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Glaucoma is the second leading global cause of blindness and its effects are irreversible,
making early intervention crucial. The identification of glaucoma progression is therefore a
challenging and important task. In this work, we model and predict longitudinal glaucoma
measurements using an interpretable, discrete state space model. Two common glaucoma
biomarkers are the retinal nerve fibre layer (RNFL) thickness and the visual field index
(VFI). Prior works have frequently used a scalar representation for RNFL, such as the
average RNFL thickness, thereby discarding potentially-useful spatial information. We
present a technique for incorporating spatiotemporal RNFL thickness measurements ob-
tained from a sequence of OCT images into a longitudinal progression model. While these
images capture the details of RNFL thickness, representing them for use in a longitudinal
model poses two challenges: First, spatial changes in RNFL thickness must be encoded
and organized into a temporal sequence in order to enable state space modeling. Second,
a predictive model for forecasting the pattern of changes over time must be developed. We
address these challenges through a novel approach to spatiotemporal progression analysis.
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A SPATIOTEMPORAL APPROACH TO PREDICTING GLAUCOMA PROGRESSION UsSING A CT-HMM

We jointly model the change in RNFL with VFI using a CT-HMM and predict future
measurements. We achieve a decrease in mean absolute error of 74% for spatial RNFL
thickness encoding in comparison to prior work using the average RNFL thickness. This
work will be useful for accurately predicting the spatial location and intensity of tissue
degeneration. Appropriate intervention based on more accurate prediction can potentially
help to improve the clinical care of glaucoma.

1. Introduction

Glaucoma is a chronic optic neuropathy characterized by optic nerve degeneration and
retinal ganglion cell loss [Sharma et al. (2008), Thomas et al. (2011)]. It progresses slowly
and its effects are irreversible: If left untreated, it may result in blindness [Kotowski et al.
(2011)]. Glaucoma is the leading cause of irreversible blindness globally, and the second most
common cause of blindness after cataracts [Resnikoff et al. (2004), Pan and Varma (2011)].
By 2040, approximately 111 million people worldwide are projected to have glaucoma [Tham
et al. (2014)]. Thus, early identification of glaucoma and analysis of its progression is critical,
so that appropriate treatment can be delivered to retard deterioration and preserve sight.
Clinical measures for progression include the use of 3D optical coherence tomography (3D-
OCT) to monitor the thickness of the Retinal Nerve Fiber Layer (RNFL) at the optic nerve
head (structural assessment) [Quigley and Vitale (1997)] and psychophysical assessment,
via automated perimetry, of the status of the visual field (functional assessment), resulting
in the Visual Field Index (VFI).

Analyzing glaucoma progression is challenging because the disease progresses slowly,
and it is difficult to differentiate between natural age related changes and changes due to
the disease. In addition, there is substantial variability among subjects in both the rate and
the timing of functional and structural changes. Prior work has used temporal modeling
to learn progression patterns from a group of patients and predict future measurements,
as a means to characterize the expected progression pattern for subjects and inform the
timing of treatment and the scheduling of subsequent appointments [Leung et al. (2011),
Medeiros et al. (2011), Kokroo et al. (2018)]. In the most relevant prior work [Kokroo
et al. (2018); Liu et al. (2017, 2015, 2013)], a continuous-time HMM (CT-HMM) model
describes the continuous change in structural and functional measures based on the irregular
sequence of temporal measurements taken during appointments. A key limitation of this
prior work is that it models the change in the average RNFL thickness over time. While
the average thickness is an important measure, it doesn’t capture the complex patterns of
spatiotemporal thinning of the RNFL that characterize glaucoma progression. Modeling
spatiotemporal disease progression is challenging in general, due to the high-dimensional
spatial data produced by medical imaging and the difficulty of identifying meaningful states
in such high-dimensional data.

We present a novel approach to spatiotemporal progression analysis in glaucoma using
a discrete state model of the RNFL thickness map in order to capture the spatial variation
in RNFL thickness over time. Our model exploits a key property of RNFL thinning in
glaucoma, namely that losses due to thinning are non-recoverable. This allows us to encode
patterns of tissue loss as a series of incremental steps in which different spatial areas are
progressively thinned. To analyze the RNFL thinning over time, we compute the amount
of RNFL deterioration since the patient’s first appointment. This representation contains



A SPATIOTEMPORAL APPROACH TO PREDICTING GLAUCOMA PROGRESSION UsSING A CT-HMM

information about the spatial RNFL deterioration. This gives a standard representation of
the extent of tissue damage, which we then abstract into states. Once we have these states,
we learn a continuous-time hidden Markov model, which describes the co-evolution of the
states and the deterioration of RNFL and VFI over time. We then predict the future value
of RNFL deterioration for any given test patient. We achieve a significant decrease in the
mean absolute error (MAE) for predicting the RNFL representation in comparison to using
the average RNFL thickness value. As our RNFL state represents spatial deterioration
rather than average values, visualizations of the state model (following Liu et al. (2015,
2013)) can provide new insights into glaucoma progression. Further, we can provide a heat
map visualization for an individual’s future deterioration that describes likely regions of
deterioration along with their severity.

To summarize, this paper makes three major contributions. First, we construct features
and map these to novel states and a measurement model to summarize the RNFL spatial
deterioration for use in a longitudinal model. Second, we incorporate this state represen-
tation into a learned continuous-time hidden Markov model. Using this model, we obtain
a decrease in average MAE for predicting RNFL values of 74%. Third, we provide visual-
izations of the predicted values of future states, which can be used to localize specific areas
where RNFL tissue deterioration is likely to occur.

2. Related work

There are three tasks that arise in leveraging quantitative measurements for the treatment
of glaucoma: 1) Analyzing glaucoma progression, which can be used to tailor treatments
and inform the timing of follow-up visits; 2) Detecting glaucoma progression [Hood et al.
(2015), Christopher et al. (2018)], which can identify when a significant change in glauco-
matous state has occurred; and 3) Detecting the presence of glaucoma [Maetschke et al.
(2018), Ahn et al. (2018)], resulting in a test that could inform diagnosis. This paper ad-
dresses the first task of progression analysis, with the goal of characterizing the patterns
of change in a population of subjects by fitting a latent state model. The model can then
be used, for example, to predict future states of risk and identify subjects whose glaucoma
is progressing rapidly and may require a modified treatment regime and more frequent
follow-ups. We now describe prior works on progression analysis, as well as related work on
features and representations for OCT image analysis and modeling.

2.1. Glaucoma Progression Analysis Using Machine Learning

Most of the works to address glaucoma progression modeling with quantitative data have
focused on low-dimensional summary measures, such as the average RNFL thickness and
VFI [Miki (2012), Lucy and Wollstein (2016)]. Most closely-related to this paper is our
previous work Liu et al. (2013, 2015, 2017), which describes the change in average RNFL and
VFI over time through a 2D grid of states, using a CT-HMM to model the state transitions
and observations. In contrast, in this work we analyze the entire 2D RNFL thickness map
from OCT, and obtain a 2D state model based on a discretization of spatial patterns of
change. This results in a more fine-grained and detailed description of progression, with
a corresponding increase in prediction accuracy. Other works use alternative statistical
models (e.g. linear regression) on a sequence of average RNFL and VFI measurements to
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describe glaucoma progression [Leung et al. (2011)]. In contrast to these prior works, our
method is the first to utilize a temporal sequence of spatial RNFL thickness maps to model
progression.

2.2. Feature and State Models for OCT Data

There has been some recent work using deep learning models to analyze OCT images.
In [Muhammad et al. (2017), Maetschke et al. (2018)], a convolutional neural network is
developed in order to detect glaucoma from OCT scans. These works focus on classifica-
tion and are not used in a temporal setting to predict future deterioration or its spatial
localization in an interpretable way. Related works [Chen et al. (2015¢,b); Asaoka et al.
(2016); Cerentinia et al. (2018)] have pursued similar classification approaches to detecting
glaucoma from other imaging modalities, such as fundus images.

While deep feature learning is an attractive approach to medical image analysis, it is not
the focus of the current work. One reason is that feature learning is best-suited for problems
where there is an indirect relationship between image measurements and their semantics
(e.g. in object detection from RGB images or organ segmentation from CT scans). In
contrast, the OCT thickness map provides a direct measurement of a primary biomarker,
thinning of the RNFL layer, used in glaucoma progression analysis. It therefore makes sense
to pursue the direct exploitation of this modality before embarking on additional feature
learning. A second concern is the amount of data required for deep feature learning and
the heterogeneous and variable patterns of thinning observed in the subject population. It
is unclear if there is sufficient data to learn features for temporal progression analysis. A
benefit of the direct modeling approach pursued in this paper is the ease of interpretation
of our model relative to deep learned features, as evidenced by our visualizations.

Additional related work by Rakowski et al. (2019) presents an approach to classifying
bone disease in mice via CT scans by incorporating time stamp and difference images as
features. While this prior work shares our use of difference images, it develops a very
different state model due to the differences between OCT and CT images.

3. Cohort

The dataset was collected at the Eye Center at the Univ. of Pittsburgh Medical Center
(UPMC) from 135 patients, where each subject is diagnosed with glaucoma or suspected to
have glaucoma (highly likely to have glaucoma, but showing no visual field defect at first
visit). There are a total of 1024 visits, with an average of 7.6 & 1.9 visits for each patient
collected over a period of 4.9+ 1.2 years. The average patient age at first visit is 61.6 £11.8
years. At each visit a 3D-OCT machine is used to obtain a color thickness map of the RNFL
layer, known as OCT image or RNFL thickness map. In addition, functional measurements
consisting of the VFI values were obtained from automated perimetry.

4. Methods

The RNFL thickness maps, or OCT images, encode the RNFL thickness in a region of the
retina centered around the optic nerve head. Each pixel encodes the RNFL thickness at
that point. The thickness values can be visualized as an RGB image using a colormap, in
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which warmer colors indicate thicker areas and cooler colors indicate thinner ones, as shown
in Figure 1. This visualization can by utilized by expert clinicians to assess glaucomatous
damage. We process the thickness maps to obtain an interpretable representation of the
changes in RNFL for use in a longitudinal setting. We then model the RNFL representation
along with VFI measurements using a CT-HMM. The model trained on a set of patients
can then predict future values of the RNFL and VFI measurements. Figure 2 illustrates the
pipelines used for training and prediction. In this section, we describe our representation of
RNFL thickness and its use in modeling progression jointly with VFI measurements with a
CT-HMM.
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Figure 1: OCT image showing a visualization of the retinal tissue thickness in different
regions with a color bar indicating the thickness values.
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Figure 2: Pipeline of model training and prediction of future values during testing time. In
this figure, AR and v denote the structural and functional biomarkers, respectively.

4.1. Obtaining RNFL Measurements

There are two main challenges in obtaining a standard representation and observation model
of RNFL thickness from OCT images: 1) Motion artifacts yielding spurious differences due
to the movement of the eye during data collection; and 2) Variable dynamic range of the
measurements, which can be different for each image. Failure to address these sources of
variability will lead to erroneous interpretations of the measurements. We perform two
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(a) Before registration (b) After registration

Figure 3: First task of processing OCT images is the registration of images collected over
multiple visits. (a) Two OCT images of a patient from subsequent visits overlaid on each
other. (b) OCT images after correction for registration error.

pre-processing steps in order to obtain a representation which is invariant to confounding
sources of variability: 1) Standardization with respect to the right side and the registration
of OCT images for each subject; and 2) Correction of measurement error due to the dynamic
range of the device. Each of these steps is described in detail below.

In our dataset, we have OCT images from 43 left eyes and 92 right eyes. We first
standardize images so that they all are similar to images from the right eye. We invert
the OCT images from the left eyes with respect to the vertical axis. Then, we correct any
lateral shifts in OCT images due to differences during data collection at different visits.
This will allow us to describe observations from different visits using the same observation
model. Figure 3(a) shows an example of two OCT images superimposed on each other.
Notice the horizontal shift between the two images. Figure 3(b) shows the two OCT image
after registration.

The next step is to correct for device specific measurement variations. Every OCT
image has a corresponding signal strength (SS) parameter. The SS is a proprietary metric
of OCT image quality obtained from the measurement device. Its value can range from
0-10, corresponding to no signal and very high signal, respectively. Cheung et al. (2008)
showed that OCT images vary significantly with the SS value because the dynamic range of
the measurement is decreased when the SS is low. Chen et al. (2015a) demonstrated that
histogram matching of OCT images equalizes the dynamic range and extends the acceptable
range of SS. For every subject, we perform histogram matching of the OCT image at every
visit with respect to the image with the highest SS. Figure 4 illustrates this procedure for
a subject with 6 visits.

4.2. Structural and Functional Biomarkers for Glaucoma Progression

We represent the thickness values in OCT images in the form of a matrix that we call
RN F Lyp,q:. This is the structural marker that we will be using for our analysis. The region
of the OCT image considered by expert clinicians to be most indicative of glaucomatous
damage is a radial region around the Optic Nerve Head (ONH) (see Figure 5). We divide
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Histogram matching

Figure 4: Example of histogram matching for signal strength (SS) correction for a patient
with 6 visits. Histogram matching is performed with the image with highest SS.

Functional biomarker

Structural biomarker

Figure 5: RNFL segmentation pat- Figure 6: 2D grid state structure
tern used to model the structural and
functional biomarker.

this region into 16 segments and compute the average value of RN F L, within each
segment. Let R = [rirg - - - 7‘16]T denote the average value of RN F L,,,; within each
segment. We call R the average RNFL vector. The structural feature used for a visit k
is AR, = Ry — Rj;;. Where Ry, is the average RNFL vector for the k' visit. The vector
AR for each visit represents the decrease in average thickness in each of the 16 segments
since the first appointment. This construction is motivated by the fact that once RNFL
tissue has been lost it is never regained. The corresponding functional biomarker is the VFI
value measured during each visit. These structural and functional biomarkers capture the
changes resulting from glaucoma progression, as described in Section 2.1.

4.3. Continuous-time Hidden Markov Model (CT-HMM)

Structural and functional changes due to glaucoma can be summarized via state trajectories.
The space of possible trajectories is limited by the irreversible nature of the changes. Latent
variable models are a popular choice for describing the progression of disease. Disease states
can be abstracted into latent states, and constraints can be easily incorporated. We therefore
use a continuous-time hidden Markov model (CT-HMM) to model the evolution of RNFL
and VFI measurements. Continuous-time models are a natural fit for modeling glaucoma,
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because patients have appointments at irregular intervals of time, and the underlying disease
states can change between visits.

A CT-HMM describes the joint distribution of a discrete state latent stochastic pro-
cess S indexed by R>o, with states {1,---,|S|} evolving according to a continuous-time
Markov chain (CTMC) and an observation stochastic process O indexed by observation
times T'. Here, S represents the evolution of the disease process, while O corresponds to
measurements at appointment times T': it is a vector summary of both RNFL and VFIL.
Appointment times T" may be fixed or random, but we assume p(S|T) = p(S): the ap-
pointment times are non-informative of the disease process. A CTMC transitions between
states according to a set of exponential distributions.

The CTMC S is parameterized by a rate matrix ). For the () matrix each row corre-
sponds to a state. The diagonals are g;; = —¢;: ¢; is the leaving rate for state ¢ according
to an exponential distribution. The off-diagonal ¢;; describe CTMC transition rates from
states ¢ to j. These assumptions lead to the constraint — Ej ¢ij = ¢ii- The observation
process O is parameterized by @, a set of observation parameters for each state. For ex-
ample, if each of |S| states has a Gaussian observation model, ® = {uy, %1, - - - ,Ms‘,Z‘S‘}.
Observation parameters describe measurement distributions under different health states.

Because S is latent, we cannot maximize the log-likelihood directly. However, we can use
expectation maximization, as presented in Liu et al. (2015) where we repeatedly maximize
the expected complete data log-likelihood until convergence. Details are in section 4.5.

Liu et al. (2015) predicted glaucoma measurements using average RNFL thickness and
VFI values as the structural and functional measurements. Here, we extract a new RNFL
representation from OCT images for the structural measurement and use a 2-dimensional
CT-HMM for learning progression patterns and predicting future measurements. We com-
pare prediction performance of the new RNFL representation against average RNFL.

4.4. Structural and Functional State Model for 2D CT-HMM

Our goal is to construct a CT-HMM model that jointly describes structural and functional
changes in modeling glaucoma progression. In constructing the CT-HMM model, we adopt
the state topology from Liu et al. (2015), which is illustrated in Figure 6. The model
consists of a 2D grid of structural states .S, and functional states S,, where each node in
the graph has coordinates [S,, Sy]. Progression from top left to bottom right corresponds to
increasing degeneration in each state. There are several factors that motivate this choice.
First, this is the simplest state topology that captures the structural and functional nature
of degeneration and its irreversibility. Second, the same state topology was utilized in [Liu
et al. (2013), Liu et al. (2015)], facilitating a quantitative evaluation of our novel structural
state space against this prior work. Third, this state topology admits an intuitive and
appealing visualization of global patterns of glaucomatous progression, as illustrated in
Figure 11.

Since the functional state .S, corresponds to scalar VFI measurements, a state model can
be easily defined following the procedure from Liu et al. (2015). Specifically, we partition
the observed range of VFI values into a discrete set of intervals (i.e. construct a disjoint
partition of the range). Each state S, corresponds to one interval, and the observation
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model for each state is set to a Gaussian distribution with p as the center of the interval
and o as 0.25 times the interval width.

For the structural state model, however, a challenge arises in achieving the desired state
topology: We must embed the sequences of 2D patterns of RNFL thickness into a single
state dimension for which progression occurs in only one direction. We have developed a
heuristic approach to obtaining a state model and associated linear ordering of the states
which achieves this goal and works well in practice. The first step is to construct a discrete
state model for the 16-dimensional structural biomarkers (AR). We abstract them into
discrete states by performing K-means clustering using 1.2 norm on the AR vector for all
subjects over all visits. Each cluster defines a structural state S,., and corresponds to a group
of measurements that exhibit similarities in structural degeneration measured relative to
the first visit.

Given a set of structural states obtained from K-means, we perform a greedy search
over possible state orderings to identify the ordering that best achieves the desired state
topology. The starting point is to construct the cluster transition matrix 7" associated with
the N clusters. Entry Tj; in this matrix corresponds to the number of instances in which
an RNFL thickness map assigned to cluster i is followed by an RNFL map from cluster j in
the next visit. Given this matrix, the algorithm proceeds in two stages: 1) We determine
the cluster k for which the value of Z;V: 1 Tj is maximum. This identifies the cluster having
the largest number of forward connections, which we refer to as the parent cluster. 2) We
then remove cluster k and repeat step 1, searching for the next parent cluster among the
remaining N — 1 states. We perform this process recursively N — 1 times, removing each
parent cluster after it has been identified and repeating the search with a progressively
smaller set of clusters. An ordering is then obtained by listing the states in the order
that they were identified as parent clusters and removed. So the first state (top left of
Figure 6) corresponds to the first parent cluster that was identified, and the last state is
the cluster that is left after N —1 clusters have been removed. Note that since the resulting
state topology is imposed as a constraint during model fitting, it is automatically satisfied.
However, it is possible that simultaneously performing clustering and ordering, or adopting
some alternative embedding approach, could yield a better state model.

We can view our state ordering algorithm as sorting the rows and columns of the matrix
T according to the computed ordering. In an ideal case, the reordered T matrix would
be upper triangular, signifying that a given state m only admits transitions to states that
follow m in the ordering. In other words, we have obtained a topological ordering of the
state transition graph. Note that since the state transition graph is not guaranteed to be
acyclic, such an ordering is not guaranteed to exist. The number of nonzero counts in the
lower triangular portion of the reordered T" matrix is an empirical measure of the quality
of the ordering. In practice, we find that our approach works well, particularly for small
numbers of clusters. For models with 5-10 states, we find that the lower triangular entries
that remain after sorting constitute less than 1% of the total transitions. The observation
model for the structural states is then set to a multivariate Gaussian distribution with u as
the cluster center and X2 = 0.25/ (diagonal covariance matrix).
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4.5. Model Learning and Prediction

In order to learn the CT-HMM parameters () and ®, we use the expectation-maximization
(EM) learning algorithm proposed in Liu et al. (2015). Let v = 0,--- ,V index the appoint-
ment times, and assume we have knowledge of all state transitions: both state values and
times. The sufficient statistics for estimating ) are the number of transitions n;; for each
state pair ¢ and j and the total holding times in each state ;. The complete data likelihood
is given by

[S] S 1%
CL = H H qzljz'j exp(—q;7;) H p(oy|s(ty)) (1)
i=1 j=1j#i V=0

where o, is the observation associated with visit v and s(t,) is the state at that visit.
In order to perform expectation maximization, for a current estimate (), we take the
expectation of the complete data log-likelihood, given by

IS| 15] 1%
L@ =Y > {log(ay)E [n5]0,T, Qo| — 4E [0, T, Qo] } + > logp(onls(t) (2)
i=1 j=1,j#i v=0

In order to learn (), we repeatedly maximize via the method of Liu et al. (2015, 2017).
For the task of state prediction, we start with the observations for the initial visits,

and compute the most likely initial states using Viterbi decoding. Then, for a future

appointment time ¢, we compute the most likely future state as k = argmaxP;;(t) where

1 is the inferred state at the last observation time. To compute the futu]re value of each
biomarker, we search for the future time ¢; and ¢2 when the patient enters and leaves state k.
The biomarker measurement at time ¢ is then computed by linearly interpolating between
the range of values for that state.

5. Experimental results

We define 17 functional and 10 structural states for the CT-HMM which is used in our
experiments. The partition of the VFI measurement range which defines the functional
states is chosen to be [100 99 98 96 94 92 90 85 80 75 70 60 50 ... 0], where the partitions
have a width of 10 units beginning at 70 VFI and extending down to 0. This array defines
the range of VFI values for each state and is mapped into an observation model as described
in Section 4.4. The number of functional states and their range was determined empiricially
to balance the distribution of observations across states. We used 10 structural states to
encode the change in RNFL thickness over time (see Section 4.4). In Section 6, we present
results for varying the number of structural states. We perform 5 fold cross-validation to
learn model parameters from a training set and compute its performance on the validation
set.

Our primary experimental goal is to evaluate the performance of the new structural state
model derived from spatially-varying RNFL thickness in comparison to the state model
based on average RNFL thickness. During validation, we have the VFI and OCT image
obtained at the first visit for each patient and we predict their VFI and AR measurements

10
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at the future visits. Below we detail the prediction procedure and error measures for the
OCT CT-HMM (new state model) and Avg RNFL CT-HMM (previous state model):

1. OCT CT-HMM: Modeling AR and the VFI as the structural and functional biomark-
ers respectively in the 2D CT-HMM framework. During prediction, we have the
observations Ry from the OCT image and Vi, the VFI value at the first visit. To com-
pute the value of the measurements at a future visit time ¢, we predict the structural
and functional observations AR; and V; from our CT-HMM. We compute predicted
RNFL thickness as Rt R1 + ARt Here, we denote the predicted RNFL and VFI
measurements as Rt and Vt and the true values measured during the visit as R; and
Vi. Let Ry = [rire - -rn|T and R, = [F179 - - - 7N T denote the average RNFL thick-
ness in each segment, with N = 16. Then the MAE for a prediction at time ¢ can be
computed as follows:

N
iil

MAE';; = Vi — Vi

2. Avg RNFL CT-HMM: Using the average value of R and the VFI as the structural and
functional biomarkers respectively in the 2D CT-HMM framework. This compares the
prediction error when the average RNFL thickness is used, as in [Liu et al. (2017) Liu
et al. (2015)]. During prediction, we obtain Rt and V} where Rt is the predicted
average RNFL thickness. Let Ry = [riry---rn|T and R; = 7. Then the MAE for the
prediction at time ¢ is given by:

N
MAE!, 4 = Z |ri — 7|
i:l

MAE',;; = Vi — Vi

Table 1 gives the comparison of the mean average errors in prediction for both RNFL
and VFI observations using the OCT CT-HMM and Avg RNF CT-HMM. We can see
that the new structural state model which exploits the spatial pattern of thickness can
achieve significantly lower error in RNFL thickness prediction, and is slightly superior in
VFI prediction as well.

Table 1: Average MAFE for the two CT-HMM models, which differ in the RNFL thickness
representation but are otherwise similar.

Method used MAE, ;1 | MAE,y;
OCT CT-HMM 3.4787 4.0589
Avg RNFL CT-HMM | 13.4607 4.6545

We obtain two additional prediction methods by using linear regression (LR) for predic-
tion in place of the CT-HMM for the OCT and Avg RNFL models. Using the observations
from the first three visits, we perform LR on the structural and functional biomarkers and

11
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compute the MAFE in each case. The mean average error is presented in Table 2. We can
see that once again the RNFL prediction error is substantially lower when the spatial OCT
model is employed. Note that the VFI prediction error is the same for each method since
VFI is predicted independently of thickness and the VFI model is the same in the two
approaches.

Table 2: Average MAFE using Linear Regression for prediction under the two structural
state models OCT and Avg RNFL, which differ in the RNFL thickness representation.

Method used MAE, ;1 | MAE,y;
OCT LR 5.857 4.6545
Avg RNFL LR | 14.0538 4.6545

We conduct further analysis by utilizing hypothesis testing to determine if the difference
in prediction error that arises from using the OCT approach is significant. We conduct two
hypothesis tests. The first test compares the OCT CT-HMM approach to the Avg RNFL
CT-HMM approach. The second test compares the OCT CT-HMM approach to the OCT
LR approach. The two tests share a common setup which we now describe.

Let X;,i =1,---,n be the MAE for either RNFL or VFI for patient ¢ using the OCT
CT-HMM method, and let Y; be defined similarly for the competing method (either Avg
RNFL CT-HMM or OCT LR). Since we expect the errors to be correlated within subjects
but iid between subjects, we perform a paired t-test with the following null and alternate
hypotheses:

e Hy: px,—y; = 0. That is, the mean difference between within-subject MAE using
OCT vs the competing method is 0

o Hy: ux,—y, # 0. The mean is non-zero.

The test statistic is £=L ~ t(n—1), where s is the sample standard deviation for X; —Y;,i =

/vn
1,---,n. v
Methods compared MAE .1 MAE,y;
Primary Method | Competing Method t P t P
OCT CT-HMM | Avg RNFL CT-HMM | —20.9817 | 10~44 | 0.2435 0.8080
OCT CT-HMM OCT LR —5.0458 107% | —2.4089 | 0.0174

Table 3: Test statistic (¢) and probability value (p) for paired t-tests performed to check
the difference in prediction error between the OCT CT-HMM methods and two compet-
ing methods, Avg RNFL CT-HMM and OCT LR. Each row corresponds to one paired

comparison.

The results from the two hypothesis tests are reported in Table 3. We can see there
is a statistically significant reduction in RNFL prediction error when we use OCT images
in both of the testing scenarios. This is expected, as the spatial encoding of the RNFL
in the OCT approach captures additional information which unavailable to the competing
methods. In the case of VFI, the reduction in prediction error is significant when comparing

12



A SPATIOTEMPORAL APPROACH TO PREDICTING GLAUCOMA PROGRESSION UsSING A CT-HMM

OCT CT-HMM to OCT LR. This makes sense, since the CT-HMM can exploit any corre-
lations between the structural and functional states. However, VFI prediction error is not
significantly different between the OCT and Avg RNFL methods (row 1). This implies that
the additional structure in the spatial RNFL representation does not provide any additional
information about VFI progression.

Figure 7 plots the average (across patients) MAE for predicting the RNFL value over
time. We see that CT-HMM and LR using OCT information both outperform the CT-
HMM prediction model that uses the average RNFL. This provides additional evidence
for the superiority of the new spatial representation for RNFL thickness obtained from
OCT images. Comparing the performance of CT-HMM and LR prediction models using
OCT images, we see that as the prediction window increases, the CT-HMM error remains
significantly lower than the LR error, and grows much more slowly. This makes sense as
linear models are more likely to be accurate over short time windows.

—— OCT-CT HMM OCT-LR
15 T T T T T T T T T T

——_\——_—\—\__’—,\—//———’_—’4-\

10 \ J

Avg RNFL - CT HMM
T

MAErnﬂ

0 1 1 1
1 2 3 4 5 6

Num of years after first visit

Figure 7: MAE for predicting the RNFL over the prediction time. This is the average error
across all patients who had a measurement at each time point.

6. Discussion

We have demonstrated that the use of a spatially-varying RNFL thickness model derived
from OCT images leads to significantly lower RNFL prediction error in comparison to prior
models based on the average RNFL thickness. The vector representation of RNFL thick-
ness enables a spatiotemporal prediction model which has been shown to characterize the
progression of disease more accurately. In addition to improving predictive accuracy, this
representation encodes spatially-varying thickness in a manner which affords easy interpre-
tation, as we will now demonstrate.

In the experiments in Section 5, we utilized a 10 state structural model based on the AR
vectors. The mean vector for each structural state provides an indication of the magnitude
and location of structural damage since the first visit. Figure 8 presents a visualization of the
mean of each structural state. Here, the color represents the amount of structural damage
in each of the 16 bins defined for AR, where the color bar indicates the amount of RNFL
change (normalized). In this scale, the color green represents almost no structural change
and red represents very high structural change. Note that the background is shown as -1
(blue) for visualization purposes only: the RNFL representation doesn’t contain information
about this region. We see that for state 1, the vector is almost zero in every bin, representing
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State 1 State 2 State 3 State 4 State 5

EHHEE}

State 6 State 7 State 8 State 9 State 10

2lelelsld

Figure 8: Visualization of the mean of each structural state. The mean vector of each state
represents the amount of structural damage in each segment. Here, state 1 shows minimal
change in RNFL, while state 10 shows a lot of RNFL change over the entire region.

almost no change in RNFL. In contrast, state 7 shows that the amount of structural change
is high in the top left and fairly high on the bottom left region. State 10 shows significant
change in RNFL, particularly in the lower region of the scan.

OCT image at first visit State 7 OCT image after 2.5 years

!

Predicted state after 2.5 years

Figure 9: Patient 1: The OCT image measured at the first visit is shown. Our model
predicts that this patient will be in state 7 after 2.5 years, when they have an appointment.
The mean of state 7 corresponds to degeneration mainly in the top and bottom left segments.
The actual OCT image after 2.5 years indicates the same degeneration pattern.

State 4 OCT image after 1.5 years

Predicted state after 1.5 years

Figure 10: Patient 2: Our model predicts that this patient will be in state 4 after 1.5 years.
The mean of state 4 corresponds to degeneration in the bottom left segment. Notice that
in the OCT image collected during an appointment after 1.5 years, the red region in the
bottom left segment is smaller; indicating degeneration here.
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We now consider the prediction of RNFL thickness in two representative patients. In the
case of patient 1, shown in Figure 9, we predict that the patient will be in structural state 7
after 2.5 years, when he/she returns for an appointment. The mean of the observation model
of state 7 shown indicates structural loss in the top and bottom left segments. Comparing
the OCT image at the first visit and after 2.5 years, we see that there is a significant decrease
in the red portions in the top and bottom left segments, which is consistent with what our
model predicts. In the case of patient 2, shown in Figure 10, our model predicts that the
patient will be in state 4 after 1.5 years. From the mean of the observation model of state
4, we see that it corresponds to degeneration in the RNFL in the bottom left segment.
Comparing the OCT image collected at the first visit with that collected after 1.5 years,
we see that the region that is red in the bottom left segment is slightly smaller in the
latter image. This indicates damage to the tissue in the bottom left segment, which was
predicted by our model. Note that we correctly predict that other parts of the thickness
map will remain unchanged. These two case studies demonstrate the interpretability of our
state representation. Our model’s predictions can provide an indication of the extent of
structural damage and the region where it occurs several years into the future.

# structural states Method used MAE, 51 | MAE,;
3 OCT CT-HMM 3.3633 4.1219

Avg RNFL CT-HMM | 13.6144 4.0667

9 OCT CT-HMM 3.5152 4.0979

Avg RNFL CT-HMM | 13.5455 3.6642

1 OCT CT-HMM 3.4134 4.1477

Avg RNFL CT-HMM | 13.4702 3.9971

19 OCT CT-HMM 3.5718 4.3147

Avg RNFL CT-HMM | 13.4384 3.9101

Table 4: MAE in predicting the RNFL using 1. OCT images 2. Avg RNFL thickness value
with a CT-HMM model with varied number of structural states.

We performed the same experiments as presented in Section 5, while varying the number
of states to compute MAE in predicting the RNFL and VFI. In Table 4, we compare the
performance using OCT images against using the average RNFL. We observe a similar trend
in results - using OCT images results in very low prediction error when compared to using
the average, while the error in VFI is slightly worse (but not significantly different).

We visualize the state space model trained on all patients in Figure 11. Here, the width
of the line and node size represents the expected count; and the node color represents the
average dwell time in each state (red to green: 0 - 5 years). We visualize the model trained
using two methods: OCT CT-HMM and Avg RNFL CT-HMM. Note that in the case of Avg
RNFL, we use the difference of the average RNFL value to the first visit as the structural
marker. This is done to ensure that the states in both models represent the same quan-
tity. The visualization represents the trend in RNFL and VFI change across all patients.
In Figure 11, transitions from the top to bottom represent structural deterioration, and
transitions from left to right indicate functional deterioration. The value of the state space
model is that it helps group patients having similar pattern in RNFL and VFT deterioration
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A Avg RNFL state

(a) OCT CT-HMM (b) A Avg RNFL CT-HMM

Figure 11: Visualization of the state space model trained on all patients. The size of the
state and line width represent the expected count. The color of the state denotes the average
dwell time in the state, varying from red to green (0 to 5 years).

together. Notice the strong vertical lines in the left region and horizontal lines on the right.
They correspond to patients who deteriorate rapidly in RNFL without much change in VFI
and vice versa respectively. These findings are consistent with that in Liu et al. (2013).
In the case of our model trained on OCT images in Figure 11 (a), we see that there is
more resolution along the structural axis when compared to using Average RNFL in (b).
We believe this is the result of grouping patients based on the spatial pattern of RNFL.
However, the fact that our state representation quantifies the difference in RNFL thickness
relative to the first visit makes the state model somewhat harder to interpret. Future work
can address improvements to the visualization and a more detailed analysis of the patient
trajectories.

7. Conclusion

In this paper, we present a novel model for the longitudinal progression of glaucoma which
is based on a spatially-varying representation of RNFL thickness. We construct a 2D CT-
HMM which jointly describes the evolution of states corresponding to RNFL and VFI mea-
surements. We demonstrate that the novel spatially-varying RNFL representation leads to
statistically-significant improvements in prediction accuracy for RNFL thickness at subse-
quent visits in comparison to a standard state model based on the average RNFL thickness.
We further demonstrate the benefit of employing a latent state CT-HMM model in com-
parison to a predictor based on linear regression. A significant advantage of our approach
is its interpretability. Each RNFL state can be visualized as a thickness map, and the state
model itself can be visualized to understand the patterns of progression which are present
in a cohort of patients. Predictions of future RNFL thickness maps can be visualized and
then compared to ground truth measurements. We believe that the improved capability for
spatial RNFL modeling presented in this work can support a more accurate and nuanced
characterization of glaucoma progression and ultimately lead to more effective interventions
and improvements in care.
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