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Abstract

Recurrent neural networks (RNNs) are commonly applied to clinical time-series data with
the goal of learning patient risk stratification models. Their effectiveness is due, in part,
to their use of parameter sharing over time (i.e., cells are repeated hence the name recur-
rent). We hypothesize, however, that this trait also contributes to the increased difficulty
such models have with learning relationships that change over time. Conditional shift,
i.e., changes in the relationship between the input X and the output y, arises when risk
factors associated with the event of interest change over the course of a patient admission.
While in theory, RNNs and gated RNNs (e.g., LSTMs) in particular should be capable
of learning time-varying relationships, when training data are limited, such models often
fail to accurately capture these dynamics. We illustrate the advantages and disadvantages
of complete parameter sharing (RNNs) by comparing an LSTM with shared parameters
to a sequential architecture with time-varying parameters on prediction tasks involving
three clinically-relevant outcomes: acute respiratory failure (ARF), shock, and in-hospital
mortality. In experiments using synthetic data, we demonstrate how parameter sharing in
LSTMs leads to worse performance in the presence of conditional shift. To improve upon
the dichotomy between complete parameter sharing and no parameter sharing, we propose
a novel RNN formulation based on a mixture model in which we relax parameter sharing
over time. The proposed method outperforms standard LSTMs and other state-of-the-art
baselines across all tasks. In settings with limited data, relaxed parameter sharing can lead
to improved patient risk stratification performance.
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Effectively Modeling Time-Varying Relationships using RNNs

1. Introduction

Recurrent neural networks (RNNs) capture temporal dependencies between past inputs
x1:t−1 and output yt, in addition to the relationship between current input xt and yt. Their
successful application to date is due in part to their explicit parameter sharing over time
(Harutyunyan et al., 2019; Rajkomar et al., 2018). However, while advantageous in many
settings, such parameter sharing could hinder the ability of the model to accurately capture
time-varying relationships, i.e., tasks that exhibit temporal conditional shift.

In healthcare, temporal condition shift may arise in clinical prediction tasks when the
factors that put a patient at risk for a particular adverse outcome at the beginning of a
hospital visit differ from those that put a patient at risk at the end of their stay. Failure to
recognize conditional shift when building risk stratification models could lead to temporal
biases in learned models; models may capture the average trend at the cost of decreased
performance at specific points in time. This could be especially detrimental to models
deployed and evaluated in real time.

More formally, conditional shift refers to the change in the conditional distribution
P (Y = y|X = x) across tasks. In particular, we consider temporal conditional shift, i.e.,
the setting in which the relationship between x and y is a function of both x and time
(yt = f(x, t; θt)). We hypothesize that RNN’s complete sharing of parameters across time
steps makes it difficult to accurately model temporal conditional shift. To address this, one
could jointly learn a different cell for each time step, but such an architecture may easily
lead to overfitting. More importantly, such an approach does not leverage the fact that
many relationships are shared, at least in part, across time.

On synthetic data, in which we can control the amount of conditional shift, we explore
the trade-offs in performance between models that share parameters across time versus
models that do not. Beyond synthetic data, we illustrate the presence of temporal condi-
tional shift in real clinical prediction tasks. To tackle this issue, we propose a novel RNN
framework based on a mixture approach that relaxes parameter sharing over time, with-
out sacrificing generalization performance. Applied to three clinically relevant patient risk
stratification tasks, our proposed approach leads to significantly better performance relative
to a long short-term memory network (LSTM). Moreover, the proposed approach can help
shed light on task relatedness across time.

Technical Significance. Our technical contributions can be summarized as follows:

• we formalize the problem setting of temporal conditional shift,
• we illustrate the presence of temporal conditional shift in three clinically relevant tasks
• we propose a novel approach for relaxed parameter sharing within an RNN framework,

and
• we explore situations in which relaxed parameter sharing can help.

In theory, given enough data, RNNs should be able to accurately model relationships gov-
erned by temporal conditional shift. However, oftentimes in clinical applications, we have
a limited amount of data to learn from. Going forward, researchers should check for the
presence of conditional shift by comparing the proposed approach with an LSTM. If condi-
tional shift is detected, then one may be able to more accurately model temporal dynamics
through relaxed parameter sharing.

2



Effectively Modeling Time-Varying Relationships using RNNs

Clinical Relevance. Though tasks involving time-varying relationships are common in
healthcare, current techniques rarely explicitly model temporal conditional shift. In this
work, we investigate the extent to which temporal conditional shift impacts clinical pre-
diction tasks. We consider clinical tasks involving prediction of three adverse outcomes:
acute respiratory failure (ARF), shock, and in-hospital mortality during an ICU admission.
These tasks were selected based on their clinical relevance. ARF contributes to over 380,000
deaths in the US per year (Stefan et al., 2013) and represents a challenging prediction task
due to its multi-factorial etiology. Shock refers to the inadequate perfusion of blood oxy-
gen to organs or tissues and can result in severe organ dysfunction and death when not
recognized and treated immediately (Gaieski and Mikkelsen, 2016). Both of these condi-
tions are upstream events that contribute to patient risk of in-hospital mortality, our third
prediction task. The ability to identify patients at risk of developing ARF or shock could
facilitate improved patient triage and timely intervention, preventing irreversible damage
and ultimately better patient outcomes. Finally, though we consider only these three tasks,
we hypothesize that time-varying risk factors may arise in other clinical prediction tasks.

2. Background & Related Work

We focus on developing techniques that can handle temporal conditional shift, a type of data
shift that commonly occurs in tasks involving clinical time-series data. There are two main
types of data shift: i) covariate shift and ii) conditional shift. Covariate shift is the scenario
where P (X = x) varies across datasets (Reddi et al., 2015; Sugiyama et al., 2007), e.g.,
the distributions of patient demographics may differ across study populations. In contrast,
conditional shift, our main focus, occurs when P (Y = y|X = x) changes (Zhang et al., 2013;
Gong et al., 2016), e.g., two hospitals may have similar patient populations, but different
factors could drive patient risk due to differences in clinical protocols. In conditional shift,
the relationship between input x and output y has shifted. This can occur independently
of a change in population. For some time, the study of data shift has driven research in
the fields of domain adaptation, transfer learning, and multitask learning (Daumé III, 2007;
Pan and Yang, 2010; Ding et al., 2017; Thiagarajan et al., 2018).

Methods for dealing with conditional shift are largely driven by the problem setting.
Researchers have explored the use of pre-trained features (Sharif Razavian et al., 2014),
generalizable representations (Glorot et al., 2011; Zhuang et al., 2015), and applying im-
portance re-weighting techniques (Zhang et al., 2013). In contrast to these works, we focus
on techniques for tackling conditional shift in which the shift is driven by changes in time.
In this setting, there is no clear distinction between tasks, because the change occurs grad-
ually. Though related, this differs from ‘data drift’ (i.e., the setting in which relationships
change longitudinally) since we consider time on a local/relative scale as opposed to a
global/absolute scale (dos Reis et al., 2016; Soemers et al., 2018). That is, instead of fo-
cusing on differences between 2018 and 2019, we focus on changes within an admission or
a patient. Though such local shift is expected to occur (Bellera et al., 2010; Dekker et al.,
2008), it is often overlooked when modeling patient risk.

In the linear setting, past work has explored the use of multitask learning to model the
temporal evolution of risk factors within a patient admission, where each day corresponds
to a different model, but models are learned jointly (Wiens et al., 2016). Related, Dekker
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et al. (2008) proposed a variation to Cox regression analysis, studying different time windows
separately and using time specific hazard ratios.

Nonlinear methods designed to explicitly deal with temporal conditional shift have more
recently been explored, focusing primarily on modifications to RNN architectures (Ha et al.,
2017; Park and Yoo, 2017), especially LSTMs. For example, Ha et al. (2017) proposed an
extension to LSTMs, Hypernetwork, that relaxes parameter sharing by learning an auxiliary
network that sets the primary network’s parameters at each time step. Specifically, the
auxiliary network can change the primary network’s parameters through a scalar multiplier.
Similar to Hypernetworks, we also consider a variation on the LSTM, in part because
LSTMs are commonly applied to clinical time-series (Fiterau et al., 2017; Lipton et al., 2016;
Harutyunyan et al., 2019). However, in contrast to previously proposed modifications for
handling conditional shift, we impose fewer restrictions on how parameters can be modified
at each time step.

Mixture of experts models are commonly used for multitask learning and conditional
computation (Kohlmorgen et al., 1998; Ma et al., 2018; Wang et al., 2018; Eigen et al., 2014;
Tan et al., 2016; Savarese and Maire, 2019). By framing conditional shift as a multitask
problem, we can exploit the large body of work in mixture of experts. Kohlmorgen et al.
(1998) proposed a two-step approach in which first, a hidden Markov model (HMM) learns
a segmentation of the time series, so that each segment is assigned to an expert, and second,
the learned experts are mixed at the segmentation boundaries. Eigen et al. (2014) stacked
experts to form a deep mixture of experts; Tan et al. (2016) mixed the parameters of
fully connected layers, stacking them to account for differences in the training and test
sets in audio processing tasks; and Ma et al. (2018) learned a gating function to mix the
output of experts in a multitask learning setting. The methods proposed by Savarese and
Maire (2019) are particularly related. The authors learn coefficients for mixing convolution
parameters, increasing parameter sharing across layers of a convolutional neural network
(CNN). Building on these approaches, we investigate the utility of a mixture of LSTMs.
At each time step, we apply the learned mixing coefficients to form a combined LSTM cell.
This facilitates end-to-end learning and allows more than two experts to flexibly contribute
to any time step’s prediction. Our setting differs from Savarese and Maire (2019) as the
mixing coefficients are a) constrained to belong to a simplex, b) learned for each time step
instead of each layer, and c) applied to LSTM cells instead of CNN filters.

3. Methods

In this section, we describe extensions to LSTMs that facilitate learning in the presence of
temporal conditional shift. Building off of an LSTM architecture, we present two variations
that relax parameter sharing across time: shiftLSTM and mixLSTM. The first approach,
shiftLSTM, represents a simple baseline in which different parameters are learned for differ-
ent time steps (i.e., separate LSTM cells for different time periods). The second approach,
mixLSTM, addresses the shortcomings of this simple baseline through a mixture approach.
But first, we formalize the problem setting of temporal conditional shift and review the
architecture of an LSTM.
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3.1. Problem Setup - Temporal Conditional Shift & LSTMs

Given time-series data representing patient covariates over time, X = [x1,x2, ...,xT ] where
xt ∈ Rd, we consider the task of predicting a sequence of outcomes y = [y1, y2, ..., yT ], where
yt ∈ R for t ∈ [1, 2, 3, ..., T ]. We consider a scenario in which the relationship between x1:t

and yt varies over time, i.e., yt = f(x1:t, t;θt), where θt represent model parameters at
time t. Because t is measured with respect to a patient-specific fiducial marker, we restrict
ourselves to conditional shift within a patient-specific time scale (e.g., within an admission).

In the sequence-to-sequence setting described above, LSTMs take as input time-varying
patient covariates and output a prediction at each time step. Dynamics are captured in part
through a cell state Ct that is maintained over time. A standard LSTM cell is described
below, where ∗ represents element-wise multiplication. Here, ht and C̃t represent the hidden
state and the update to the cell state, respectively.

it = σ(Wi[ht−1,xt] + bi) (1)

C̃t = tanh(Wc̃[ht−1,xt] + bc̃) (2)

f t = σ(Wf [ht−1,xt] + bf ) (3)

Ct = it ∗ C̃t + f t ∗Ct−1 (4)

ot = σ(Wo[ht−1,xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

ŷt = W yht + by (7)

Importantly, each of the learned parameters W and b in equations (1)-(3), (5) and (7) do
not vary with time. To capture time-varying dynamics, the hidden and cell states (ht, Ct)
must indirectly model conditional shift.

shiftLSTM-2

mixLSTM-2
LSTM t1
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mixLSTM-2
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(b)

Figure 1: An illustrative plot comparing LSTM, shiftLSTM, and mixLSTM, with four time
steps. Each square denotes an LSTM cell. Cells with the same color share the same
parameters. Arrows denote transitions between time steps. (a) shiftLSTM-2 is similar to
an LSTM, except it uses different cells for the first two time steps compared to the last two.
(b) mixLSTM-2 has two independent underlying cells, and at each time step, it generates a
new cell by mixing a convex combination of the underlying cells. For illustrative purposes,
the parameters at each time step are drawn from sequential locations on the continuum,
but in reality, the parameter combination is independent of the relative positions of time
steps.

5



Effectively Modeling Time-Varying Relationships using RNNs

3.2. Relaxed Parameter Sharing in LSTMs

We hypothesize that in settings where the amount of training data is limited – this is often
the case in health applications – an approach that more directly models conditional shift
through time-varying parameters will outperform a standard LSTM. To this end, we explore
two variations on the LSTM: the shiftLSTM and the mixLSTM, illustrated in Figure 1.

3.2.1. shiftLSTM - learning abrupt transitions

As a baseline, we consider an approach that näıvely minimizes parameter sharing across
cells, by learning different parameters W (t) and b(t) at each time step t, instead of the time-
invariant parameters in equations (1)-(3), (5), and (7). This mimics a feed-forward network,
with the hidden state and cell state propagating forward at each time step, but computes the
output sequentially. This näıve approach to relaxed parameter sharing assumes no shared
relationships across time. As a result, its capacity is significantly greater than that of an
LSTM. Given the same hidden state size, the number of parameters scales linearly with the
number of time steps. We hypothesize that this näıve approach will result in overfitting
and poor generalization, in settings with limited data. To strike a balance between the two
extremes, complete sharing and no sharing, we explore a variation of this approach that
assumes parameters are shared across a subset of adjacent time steps: shiftLSTM-K.

shiftLSTM-K. This approach sequentially combines K different LSTM cells over time,
resulting in different model parameters every dT/Ke time steps (Figure 1a). K ∈ {1, ..., T}
is a hyperparameter, with shiftLSTM-1 being no different than an LSTM with complete
parameter sharing, and shiftLSTM-T corresponding to different parameters at each time
step. All parameters are learned jointly using backpropagation.

3.2.2. mixLSTM - learning smooth transitions

As described above, the shiftLSTM approach is restricted to sharing parameters within a
certain number of contiguous time steps. This not only leads to a substantial increase in
the number of parameters, but also results in possibly abrupt transitions. We hypothesize
that changes in health data, and risk factors specifically, are gradual. To allow for smooth
transitions in time, we propose a mixture-based approach: mixLSTM-K (Figure 1b).

mixLSTM-K. Given K independent LSTM cells with the same architecture, let W (k) and
b(k) represent the kth model’s weight parameters from equations (1)-(3), (5) and (7). The
parameters of the resulting mixLSTM at time step t are

W t =

K∑
k=1

λ
(k)
t W (k), bt =

K∑
k=1

λ
(k)
t b(k) (8)

where λ = {λ(k)
t : t = 1 . . . T, k = 1 . . .K} are the mixing coefficients and each λ

(k)
t

represents the relevance of the kth model for time step t. The mixing coefficients are

learnable parameters (initialized randomly) and are constrained such that
∑

k λ
(k)
t = 1 and

λ
(k)
t ≥ 0. Similar to above, K is also a hyperparameter, but here it can take on any positive

integer value. Note that for every K, all possible shiftLSTM-K models can be learned by
mixLSTM-K.
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Effectively Modeling Time-Varying Relationships using RNNs

By mixing models, instead of abruptly transitioning from one model to another, mixLSTM
can learn to share parameters over time. Moreover, though we do not constrain the mixing
coefficients to change smoothly, their continuous nature allows for smooth transitions. We
verify these properties in our experiments.

4. Experimental Setup

We explore the effects of temporal conditional shift in both synthetic and real data. Here, we
describe i) these datasets, ii) several baselines to which we compare our proposed approach,
and iii) the details of our experimental setup.

4.1. Synthetic Data

We begin by considering a scenario in which we can control the extent of conditional shift
in the problem. This allows us to test model performance in a setting where the amount
of temporal conditional shift is known. Specifically, we consider a multitask variation of
the ‘copy memory task’ (Arjovsky et al., 2016), with input sequence {x1, . . . ,xT }, xt ∈ Rd,
and output sequence {yl+1, . . . , yT }, yt ∈ R (we start generating output once we have
accumulated l values). The output at each time step is some predetermined, weighted
combination of inputs from the previous l time steps, described by two probability vectors,

w
(l)
t ∈ Rl and w

(d)
t ∈ Rd, which are used for weighting the l time steps and d feature

dimensions respectively. The parameters change gradually at every time step t, such that
each time step’s weighting (or task) is similar to the task from the previous time step. The
parameter δ controls amount of change between temporally adjacent tasks. The generation
process of these parameters is described below, followed by the generation process of the
datasets. Here,

[
xt−l, . . . ,xt−1

]ᵀ ∈ Rl×d is the concatenation of the previous l inputs at
time step t. Inputs are generated to be sparse. Renormalize(v) refers to a renormalization
process that ensures the weights in every wt vector are positive and sum to 1. This is done
every time step to ensure that the effect of δ does not diminish as t increases.

Procedure SampleWeights(T , l, m):
wl+1 ∼ Uniform(0, 1) ∈ Rm

wl+1 = Renormalize(wl+1)
for t ∈ {l + 2, . . . , T} do

∆t ∼ Uniform(−δ, δ) ∈ Rm

wt = Renormalize(wt−1 + ∆t)
end
return wl+1, . . . , wT

w
(d)
l+1, . . . , w

(d)
T = SampleWeights(T, l, d)

w
(l)
l+1, . . . , w

(l)
T = SampleWeights(T, l, l)

Procedure SampleData(T , w
(l)
l+1:T , w

(d)
l+1:T):

for t ∈ {1, . . . , T}, i ∈ {1, . . . , d} do
zi ∼ Bernoulli(0.1) # for sparse inputs
xi ∼ Uniform(0, 100)
xt[i] = zixi

end
for t ∈ {l + 1, . . . , T} do

yt = w
(l)
t

ᵀ[
xt−l, . . . ,xt−1

]ᵀ
w

(d)
t

end
return {x1, . . . ,xT }, {yl+1, . . . , yT }

Our goal is then to learn to predict {yl+1, . . . , yT } based on input from the current
and all preceding time steps. For each δ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}, we generated five sets
of temporal weights, and then used each set to create five different synthetic dataset tasks
where T = 30, d = 3, and l = 10. These twenty-five tasks were kept the same throughout
experiments involving synthetic data. Train, validation and test sets all had size N = 1, 000
unless otherwise specified.
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4.2. Clinical Prediction Tasks

In addition to exploring conditional shift in synthetic data, we sought to test our hypotheses
using real clinical data from MIMIC-III (Johnson et al., 2016). Below we describe the three
clinical prediction tasks of interest, in addition to their corresponding study populations,
patient covariates, and evaluation criteria.

4.2.1. Outcomes

Throughout the first 48 hours of each ICU visit, we sought to make predictions regarding
a patient’s risk of experiencing three different outcomes: acute respiratory failure (ARF),
shock, and in-hospital mortality, each described in turn below.

ARF. Acute respiratory failure is defined as the need for respiratory support with positive
pressure mechanical ventilation (Stefan et al., 2013; Meduri et al., 1996). Onset time of
ARF was determined by either the documented receipt of invasive mechanical ventilation
(ITEMID: 225792) or non-invasive mechanical ventilation (ITEMID: 225794) as recorded
in the PROCEDURESEVENTS MV table, or documentation of positive end-expiratory pressure
(PEEP) (ITEMID: 220339) in the CHARTEVENTS table, whichever occurs earlier. Ventila-
tor records and PEEP settings that are explicitly marked as ERROR did not count as an event.

Shock. Shock is defined as inadequate perfusion of blood oxygen to organs or tissues
(Gaieski and Mikkelsen, 2016), and is characterized by receipt vasopressor therapy. Onset
time of shock was determined by the earliest administration of vasopressors (Avni et al.,
2015). Using the INPUTEVENTS MV table, we considered the following vasopressors:

• norepinephrine (ITEMID: 221906),
• epinephrine (ITEMID: 221289),
• dopamine (ITEMID: 221662),
• vasopressin (ITEMID: 222315), and
• phenylephrine (ITEMID: 221749).

Drug administration records with the status of REWRITTEN, incorrect units, or non-positive
amounts/durations did not count towards an event.

In-hospital mortality. As in Harutyunyan et al. (2019), the time of in-hospital mortality
was determined by comparing patient date of death (DOD column) from the PATIENTS table
with hospital admission and discharge times from the ADMISSIONS table.

4.2.2. Cohort Selection

We considered adult admissions with a single, unique ICU visit. This excludes patients
with transfers between different ICUs. Patients without labels or observations in the ICU
were excluded. Since we are interested in how relationships between covariates and outcome
change over time, we focused our analysis on patients who remained in the ICU for at least
48 hours. In addition, for ARF and shock prediction tasks, patients who experienced the
event of interest before 48 hours were excluded. Using the full 48 hours allows us to focus
on temporal trends that are more likely to be present in longer visits. Table 1 shows the
number of admissions and positive labels for the three tasks after applying exclusion criteria.
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Table 1: We considered three clinical prediction tasks. The study population varied in
size across tasks, as did the fraction of positive cases (i.e., the portion of patients who
experienced the outcome of interest.)

Task Number of ICU admissions (%positive)

ARF 3,789 ( 6.01%)
shock 5,481 ( 5.98%)

in-hospital mortality 21,139 (13.23%)

4.2.3. Data Extraction and Feature Choices

We used the same feature extraction procedure as detailed in Harutyunyan et al. (2019)1.
For completeness, we briefly describe the feature extraction process here. For each ICU ad-
mission, we extracted 17 physiological features (e.g., heart rate, respiratory rate, Glasgow
coma scale, see Table 4 in Appendix A) from the first 48 hours of their ICU visit. We
applied mean normalization for continuous values and mapped categorical values to binary
features using one-hot encoding, resulting in 59 features. We resampled the time series with
a uniform sampling rate of once per hour with carry-forward imputation. Mask features,
indicating if a value had been imputed resulted in 17 additional features. After preprocess-
ing, each example was represented by d = 76 time-series (see Table 5 in Appendix A for
the complete list of features) of length T = 48 and three binary labels indicating whether
or not the patient developed ARF, developed shock or died during the remainder of the
hospital stay.

4.2.4. Evaluation

Given these data, the goal was to learn a mapping from the features to a sequence of prob-
abilities for each outcome: ARF, shock or in-hospital mortality. We split the data into
training, validation, and test as in Harutyunyan et al. (2019). We used target replication
when training the model (Lipton et al., 2016). For example, if a patient eventually devel-
oped ARF, then every hour of the first 48 hours is labeled as positive (negative otherwise).
We used the validation set for hyperparameter tuning, and report model performance as
evaluated on the held-out test set. Since we consider a sequence-to-sequence setting, each
model makes a prediction for every hour during the first 48 hours. These predictions were
evaluated based on whether or not at least one prediction exceeds a given threshold. This
threshold was swept across all ranges to generate a receiver operating characteristics curve
(ROC) and precision-recall curve (PR). This resembles how the model is likely to be used
in practice. With the goal of making early predictions, as soon as the real-time risk score
exceeds some specified threshold, clinicians could be alerted to a patient’s increased risk of
the outcome. It should be noted that this differs from the evaluation used in Harutyunyan
et al. (2019) where a single prediction was made during the 48-hour period. We report per-
formance in terms of the area under the ROC and PR curves (AUROC, AUPR), computing
95% confidence intervals using 1,000 bootstrapped samples of the test set.

1. https://github.com/YerevaNN/mimic3-benchmarks
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4.3. Baselines for Comparison

In addition to the approaches with relaxed parameter sharing described in the Section 3,
we considered a number of baselines, which are described below.

NN. A non-recurrent, feed-forward neural network with one hidden layer. The same network
is applied independently at every time step to generate the prediction for that time step.
This model has complete parameter sharing but no recurrent structure to capture temporal
dynamics, and thus is a simpler model than LSTMs and less likely to overfit. This model
serves as a simple baseline, but highlights the complexity of the tasks in terms of temporal
dynamics.

NN+t. Similar to NN but with an additional input feature x̂t = t
T ∈ R at every time step,

representing the relative temporal position. Given time as an input, this model has the
capacity to model temporal conditional shift but cannot leverage longitudinal trends.

LSTM. We considered a standard LSTM in which parameters are completely shared across
time. Synthetic tests used the default Pytorch v0.4.1 implementation (torch.nn.LSTM()).
In our experiments on the clinical data, we implemented an LSTM that employed orthogo-
nal parameter initialization and layer normalization, in order to match the settings used in
the original HyperLSTM implementation (see below).

LSTM+t. shiftLSTM and mixLSTM intrinsically have an additional signal regarding the cur-
rent time step (captured through the use of time-specific parameters). In order to test
whether this was driving differences in performance, we tested LSTM+t, an LSTM with an
additional input feature x̂t = t

T ∈ R at every time step, representing the relative temporal
position.

LSTM+TE. Given that positional encoding has recently been shown to provide an advantage
over simply providing position (Vaswani et al., 2017), we also explored adding a temporal
encoding as additional input features. We used a 24-dimensional encoding for each time
step. We tested encoding sizes of 12, 24, 36 and 48 on the in-hospital mortality task, and
found 24 to result in the best validation performance. We calculated the temporal encoding

as: TE(t,i) = sin
(

t
10000i/24

)
if i is even, and TE(t,i) = cos

(
t

10000(i−1)/24

)
if i is odd, where t

represents the time step and i the position in the encoding indexed from 0.

HyperLSTM. First proposed by Ha et al. (2017), this approach uses a smaller, auxiliary
LSTM to modify the parameters of a larger, primary LSTM at each time step. Since the
parameters at each time step are effectively different, this is a form of relaxed parameter
sharing. As in the original implementation, we used orthogonal parameter initialization and
layer normalization. The two networks were trained jointly using backpropagation.
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4.4. Model Training & Implementation Details

The two non-LSTM baselines both used one hidden layer with ReLU activation and a
softmax nonlinearity at the output layer. Except in the case of the LSTM applied to
synthetic data, LSTM models consisted of single-layer recurrent cells that were orthogonally
initialized followed by a fully-connected layer and a softmax nonlinearity. For experiments
involving synthetic data, to compensate for the lower capacity of the LSTM compared to
mixLSTM and shiftLSTM which have multiple cells, we allowed it to use an additional layer.
Capacity was less of an issue in the experiments involving real data. We tuned the size of
the hidden state(s) in all methods based on validation performance.

We trained all models using the Adam optimizer (Kingma and Ba, 2015) (Pytorch
implementation) with the default learning rate of 0.001. On synthetic data we aimed to
minimize the mean squared error (MSE) loss, and for the clinical prediction tasks, we aimed
to minimize the cross entropy loss with target replication. We used early stopping based
on validation performance – MSE loss on synthetic data tasks, AUROC on real data tasks
– with a patience of 5 epochs. Models for synthetic datasets were trained with 40 random
initializations/hyperparameter settings for a maximum of 30 epochs. We used a batch size
of 100 and performed a random search over hidden state sizes of {100, 150, 300, 500, 700,
900, 1100}. For learning models on clinical tasks, we used a batch size of 8, because it
was the optimal LSTM batch size setting used in the MIMIC-III benchmark paper on the
in-hospital mortality task (Harutyunyan et al., 2019). When learning models for ARF and
shock, we considered 20 random initializations, and trained for a maximum of 30 epochs.
For LSTM models, we performed a random search over hidden state and auxiliary hidden
states sizes of {25, 50, 75, 100, 125, 150}; for NN and NN+t, we performed a random search
over the number of hidden units in {25, 50, . . . , 1000}. When learning models for in-hospital
mortality, we considered 10 random initializations and trained for a maximum of 10 epochs,
in part because of the larger training set size. For LSTM models on this task, we performed
a random search over hidden state size {100, 150, 300, 500, 700} and the same auxiliary
hidden state size search as for ARF and shock; for NN and NN+t, we considered the same
range of hyperparameters as for ARF and shock. To facilitate comparisons, the code for all
of our experiments is publicly available online2.

5. Results & Discussion

In this section, we first show that as temporal conditional shift increases, the performance
of the LSTM decreases. Next, we provide evidence that suggests that conditional shift
exists in the three clinical prediction tasks. Then, on both the synthetic and real datasets,
we show that the proposed method consistently outperforms the baselines. Finally, we
present a follow-up analysis focusing on the patterns by which mixLSTM learns to mix the
parameters, and the robustness of mixLSTM when training data are limited.

2. https://gitlab.eecs.umich.edu/MLD3/MLHC2019 Relaxed Parameter Sharing
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5.1. Exploring the Effects of Temporal Conditional Shift

Does parameter sharing hinder the ability of an LSTM to capture time-varying
relationships? The data generation process described in Section 4.1 allows us to control
the amount of temporal conditional shift present in the task. Specifically, by increasing δ,
we increase the variability between two temporally adjacent tasks. This allows us to test the
effects of conditional shift on the performance of an LSTM. We hypothesize that because
the LSTM shares parameters over time, it will struggle to adapt to temporal conditional
shift. To test our hypothesis, we compare the performance of an LSTM with shiftLSTM

across a range of δ values (Figure 2a). Here, the shiftLSTM approach learns different
sets of parameters for each time step (30 in total). We observe a clear trend: as temporal
conditional shift increases, the performance of the LSTM decreases. In contrast, shiftLSTM
results in steady performance across the range of δ. At low δ ∈ {0, 0.1}, the LSTM out-
performs the shiftLSTM in terms of MSE on the test set. In this experiment, we limited
the amount of training data to 1,000 samples. Theoretically, given enough training data,
LSTM should be capable of accurately modeling time-varying relationships. To verify this,
we show that the test loss associated with the LSTM models approaches zero as the training
set size increases (Figure 2b). These results support our initial hypothesis that in settings
with limited data, temporal conditional shift negatively impacts LSTM performance and
that this impact is in part due to the sharing of parameters.
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Figure 2: (a.1): LSTM performance decreases as conditional shift increases. With in-
creasing conditional shift, the time-varying architecture outperforms the LSTM, suggesting
that parameter sharing hurts LSTM performance. (a.2) mixLSTM bridges the performance
tradeoff between LSTM and shiftLSTM. As conditional shift increases, mixLSTM’s ability to
relax parameter sharing helps it increasingly outperform LSTM. By assuming that tasks are
unique but related it outperforms shiftLSTM. (b) This issue is only apparent when training
data are limited; LSTMs can adapt to temporal conditional shift given enough training
data. Error bars represent 95% confidence intervals based on bootstrapped samples of the
test set. δ was set to 0.3.
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Is there any evidence of time-varying relationships in the three clinical predic-
tion tasks of interest? We tested for the presence of temporal conditional shift in three
clinical prediction tasks: ARF, shock, and in-hospital mortality. For these tasks, the under-
lying parameters that govern the amount of temporal conditional shift (e.g., δ) are unknown.
Instead, we indirectly measure temporal conditional shift by applying shiftLSTM-K varying
K from {1, 2, 3, 4, 8, 48}, where K = 1 is a standard LSTM, and K = 48 implies a different
set of parameters for each time step. Increasing the number of cells or K reduces sharing.
As the difference between sequential tasks increases, we expect the benefit of learning dif-
ferent LSTM cells (less parameter sharing) to increase. Empirically, we observe that less
parameter sharing results in better performance (Figure 3). This supports our hypothesis
that architectures for solving clinical prediction tasks could benefit from relaxed parameter
sharing.
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Figure 3: As we increase parameter sharing by increasing T/K along the x-axis, there is a
drop in performance, supporting our hypothesis that temporal conditional shift is present
in our real data tasks. Error bars represent the interquartile ranges based on bootstrapped
samples of the test set.

5.2. Comparing the Proposed Approach to Baselines

In this section, we explore the performance of the proposed approach, mixLSTM, relative to
the other baselines. Again, we hypothesize that it will outperform the other approaches
due to a) smooth sharing of parameters and b) the ability to learn which cells to share.
mixLSTM strikes a balance between complete parameter sharing (LSTM) and no parameter
sharing (shiftLSTM-48). In addition, compared to shiftLSTM, mixLSTM can share param-
eters between distant time steps and learns how to accomplish this.

How does the proposed approach perform on synthetic data? mixLSTM has the
ability to continuously interpolate between K independent cell parameters. In this instance,
mixLSTM-2 has 15 times fewer parameters relative to shiftLSTM-30. On the synthetic data
tasks, mixLSTM consistently outperforms shiftLSTM at all levels of temporal shift (Figure
2a). Moreover, mixLSTM outperforms LSTM at low δ, except when no temporal shift exist.
This agrees with our intuition that smart sharing is better than no sharing (shiftLSTM)
and indiscriminate sharing (LSTM).
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Table 2: Performance on ARF, shock, & mortality with 95% confidence intervals. Though
the differences are small, mixLSTM consistently outperforms the other approaches across all
tasks in terms of both AUROC and AUPR. The number of test samples for each task is
reported in parentheses.

ARF shock mortality
Model (n=549) (n=786) (n=3,236)

AUROC AUPR AUROC AUPR AUROC AUPR

NN 0.57 [0.45, 0.67] 0.05 [0.03, 0.10] 0.60 [0.52, 0.68] 0.08 [0.05, 0.12] 0.80 [0.77, 0.82] 0.39 [0.34, 0.44]
NN+t 0.58 [0.46, 0.68] 0.06 [0.03, 0.11] 0.56 [0.47, 0.64] 0.10 [0.05, 0.19] 0.79 [0.77, 0.82] 0.38 [0.33, 0.43]
LSTM 0.47 [0.35, 0.58] 0.04 [0.02, 0.07] 0.59 [0.49, 0.69] 0.09 [0.05, 0.16] 0.80 [0.78, 0.83] 0.39 [0.33, 0.43]
LSTM+t 0.42 [0.30, 0.54] 0.04 [0.02, 0.07] 0.62 [0.53, 0.70] 0.08 [0.05, 0.15] 0.81 [0.79, 0.83] 0.41 [0.36, 0.47]
LSTM+TE 0.48 [0.35, 0.61] 0.05 [0.03, 0.10] 0.60 [0.50, 0.69] 0.10 [0.06, 0.20] 0.82 [0.80, 0.85] 0.43 [0.38, 0.48]
HyperLSTM 0.57 [0.44, 0.68] 0.06 [0.03, 0.10] 0.63 [0.54, 0.72] 0.08 [0.05, 0.12] 0.82 [0.80, 0.84] 0.42 [0.37, 0.47]
shiftLSTM 0.61 [0.49, 0.70] 0.10 [0.03, 0.21] 0.61 [0.52, 0.70] 0.09 [0.05, 0.16] 0.81 [0.79, 0.84] 0.43 [0.37, 0.48]
mixLSTM 0.72 [0.62, 0.80] 0.15 [0.06, 0.27] 0.67 [0.58, 0.76] 0.10 [0.06, 0.16] 0.83 [0.81, 0.85] 0.45 [0.40, 0.50]

How does the proposed approach perform on the clinical prediction tasks? Ap-
plied to the three clinical prediction tasks (with varying amounts of training data), mixLSTM
consistently performs the best (Table 2). The NN and NN+t models are simpler architec-
tures that outperform other LSTM-based baselines only under very low data settings (ARF).
Compared to the LSTM baseline, LSTM+t and LSTM+TE performed better given sufficient
training data, suggesting that having direct access to time either as a feature or a temporal
encoding is beneficial. Relaxing parameter sharing further improves performance. As shown
earlier, shiftLSTM consistently improves performance over the standard LSTM.

HyperLSTM, similar to mixLSTM, bridges the dichotomy of completely shared and com-
pletely independent parameters, and outperforms both LSTM and shiftLSTM in some cases
but not consistently. mixLSTM outperforms all other baselines on all three tasks, though the
differences are not statistically significant in all cases. Both HyperLSTM and mixLSTM

achieve high performance and both models relax parameter sharing. This supports our
hypothesis that relaxed parameter sharing is beneficial in some settings.

In these experiments, we selected K for each task based on validation performance,
testing K ∈ {2, 3, 4, 8, 48} for shiftLSTM and sweeping K from 2 to 4 for mixLSTM. For
shiftLSTM, K represents the optimal number of sequential tasks to segment the input
sequence into; the best K = 2, 2, 8 for ARF, shock, and mortality respectively. For mixLSTM,
K indicates the optimal number of operational or characteristic modes in the data; the best
K = 4, 4, 2, respectively. It appears that for shiftLSTM, the chosen K is correlated with the
amount of training data available. Both ARF and shock have significantly smaller training
set sizes compared to mortality. In contrast, mixLSTM learns more cells for ARF and shock.
This suggests that the structure of mixLSTM is better suited to the problem setting than
shiftLSTM, since it is able to train twice as many cells as shiftLSTM and attain a higher
test performance. The converse also supports this claim. mixLSTM is able to train 1

4 the
number of cells as shiftLSTM for mortality and still attain better performance. The optimal
K for mixLSTM appears to be less indicative of training set size, and more a reflection of
the true number of operational or characteristic modes in the data. When we visualize the
mixing ratios learned by mixLSTM-2 in later sections (Figure 5) we see that while mortality
smoothly interpolates between cell1 and cell2 as time passes, ARF and shock both display
an initial peak followed by a gradual interpolation. This suggests that the dynamics are
more complex for ARF and shock.
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5.3. Robustness and Sensitivity Analyses

In this section, we further analyze mixLSTM, focusing on its robustness in settings when
training data are limited and investigate what it has learned in terms of mixing trends and
changing feature importance.

5.3.1. Performance with Limited Training Data

Does the proposed approach still perform well when training data are limited?
We hypothesized that mixLSTM will continue to outperform LSTM, even when training
data are limited because mixLSTMs are better suited to problem settings exhibiting tempo-
ral conditional shift. To test our hypothesis, we compared the performance of mixLSTM-2
and LSTM trained using different training set sizes for the task of predicting in-hospital
mortality. We chose to focus on the task of in-hospital mortality, since it had the most
training data (training set size = 14, 681). We subsampled the training set repeatedly for
N ∈ {250, 500, 2000, 5000, 8000, 11000}. The test set was held constant across all experi-
ments and K = 2 to limit the capacity of the model. mixLSTM consistently outperforms
LSTM across all ranges of training set sizes (Figure 4). As one might expect, differences
are subtle at smaller training set sizes, where an LSTM with complete parameter sharing
is likely more sample efficient and therefore more competitive.
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Figure 4: mixLSTM-2 is consistently better than LSTM at different training set sizes. Error
bars represent 95% confidence intervals bootstrapped from the test set.

5.3.2. What has mixLSTM learned?

To dive deeper into what exactly the mixLSTM has learned, we visualize the learned mixing
coefficients and the most important features.

Are mixLSTM’s learned mixing coefficients smooth? In our learning objective function,
mixLSTM’s mixing coefficients are not constrained to be smooth. However, we hypothesize
that this behavior reflects the underlying dynamics in clinical data. Figure 5 plots the
mixing coefficients (λ(1)) over time for mixLSTM-2 on the three clinical prediction tasks.
Since there are only two independent cells (K = 2), we can infer λ(2) = 1− λ(1). The trend
indicates that one cell captures the dynamics associated with the beginning of a patient’s
stay, while the second cell captures the dynamics 48 hours into the stay.
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Figure 5: Visualization of the mixing coefficients learned by mixLSTM-2. λ(1) is shown on the
y-axis, while λ(2) can be inferred (λ(2) = 1−λ(1)). Although not constrained to be smooth,
we observe a smooth transition of mixing coefficients between time steps, indicating that
one cell is specialized for the beginning of a patient’s ICU stay while the other is specialized
for 48 hours into the ICU stay.

Does explicitly smoothing the mixing coefficients help? Based on patterns displayed
in Figure 5, we hypothesized that additional smoothing of the mixing coefficients could
aid classification performance. To test this hypothesis, we applied regularization based on a
similarity measure between models at consecutive time steps. Following Savarese and Maire
(2019), we used the normalized cosine similarity as the similarity measure. For consecutive

time steps t and t+ 1, this similarity score is st = 〈λt,λt+1〉
‖λt‖2‖λt+1‖2 where λt := [λ

(1)
t , · · · , λ(K)

t ].

Denoting L as the original loss function and α ∈ R+ as the regularization strength, we
minimize the regularized objective LR := L−α

∑T−1
t=1 st to encourage temporal smoothness.

Figure 6 illustrates the effect of temporal smoothness regularization on the model for
the mortality task. As expected, larger regularization strength encourages models to share
parameters. However, test performance drops monotonically as α increases. Additional reg-
ularization likely results in lower model complexity and in some settings underfitting. Our
result aligns with Savarese and Maire (2019) in that while smoothness in patterns naturally
arises, explicitly encouraging smoothness through regularization hurts performance.
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α: 1e-05, test (AUROC, AUPR): (0.824, 0.458)
α: 0.001, test (AUROC, AUPR): (0.824, 0.439)
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Figure 6: Visualization of the mixing coefficients learned by mixLSTM-2 with different regu-
larization strengths for the mortality task. λ(1) is shown on the y-axis. λ(2) can be inferred
(λ(2) = 1− λ(1)). As regularization strength increase, mixing coefficients become smoother
at the cost of lower performance.
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What time-varying relationships does the mixLSTM learn to recognize? When
attempting to understand which features drive a model’s predictions, the focus is often put
on the importance of certain features. However, because mixLSTM was designed to and has
been shown to excel in situations with temporal conditional shift, we focus on identifying
the features whose influence changes over time. To identify such features, we must first
measure the effect of each feature at each time step. Here, we use the input gradient as a
proxy for feature importance and visualize importance over time (Van Hasselt et al., 2016;
Selvaraju et al., 2016; Graves, 2012) (Figure 7). More specifically, we traversed the test set,
accumulating the input gradient with respect to the target class. One of the most noticeable
patterns is the large amount of variation in feature importance in the first 6 hours of an
ICU admission. This pattern is most apparent for the task of predicting shock (Figure
7b). This may reflect the significant physiological changes a patient may experience at the
beginning of their ICU stay as interventions are administered in an effort to stabilize them.

0 6 12 18 24 30 36 42

time (hours)

0

12

24

36

48

60

72

fe
at

ur
e 

in
di

ce
s

−7.5

−5.0

−2.5

0.0

2.5

(a) ARF

0 6 12 18 24 30 36 42

time (hours)

0

12

24

36

48

60

72

fe
at

ur
e 

in
di

ce
s

−10.0

−7.5

−5.0

−2.5

0.0

2.5

(b) shock

0 6 12 18 24 30 36 42

time (hours)

0

12

24

36

48

60

72

fe
at

ur
e 

in
di

ce
s

−9

−6

−3

0

3

(c) mortality

Figure 7: Input gradient based saliency map of mixLSTM-2 on three tasks. Each plot shows
a proxy of importance of each feature across time steps. Some noticeable temporal patterns
include high variability during the first six hours, which may be a reflection of increased
physiological change a patient may experience at the beginning of their ICU stay when
interventions are more frequent.

We list the continuous features ranked by importance in Table 3. Feature importance
was calculated by summing importance over time and taking the absolute value. Here posi-
tive importance values are associated with increased risk, while negative importance values
are associated with protection. The color scheme reflects the overall direction of association
and the change over time. Dark red and dark green represent ‘risk’ and ‘protective’ factors
that lead to increased and decreased risk over time, respectively; that is, their effects be-
come amplified over time. Light red and light green represent ‘risk’ and ‘protective’ factors
that lead to decreased and increased risk over time, respectively; that is, their effects di-
minish over time. For example, in all three tasks, ‘fraction of inspired oxygen’ (indicative of
whether or not a patient is on supplemental oxygen) is a risk factor initially, and becomes
more important over time. This suggests that if a patient is still on high levels of oxygen 48
hours into their ICU admission, their risk is elevated for all three outcomes. For ARF and
shock a similar pattern holds for heart rate, where sustained high heart rate is associated
with greater risk over time. This suggests that some features, when persistently abnormal,
further amplify a patient’s risk.
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Table 3: Physiological data ranked by overall importance as identified by mixLSTM-2 on
ARF, shock, and mortality using input gradient. The table is color coded. Light red
denotes features that are initially risk factors, where risk decreases over time. Dark red
denotes features that are initially risk factors, but where risk increases over time. Light
green denotes features that are initially protective, but become less protective over time.
Dark green denotes features that are initially protective, and becomes more protective over
time.

ARF shock mortality

pH Respiratory rate Respiratory rate
Oxygen saturation Height Heart Rate
Weight Mean blood pressure Glucose
Respiratory rate Heart Rate Fraction inspired oxygen
Fraction inspired oxygen Fraction inspired oxygen Height
Heart Rate pH Weight
Height Weight Systolic blood pressure
Glucose Glucose pH
Systolic blood pressure Oxygen saturation Mean blood pressure
Mean blood pressure Systolic blood pressure Diastolic blood pressure
Temperature Diastolic blood pressure Oxygen saturation
Diastolic blood pressure Temperature Temperature

It is important to note that interpreting neural networks, and LSTMs in particular,
remains an open challenge. Though the approach considered here is frequently used for
interpreting LSTMs, it relies on the local effect of a feature and thus ignores the global
trends (Ross et al., 2017; Ghorbani et al., 2019; Graves, 2012). Moreover, these methods
merely identify associations and not causation.

Given the limitations of using input gradients to model the importance of discrete fea-
tures, we also investigated feature importance using a permutation based sensitivity analysis
(Fisher et al., 2018; Breiman, 2001). In the test set, we randomly permuted each covari-
ate at each specific time period and measured predictive performance. By permuting each
covariate in turn, we destroy any information that a particular covariate provides. If perfor-
mance then drops significantly relative to a non-permuted baseline, we conclude the feature
was important. To prevent correlated variables from leaking information, we simultaneously
permuted variables with a correlation coefficient ≥ 0.95. We permuted grouped features
within periods of 12 hours to encourage consistency of perturbation along time. Figure 8
plots this measure of feature importance over time. Overall, we observe similar trends to the
input gradient analysis. In addition to there being greater variability in the first part of the
visit, we also observed significant changes in the importance of certain features (measured
by sum of importance across time). For example, for the task of predicting in-hospital
mortality, respiratory rate is initially the most important feature, but then temperature
becomes more important as the patient state evolves. For ARF, a variable pertaining to
the Glasgow coma scale is initially most important, before yielding to respiratory rate.
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Figure 8: Permutation based saliency map of mixLSTM-2 on three tasks. Each plot shows
AUROC degradation for permuting a feature. A larger decrease in AUROC means that the
feature is more important with respect to the prediction task. Some noticeable temporal
patterns include an increased variability during the first 12 hours which may be a reflection
of increased physiological change a patient may experience at the beginning of their ICU
stay when interventions are more frequent.

6. Conclusion

In this work, we present and explore the issue of temporal conditional shift in clinical time-
series data. In addition, we propose a mixture of LSTM model (mixLSTM) and demonstrate
that it effectively adapts to scenarios exhibiting temporal conditional shift, consistently
outperforming baselines on synthetic and clinical data tasks. We also show that the mixLSTM
model can adapt to settings with limited training data and learns meaningful, time-varying
relationships from the data.

While mixLSTM achieves consistently better performance on all tasks considered, we note
some important limitations. First, we only considered fixed-length datasets. It would be
beneficial to compare LSTM and mixLSTM’s ability to generalize to variable length data.
Second, our features are largely physiological (e.g., heart rate, temperature). We hypoth-
esize that other types of features such as medications may exhibit stronger time-varying
relationships. Third, while it is reasonable to set time zero as the time of ICU admission,
patients are admitted to the ICU at different points during the natural history of their
illness. Future work should consider the alignment of patient time steps (e.g., learning an
individualized model).

Despite these limitations, our results suggest that temporal conditional shift is an impor-
tant aspect of clinical time-series prediction and future work could benefit from considering
this problem setting. Our proposed mixLSTM presents a strong starting point from which
future work can build.
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Hal Daumé III. Frustratingly easy domain adaptation. Proc. 45th Ann. Meeting of the
Assoc. Computational Linguistics, 2007.

Friedo W Dekker, Renée De Mutsert, Paul C Van Dijk, Carmine Zoccali, and Kitty J
Jager. Survival analysis: time-dependent effects and time-varying risk factors. Kidney
international, 74(8):994–997, 2008.

Ying Ding, Jianfei Yu, and Jing Jiang. Recurrent neural networks with auxiliary labels for
cross-domain opinion target extraction. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Denis Moreira dos Reis, Peter Flach, Stan Matwin, and Gustavo Batista. Fast unsupervised
online drift detection using incremental kolmogorov-smirnov test. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1545–1554. ACM, 2016.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations
in a deep mixture of experts. International Conference on Learning Representations
workshop, 2014.

3. http://midas.umich.edu/

20

http://midas.umich.edu/


Effectively Modeling Time-Varying Relationships using RNNs

Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong but many are
useful: Variable importance for black-box, proprietary, or misspecified prediction models,
using model class reliance. arXiv preprint arXiv:1801.01489, 2018.

Madalina Fiterau, Suvrat Bhooshan, Jason Fries, Charles Bournhonesque, Jennifer Hicks,
Eni Halilaj, Christopher Re, and Scott Delp. Shortfuse: Biomedical time series repre-
sentations in the presence of structured information. In Machine Learning for Healthcare
Conference, pages 59–74, 2017.

David F Gaieski and ME Mikkelsen. Definition, classification, etiology, and pathophysiology
of shock in adults. UpToDate, Waltham, MA. Accesed, 8:17, 2016.

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is
fragile. AAAI, 2019.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sen-
timent classification: A deep learning approach. In Proceedings of the 28th international
conference on machine learning (ICML-11), pages 513–520, 2011.

Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao, Clark Glymour, and Bernhard
Schölkopf. Domain adaptation with conditional transferable components. In International
conference on machine learning, pages 2839–2848, 2016.

Alex Graves. Supervised sequence labelling. In Supervised sequence labelling with recurrent
neural networks, pages 5–13. Springer, 2012.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. International Conference on
Learning Representations, 2017.

Hrayr Harutyunyan, Hrant Khachatrian, David C Kale, Greg Ver Steeg, and Aram Gal-
styan. Multitask learning and benchmarking with clinical time series data. Scientific
data, 6(1):96, 2019.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark.
Mimic-iii, a freely accessible critical care database. Scientific data, 3, 2016.

Diederik Kingma and Jimmy Ba. Adam: a method for stochastic optimization (2014).
International Conference on Learning Representations, 15, 2015.

Jens Kohlmorgen, Klaus-Robert Müller, and Klaus Pawelzik. Analysis of drifting dynamics
with neural network hidden markov models. In Advances in Neural Information Process-
ing Systems, pages 735–741, 1998.

Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzel. Learning to diagnose
with lstm recurrent neural networks. International Conference on Learning Representa-
tions, 2016.

21



Effectively Modeling Time-Varying Relationships using RNNs

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1930–1939. ACM, 2018.

G Umberto Meduri, Robert E Turner, Nabil Abou-Shala, Richard Wunderink, and Eliza-
beth Tolley. Noninvasive positive pressure ventilation via face mask: first-line intervention
in patients with acute hypercapnic and hypoxemic respiratory failure. Chest, 109(1):179–
193, 1996.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010.

Hyunsin Park and Chang D Yoo. Early improving recurrent elastic highway network. arXiv
preprint arXiv:1708.04116, 2017.

Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nissan Hajaj, Michaela Hardt,
Peter J Liu, Xiaobing Liu, Jake Marcus, Mimi Sun, et al. Scalable and accurate deep
learning with electronic health records. NPJ Digital Medicine, 1(1):18, 2018.

Sashank Jakkam Reddi, Barnabas Poczos, and Alex Smola. Doubly robust covariate shift
correction. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the right reasons:
Training differentiable models by constraining their explanations. International Joint
Conferences on Artificial Intelligence Organization, 2017.

Pedro Savarese and Michael Maire. Learning implicitly recurrent CNNs through parameter
sharing. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJgYxn09Fm.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, Dhruv Batra, et al. Grad-cam: Visual explanations from deep networks via
gradient-based localization., in iccv, 2016.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn fea-
tures off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages 806–813, 2014.

Dennis JNJ Soemers, Tim Brys, Kurt Driessens, Mark HM Winands, and Ann Nowé.
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Appendix A. Details of Data & Features

Table 4: The 17 physiological features extracted from MIMIC-III database, the source
tables, and the corresponding ITEMIDs

Index Variable Name Table(s) ITEMID(s)

1 Capillary refill rate CHARTEVENTS 3348, 115, 8377

2 Diastolic blood pressure CHARTEVENTS
8368, 220051, 225310, 8555, 8441, 220180, 8502,
8440, 8503, 8504, 8507, 8506, 224643

3 Fraction inspired oxygen CHARTEVENTS 3420, 223835, 3422, 189, 727
4 Glascow coma scale eye opening CHARTEVENTS 184, 220739
5 Glascow coma scale motor response CHARTEVENTS 454, 223901
6 Glascow coma scale total CHARTEVENTS 198,
7 Glascow coma scale verbal response CHARTEVENTS 723, 223900

8 Glucose CHARTEVENTS/LABEVENTS
50931, 807, 811, 1529, 50809, 51478, 3745, 225664,
220621, 226537

9 Heart Rate CHARTEVENTS 221, 220045
10 Height CHARTEVENTS 226707, 226730, 1394

11 Mean blood pressure CHARTEVENTS
52, 220052, 225312, 224, 6702, 224322, 456,
220181, 3312, 3314, 3316, 3322, 3320

12 Oxygen saturation CHARTEVENTS/LABEVENTS 834, 50817, 8498, 220227, 646, 220277
13 Respiratory rate CHARTEVENTS 618, 220210, 3603, 224689, 614, 651, 224422, 615, 224690

14 Systolic blood pressure CHARTEVENTS
51, 220050, 225309, 6701, 455, 220179, 3313,
3315, 442, 3317, 3323, 3321, 224167, 227243

15 Temperature CHARTEVENTS 3655, 677, 676, 223762, 3654, 678, 223761, 679
16 Weight CHARTEVENTS 763, 224639, 226512, 3580, 3693, 3581, 226531, 3582

17 pH CHARTEVENTS/LABEVENTS
50820, 51491, 3839, 1673, 50831, 51094, 780,
1126, 223830, 4753, 4202, 860, 220274

Table 5: The 76 time-series features used as input to all the models.

Index Feature Name Type

0 Capillary refill rate->0.0 Binary
1 Capillary refill rate->1.0 Binary
2 Diastolic blood pressure Numeric
3 Fraction inspired oxygen Numeric
4 Glascow coma scale eye opening->To Pain Binary
5 Glascow coma scale eye opening->3 To speech Binary
6 Glascow coma scale eye opening->1 No Response Binary
7 Glascow coma scale eye opening->4 Spontaneously Binary
8 Glascow coma scale eye opening->None Binary
9 Glascow coma scale eye opening->To Speech Binary
10 Glascow coma scale eye opening->Spontaneously Binary
11 Glascow coma scale eye opening->2 To pain Binary
12 Glascow coma scale motor response->1 No Response Binary
13 Glascow coma scale motor response->3 Abnorm flexion Binary
14 Glascow coma scale motor response->Abnormal extension Binary
15 Glascow coma scale motor response->No response Binary
16 Glascow coma scale motor response->4 Flex-withdraws Binary
17 Glascow coma scale motor response->Localizes Pain Binary
18 Glascow coma scale motor response->Flex-withdraws Binary
19 Glascow coma scale motor response->Obeys Commands Binary
20 Glascow coma scale motor response->Abnormal Flexion Binary
21 Glascow coma scale motor response->6 Obeys Commands Binary
22 Glascow coma scale motor response->5 Localizes Pain Binary
23 Glascow coma scale motor response->2 Abnorm extensn Binary
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24 Glascow coma scale total->11 Binary
25 Glascow coma scale total->10 Binary
26 Glascow coma scale total->13 Binary
27 Glascow coma scale total->12 Binary
28 Glascow coma scale total->15 Binary
29 Glascow coma scale total->14 Binary
30 Glascow coma scale total->3 Binary
31 Glascow coma scale total->5 Binary
32 Glascow coma scale total->4 Binary
33 Glascow coma scale total->7 Binary
34 Glascow coma scale total->6 Binary
35 Glascow coma scale total->9 Binary
36 Glascow coma scale total->8 Binary
37 Glascow coma scale verbal response->1 No Response Binary
38 Glascow coma scale verbal response->No Response Binary
39 Glascow coma scale verbal response->Confused Binary
40 Glascow coma scale verbal response->Inappropriate Words Binary
41 Glascow coma scale verbal response->Oriented Binary
42 Glascow coma scale verbal response->No Response-ETT Binary
43 Glascow coma scale verbal response->5 Oriented Binary
44 Glascow coma scale verbal response->Incomprehensible sounds Binary
45 Glascow coma scale verbal response->1.0 ET/Trach Binary
46 Glascow coma scale verbal response->4 Confused Binary
47 Glascow coma scale verbal response->2 Incomp sounds Binary
48 Glascow coma scale verbal response->3 Inapprop words Binary
49 Glucose Numeric
50 Heart Rate Numeric
51 Height Numeric
52 Mean blood pressure Numeric
53 Oxygen saturation Numeric
54 Respiratory rate Numeric
55 Systolic blood pressure Numeric
56 Temperature Numeric
57 Weight Numeric
58 pH Numeric
59 mask->Capillary refill rate Binary
60 mask->Diastolic blood pressure Binary
61 mask->Fraction inspired oxygen Binary
62 mask->Glascow coma scale eye opening Binary
63 mask->Glascow coma scale motor response Binary
64 mask->Glascow coma scale total Binary
65 mask->Glascow coma scale verbal response Binary
66 mask->Glucose Binary
67 mask->Heart Rate Binary
68 mask->Height Binary
69 mask->Mean blood pressure Binary
70 mask->Oxygen saturation Binary
71 mask->Respiratory rate Binary
72 mask->Systolic blood pressure Binary
73 mask->Temperature Binary
74 mask->Weight Binary
75 mask->pH Binary
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