 100 epochs. We applied early stopping based on
validation AUPRC with patience = 5 epochs.

Moreover, in an auxiliary setup, to guard against underfitting, we use the best parame-
ter setting of each deep model and retrain each model for a prolonged period (50 epochs for
both MGP-based models, 100 epochs for Raw-TCN) using early stopping based on valida-
tion AUPRC with patience = 10 epochs. As shown in Figure A.7, the deep models exhibit
a similar tendency as in Figure 4, with the exception of the Raw-TCN showing high vari-
ability (due to one fold with favorable performance). Also, the MGP-based models exhibit
a slight drop in performance. This may indicate that in terms of epochs, they converge
earlier and overfit earlier.

A.8. Additional Information for the Horizon Analysis

When creating the horizon analysis, we observed that the current MGP-RNN implementa-
tion (using a Lanczos iteration) requires the minimal number of observed measurements of
a patient to be at least the number of Monte Carlo samples (i.e. 10 in our case). Hence,
we performed an on-the-fly masking of encounters that did not satisfy this criterion; for
comparability, we applied it to all models. Table A.3 details the patient counts obtained
after masking. Additionally, to be able fit all methods into memory, we removed a single
outlier encounter consisting of more than 10K measurements. Notably, because we did not
refit the models on each horizon (as this would answer a di↵erent question), with increasing
prediction horizon, the slight decrease in sample size should not bias the mean performance
but rather scale up the error bars.
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Figure A.1: The auxiliary setup as computed for the full horizon. We retrained the best
parameter settings of all deep model for a prolonged time to guard against
underfitting. Due to a slightly decreased performance, the MGP-based models
show a tendency to overfit when training for 50 epochs, whereas the Raw-TCN
shows high variance between the random splits.

Table A.3: Patients count after applying masking which was required for making the MGP-
RNN baseline work.

Horizon
Split Train Validation Test
Fold 0 1 2 0 1 2 0 1 2

0 4953 4950 4950 618 618 619 617 620 619
1 4951 4947 4947 618 618 619 616 620 619
2 4943 4941 4937 616 617 619 616 617 619
3 4933 4933 4927 614 615 617 615 614 618
4 4913 4917 4910 613 611 616 613 611 613
5 4832 4827 4830 602 605 602 598 600 600
6 4587 4580 4565 566 570 581 567 570 574
7 4073 4061 4056 503 508 510 497 504 507

A.9. Implementation Details & Runtimes

For maximal reproducibility, we embedded our method and all comparison partners in
the sacred v0.7.4 environment (Gre↵ et al., 2017). A local installation of the MIMIC-
III database was done with PostgreSQL 9.3.22. The queries to extract the data from
the database are based on queries in the public mimic-code repository (Johnson et al.,
2018). However, to extract the hourly-resolved sepsis label, we had to implement an entire
query pipeline on top of the original code (Johnson et al., 2018). For the MGP module,
we included the code implemented by (Futoma et al., 2017a) with minor changes. For

VII
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the TCNs, we extend the TensorFlow implementation of Lee (2018). We further apply
gradient checkpointing (Chen et al., 2016) for all neural network models in order to permit
training in a typical GPU setup. The DTW-KNN classifier was implemented using the
libraries tslearn v0.1.26 (Tavenard, 2017) for dynamic time warping and scikit-learn

v0.20.2 (Pedregosa et al., 2011) for the k-nearest neighbor classifier. We implemented both
our proposed methods as well as all comparison partners in Python 3. All experiments were
performed on a Ubuntu 14.04.5 LTS server with 2 CPUs (Intel R� Xeon R� E5-2620 v4 @
2.10GHz), 8 GPUs (NVIDIA R� GeForce R� GTX 1080), and 128 GiB of RAM. However,
for the deep learning models, we exclusively used single GPU processing. Supplementary
Table A.4 depicts the runtimes of all methods.

Table A.4: Training runtimes (for the RNN/TCN methods, this includes the sum of all
three splits, whereas for DTW-KNN distances were computed only once).

Method Raw-TCN MGP-RNN MGP-TCN DTW-KNN
Runtime 49.7 h 74.8 h 73.4 h 136.9 h
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