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Abstract
We consider the problem of clinical image classification for the purpose of aiding doctors in derma-
tological disease diagnosis. Diagnosis of dermatological conditions from images poses two major
challenges for standard off-the-shelf techniques: First, the distribution of real-world dermatological
datasets is typically long-tailed. Second, intra-class variability is large. To address the first issue,
we formulate the problem as low-shot learning, where once deployed, a base classifier must rapidly
generalize to diagnose novel conditions given very few labeled examples. To model intra-class
variability effectively, we propose Prototypical Clustering Networks (PCN), an extension to Proto-
typical Networks (Snell et al., 2017) that learns a mixture of “prototypes” for each class. Prototypes
are initialized for each class via clustering and refined via an online update scheme. Classification
is performed by measuring similarity to a weighted combination of prototypes within a class, where
the weights are the inferred cluster responsibilities. We demonstrate the strengths of our approach
in effective diagnosis on a realistic dataset of dermatological conditions.

1. Introduction

Globally, skin disease is one of the most common human illnesses that affects 30% to 70% of indi-
viduals, with even higher rates in at-risk subpopulations where access to care is scarce (NHANES,
1978; Bickers et al., 2006; J.K.Scholfield et al., 2009; Hay and Fuller, 2012; Basra and Shahrukh,
2009). Untreated or mistreated skin conditions often lead to detrimental effects including physical
disability and death (Basra and Shahrukh, 2009). A large fraction of skin conditions are diagnosed
and treated at the first point of contact, i.e. by primary care practitioners (PCPs), either in a clinical
setting or in a telemedicine scenario. While this makes access to care faster, recent studies indicate
that general physicians, especially those with limited experience, may not be well-trained for diag-
nosing many skin conditions (Federman et al., 1999; Goldman, 2007). Effective solutions to aid
scale doctors in accurate diagnosis motivates this work.

What makes diagnosis of skin conditions challenging? One important factor is the sheer number
of dermatological conditions. The International Classification for human Diseases (ICD) enumer-
ates more than 1000 skin or skin-related illnesses. However, most PCPs are trained on a few tens of
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† Work done as advisor to Curai.
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Figure 1: Long-tailed class distribution of Dermnet (shown here for the top-200 classes). Also
shown are nearest neighbors to four of the many prototypes learned for select classes
using the proposed Prototypical Clustering Network approach. This is illustrative of the
huge intra-class variability in the data. For a novel test image, shown at the upper right
corner, the model predicts the correct class by measuring weighted similarity to per-class
clusters in the embedding space learned through a deep convolutional neural network.

common skin ailments (Wilmer et al.). To make an accurate diagnosis, the knowledge of all possi-
ble diseases is important, especially to workup and eliminate potentially life-threatening conditions.
The difficulty of diagnosis is further compounded by large intra-class variability (acne may occur
on the face, hand, scalp, etc.). To motivate the scale of this problem, see Figure 1, where we show
the class distribution of the Dermnet Skin Disease Atlas 1, a publicly available large-scale dataset
of dermatological conditions.

These issues create an opportunity for incorporating machine learning systems into the doctor’s
workflow, aiding them in sieving through possible skin conditions. AI systems have shown promis-
ing results in the healthcare domain, with early applications on automated detection of skin lesions
from images (c.f. Esteva et al. (2017)), and diagnosis based on radiology data (c.f. Li et al. (2018)).
Clinical Relevance: Inspired by these successes, this paper tackles the problem of fine-grained
skin disease classification. We conjecture that a high-fidelity AI system can serve as a diagnostic
decision support system to general physicians. By suggesting candidate diagnoses, it can greatly
reduce effort and compensate for the possible lack of experience or time at the point of care. Further,
such a system can aid in triaging the right doctor resource in a timely manner, especially when acute
conditions need immediate care (Goldman, 2007). Our primary goal is to design a dermatological
diagnosis model amenable to deployment in a primary care setting, that can aid doctors by providing
a list of candidate diagnoses. Additionally, we seek to expand the scope of diagnosis to data-poor

1. http://www.dermnet.com/
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diseases, as well as diseases exhibiting significant variability in manifestation, in an attempt to
improve the coverage, applicability, and cost-effectiveness of such services.
Technical Signficance: Motivated by the long-tailed and diverse characteristics of dermatological
data, we formulate dermatological diagnosis as a few-shot learning problem and propose models
that can both effectively learn from such data and easily be extended to diagnose new conditions
given very few labeled examples. Specifically, our task is to learn a base diagnosis model that, once
deployed, can be easily extended to new classes from a few labeled examples (potentially labeled by
a physician). To our knowledge, ours is the first work to study the applicability of few-shot learning
in assistive diagnosis. Our approach pursues the following objectives:
• Modeling intra-class variability: Several conditions contain significant intra-class variabil-

ity, e.g. a condition like acne may occur on the face, back, scalp, etc.
• Modeling the long-tail. The data distribution is invariably long tailed. Some conditions are

rare and may not have many recorded examples (Fig. 1, “melanoma mimic”), while others
may be common but easy to diagnose and so not frequently recorded (Fig. 1, “flea bites”).
• Learning without forgetting: The ability to diagnose novel conditions must not compromise

the performance on base classes.
• Privacy preservation: As access to most dermatological data (usually part of Electronic

Health Records) is strictly controlled, the model should not require access to the original
(potentially, proprietary) training data when being extended.

Our proposed model, that we call Prototypical Clustering Networks (PCN), extends prior few-shot
learning work on Prototypical Networks (Snell et al., 2017), which have been shown to be a simple
and highly effective metric learning formulation to learn from limited data. Specifically, to model
the diversity of dermatological data, we represent each class as a mixture of learned representative
“prototypes”, instead of a single prototype. Training this classifier involves learning an embedding
space while simultaneously learning to represent each class by a set of prototypes. Prototypes are
initialized for each class via clustering and refined via an online update scheme. Classification is
performed by measuring similarity to a weighted combination of prototypes within a class, where
the weights are the inferred cluster responsibilities. The examples shown in Figure 1 are, in fact,
nearest neighbors to prototypes of the classes learned using the proposed approach. Quantitative re-
sults demonstrate the strengths of our approach for dermatological disease diagnosis against strong
baselines, and we further provide detailed analyses of the learned representations.

2. Related Work

Dermatological Classification. A few prior works address the problem of dermatological classifi-
cation. In Esteva et al. (2017), authors focus specifically on diagnosing skin cancer, and establish a
benchmark on a large closed-source dataset of skin lesions by finetuning a pretrained deep convo-
lutional neural network (CNN). In Liao (2016), authors study the problem of skin disease diagnosis
on the Dermnet dataset but focus on coarse 23-way classification using its top-level hierarchy. In
Sun et al. (2016), the authors propose a benchmark dataset for skin disease diagnosis containing
6584 clinical images. In follow up work, Yang et al. (2018) propose an approach to learn repre-
sentations inspired by diagnostic criteria employed by dermatologists on this dataset. In this work,
we study fine-grained recognition of skin conditions on the Dermnet dataset which is a signficantly
larger dermatological resource containing over 23000 images. Further, we formulate this as a few-
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shot learning setup, and propose a method to model diverse classes and generalize effectively to
previously unseen novel classes with very little labeled data.
Class-imbalanced datasets. Real-world visual datasets frequently possess long tails (Van Horn
and Perona, 2017; Wang et al., 2017; Zhu et al., 2014), and learning robust representations from
such data is a topic of active research. Conventional training methods typically lead to poor gen-
eralization on tail classes as class-prior statistics are skewed towards the head of the distribution.
Simple techniques such as random oversampling (or undersampling) by repeating (or removing)
tail instances are found to help mitigate this issue to a degree (Buda et al., 2018). Alternative ap-
proaches perform meta-learning to transfer knowledge from data-rich head classes to the tail (Wang
et al., 2017). In this work, we propose a few-shot learning approach on a real-world imbalanced
dataset of dermatological conditions, and demonstrate strong few-shot generalization capabilities.
Few-shot learning. Few-shot learning aims to learn good class representations given very few train-
ing examples (Koch et al., 2015; Santoro et al., 2016; Vinyals et al., 2016; Snell et al., 2017). Main
paradigms of approaches include simulating data starved environments at training time, and includ-
ing non-parametric structures in the model as regularizers. Matching networks (Vinyals et al., 2016)
learn an attention mechanism over support set labels to predict query set labels for novel classes.
Prototypical networks (Snell et al., 2017) jointly learn an embedding and centroid representations
(as class prototypes), that are used to classify novel examples based on Euclidean distance. In both
Vinyals et al. (2016) and Snell et al. (2017), embeddings are learned end-to-end and training em-
ploys episodic sampling. Some recent approaches learn to directly predict weights for new layers
from embedding layer activations of support examples (Qi et al., 2018; Qiao et al., 2017). In Gi-
daris and Komodakis (2018), the motivation is to perform few shot learning ‘without forgetting’,
i.e. extending to novel classes without catastrophic forgetting (also studied as generalized few-shot
learning). In Hariharan and Girshick (2017), authors study few-shot learning by creating an im-
balanced few-shot benchmark from ImageNet (Russakovsky et al., 2015), and propose a method to
“hallucinate” additional samples for such data-starved classes. In this work, we focus on a similar
setup on the real-world long-tailed Dermnet dataset.
Prototypical Networks. Prior extensions to Protoypical Networks exist in the literature, and here
we distinguish our contributions (Triantafillou et al., 2018; Fort, 2017). In Triantafillou et al. (2018),
authors propose extending Prototypical Networks to a semi-supervised setting by using unlabeled
examples while producing prototypes. In Fort (2017), authors propose additionally predicting a
covariance estimate for each embedding and using a direction and class dependent distance metric
instead of euclidean distance. In this work, we extend prototypical networks to model multimodal
classes in an automated diagnostic setting by learning multiple prototypes per class, that are initial-
ized via clustering and refined via an online update scheme.

3. Approach

We formulate dermatological image classification as a low-shot learning problem. During train-
ing time, we have access to a labeled dataset of images S = {(x1, y1), ..., (xN , yN )} where each
xi is an observation and yi ∈ {1, ...,Kbase} is the label mapping to one of the base classes known
at training time. At test time, we are also provided with a small labeled dataset corresponding to
Knovel novel classes, and must learn to perform Kbase+novel way classification.
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Algorithm 1: Training episode loss computation for Prototypical Clustering Networks. N is the
number of examples in the training set, Kbase is the number of base classes for train-
ing,Mk is the number of clusters for class k,NC ≤ Kbase is the number of classes per
episode, NS is the number of support examples per class, NQ is the number of query
examples per class. RANDOMSAMPLE(S, N) denotes a set of N elements chosen
uniformly at random from set S, without replacement. Differences from Algorithm 1
in Snell et al. (2017) in blue.

1: Input:Training set D = {(x1, y1), · · · , (xN , yN )}, where each yi ∈ {1, · · · ,K}. Dk de-
notes the subset of D containing all class prototypes, i.e. elements (xi, yi) = {µz,k}Mk

z=1∀k ∈
{1, · · · ,K}

2: Output: The loss Lφ for a randomly generated training episode
3: V← RANDOMSAMPLE({1, · · · ,K}, NC) // Select class indices for episode
4: for k ∈ {1, · · · , NC} do
5: Sk ← RANDOMSAMPLE(Dvk , NS) // Select support examples
6: Qk ← RANDOMSAMPLE(Dvk\Sk , NQ) // Select query examples
7: // Compute probabilistic assignment of x to y’s clusters
8: for z ∈ {1, · · · ,Mk} do
9: for (x, y) ∈ Sk do

10: q(z|k, x) = exp(−d(fφ(x),µz,k)/τ)∑
z′ exp(−d(fφ(x),µz′,k)/τ)

11: end for
12: µnewz,k ← αµoldz,k + (1− α)

∑
(x,y)∈Sk

q(z|k,x)fφ(x)∑
(x,y)∈Sk

q(z|k,x)
13: end for
14: end for
15: Lφ ← 0

16: for k ∈ {1, · · · , NC} do
17: for (x, y) ∈ Qk do
18: rx,y ←

∑
z q(z|k, x)d(fφ(x), µz,k) + log

∑
k′ exp(−

∑
z′ q(z

′|k′, x)d(fφ(x), µz′,k′))
19: Lφ← Lφ + rx,y

NCNQ

20: end for
21: end for

3.1. Model

Prototypical Clustering Networks (PCN) build upon recent work in Prototypical Networks (Snell
et al., 2017). PCN represents each class using a set of prototypical representations learned from the
data. Let {µz,k}Mk

z=1 be the collection of Mk prototypes for class k. Then, at test time, we measure
similarity to these representations to derive its corresponding class label. In particular,

p(y = k|x) = exp(−
∑
z q(z|k,x)d(fφ(x),µz,k))∑

k′ exp(−
∑
z q(z|k,x)d(fφ(x),µz,k′ ))

(1)
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where fφ(x) is the embedding function with learnable parameters φ that maps input x to a learned
representation space, d is a distance function and q(z|k, x) (eq. 2) is a soft assignment of examples
to clusters from the class. When Mk = 1 for all classes, we revert to prototypical networks.

3.1.1. MODEL TRAINING

Our goal is to learn a model with parameters φ so as to maximize the probability of the correct class
such that φ∗ = argmaxφ

∑
(x,y) log p(y|x;φ) = argminφ Lφ, where Lφ is the corresponding loss

function. We use episodic training (Snell et al., 2017; Vinyals et al., 2016; Ravi and Larochelle,
2016) to learn the embedding function by optimizing the loss and updating the cluster prototypes
for each class. In particular, a training epoch consists of E episodes. Algo. 1 provides the details of
computing the loss for one episode that is used in learning the function.
Class-specific cluster responsibilities: The assignment of an example within a class is given by:

q(z|k, x) =
exp(−d(fφ(x), µz,k)/τ)∑
z′ exp(−d(fφ(x), µz′,k)/τ)

, (2)

where τ is temperature parameter that controls the variance of the distribution. As we decrease
the temperature, the distribution becomes more peaky, and becomes flatter as we increase it. The
importance of τ can be understood by studying the loss function Lφ in line 15 of Algo. 1. During
training, if clusters are well-separated, q(z|k, x) will be peaky so that each example effectively
contributes to the update of a single cluster in a class, whereas if clusters overlap, q(z|k, x) will be
diffuse and the corresponding example will contribute to multiple prototypes.
Class-specific cluster prototypes: In episodic training, an epoch corresponds to a fixed number
of episodes and within each episode, classes are sampled uniformly. In our setting with huge class
imbalance, this translates to oversampling examples from the tail and undersampling examples from
the head, which can adversely affect model training. To mitigate this, at the start of an epoch, we
initialize cluster prototypes for each class using k-means 2 on the learned embedding representation
of examples from the entire training set of that class. We rerun this clustering step at the start of
each epoch to prevent collapse to using only a single cluster per class.

Subsequently, in each episode, we use an online update scheme that balances between the local
estimate of the prototype computed from embeddings of the current support set (to account for the
evolving embedding space), and the prototypes learned so far:

µnewz,k ← αµoldz,k + (1− α)
∑

(x,y)∈Sk q(z|k, x)fφ(x)∑
(x,y)∈Sk q(z|k, x)

, (3)

where α trades off memory from previous episodes and its current estimate.

3.2. Understanding the role of multiple clusters

We can derive insights about the role of multiple clusters by interpreting PCN as a non-linear gen-
eralization of PN (Snell et al., 2017). Using squared Euclidean distance in Eqn. 1, we expand the
term in the exponent so that:

2. We empirically found using a fixed number of clusters per class to work best. Choosing an optimal number of clusters
per class is challenging, largely due to differences in the amount of intra-class variability across classes. In an attempt
to bypass this challenge, we experimented with using affinity propagation (Frey and Dueck, 2007), but found it to
be highly unstable as a) the similarity function (needed for clustering) is based on the embedding representation that
is optimized concurrently, and b) there is no straightforward online update rule (equivalent to eq. 3) to subsequently
update within an episode.
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−
∑
z

q(z|k, x)||fφ(x)− µz,k||2 = const. for k+ 2
∑
z

q(z|k, x)fφ(x)Tµz,k (4)

−
∑
z

q(z|k, x)µTz,kµz,k

= const. for k + 2wTk,xfφ(x)− bk,x (5)

where wk,x =
∑
z

q(z|k, x)µz,k (6)

bk,x =
∑
z

q(z|k, x)µTz,kµz,k (7)

The last two terms in Eqn. 5 are non-linear functions of the data, where the non-linearity is
captured through both the embedding and the mixing variables. The functional forms of the factors,
namely wk,x and bk,x, also sheds light on the advantage of using multiple clusters per class. In par-
ticular, unlike in prototypical networks, wk,x is an example-specific “prototypical” representation
for class k, obtained by using a convex combination of prototypes for the class, weighted by pos-
terior probability over within-class cluster assignments. When q(z|k, x) is confident with a peaky
posterior, the model behaves like a regular prototypical network. In contrast, when the posterior has
uncertainty, PCN interpolates between the prototypes by modulating q(z|k, x).

4. Results

4.1. Experimental setup

Dataset: We construct our dataset from the Dermnet Skin Disease Atlas, one of the largest pub-
lic photo dermatology sources containing over 23,000 images of dermatological conditions. These
images are clinical images collected through various sources, including mobile phones, digital cam-
eras, etc. and so vary in pose, lighting, and resolution. Images are annotated at a two level hierarchy
– a coarse top-level containing parent 23 categories, and a fine-grained bottom-level containing more
than 600 skin conditions. We focus on the more challenging bottom-level hierarchy for our exper-
iments. First, we remove duplicates from the dataset based on name, and also based on collisions
found using perceptual image hashing (Zauner, 2010).

Figure 1 presents a histogram of the resulting class distribution, filtered to the top-200 classes.
We can see that the dataset has a long tail with only the 100 largest classes having more than 50
images; beyond 200 classes, the number of images per class reduces to double digits, and with 300
classes to single digits. Unless otherwise stated, for experimental comparisons, we focus on the
top-200 classes so that Kbase+novel = 200, which contains 15507 images. Similar to Hariharan and
Girshick (2017), we treat the largest 150 classes as base classes (Kbase = 150) and the remaining
50 classes as novel (Knovel = 50). This helps in ensuring reasonably sized splits for training,
validation, and testing. In particular, we sample max(5, 20%) without replacement for each base
class to get validation and test splits (3163 images each). The remaining is used for training (9181
images). For the low-shot learning phase, following the procedure used in Hariharan and Girshick
(2017), we sample 5 examples each for training and testing, respectively. We report mean and
standard deviation of metrics over 10 cross validation runs.
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Metrics: As our dataset is imbalanced, we report mean of per-class accuracy (mca) as our metric,
treating each class as equally important. For a dataset consisting of C classes, with Tc examples in

each class, mean accuracy is the average of per-class accuracies: mca = 1
C

∑
c

∑Tc
t=1 I[ŷ

(t)[0]=y(t)]
Tk

,
where, for tth example, ŷ(t)[j] is the jth top class predicted from a model and y(t) is its correspond-
ing ground truth label, where I denotes the indicator function.

We use mcabase+novel to report combined mca performance of examples from all classes. mcabase
corresponds to similarKbase+novel-way evaluation but restricted to test examples from base classes,
and mcanovel corresponds to evaluation on test examples belonging to novel classes alone.

We also report recall@k (k ∈ {5, 10}). This metric (also called sensitivity) is valuable in de-
ployment contexts that involve aiding doctors in diagnosis, as it ensures that the relevant condition
is considered within a small range of false positives. However, since our test set is imbalanced,
recall@k metrics unfairly reward strong performance on the head classes, and so to provide a fairer
comparison, we report balanced (or macro) recall@k metrics, wherein we compute recall@k for
each class and average, treating each as equally important 3.
Model: We initialize a 50-layer ResNet-v2 (He et al., 2016), a state-of-the-art convolutional neural
network architecture for image classification, with ImageNet pretraining 4, and train a Prototypical
Clustering Network as described in Sec. 3 on Kbase classes. We use 10 and 4 clusters per class for
base and novel classes respectively, and a temperature of 1.0 (all picked via grid search).
Baselines
• Prototypical Network (PN): We train an ImageNet-pretrained ResNet-V2 CNN as a Prototyp-

ical Network (Snell et al., 2017) on Kbase classes.
• Finetuned Resnet with nearest neighbor (FTK-*NN): Here, we finetune an ImageNet-pretrained

ResNet-v2 convolutional neural network with 50 layers (He et al., 2016) on training data from
K classes. We report numbers for K ∈ {Kbase,Kbase+novel}. The model is trained as a soft-
max classifier with a standard cross entropy objective. Then, we obtain embeddings for the
entire training set consisting of Kbase+novel classes, followed by ∗-nearest neighbor classifi-
cation on the test set belonging to Kbase+novel classes.
• Finetuned ResNet (FTK-CE): We use the same ResNet model as above, withK = Kbase+novel,

i.e. trained for Kbase+novel way classification using training data from both base and novel
classes, and validated using the corresponding validation set on the base classes alone (due
to lack of data in novel classes). We train the model with class balancing. This is a strong
baseline as we use all Kbase+novel during training, and also due to class balancing, which
has been shown to be an effective strategy for training CNN models in the presence of class
imbalance (Buda et al., 2018).

Hyperparameters: For PN and PCN, we use episodic batching with 10-way 10-shot classification
(at train), and 200 episodes per epoch. At test, we compute per-class prototypes using the training set
for allKbase+novel classes, and performKbase+novel way classification. The embedding function for
PCN and PN produces 256-dimensional embeddings, and uses the same architecture as in FTK-CE
(with one less fully connected layer). Models are trained with early stopping using Adam (Kingma
and Ba, 2014), a learning rate of 10−4, and L2 weight decay of 10−5. For a detailed analysis of
impact of episodic memory and softmax temperature, see supplementary.

3. For completeness, we also report micro-averaged recall@k in supplementary
4. We also experimented with training from scratch, and found it to perform significantly worse
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n = 5 n = 10
Approach mcabase+novel mcabase mcanovel mcabase+novel mcabase mcanovel

FT150-1NN 46.2 ± 0.8 55.3 ± 0.3 18.8 ± 3.3 49.5 ± 0.3 54.9 ± 0.5 33.4 ± 1.4
FT150-3NN 44.3 ± 0.3 54.8 ± 0.5 12.8 ± 1.5 47.0 ± 0.6 54.1 ± 0.4 25.6 ± 1.5
FT200-1NN 46.5 ± 0.4 54.2 ± 0.3 22.5 ± 0.8 49.9 ± 0.5 53.8 ± 0.4 38.3 ± 1.3
FT200-3NN 44.7 ± 0.4 52.6 ± 0.2 20.9 ± 2.0 48.0 ± 0.1 52.5 ± 0.1 34.3 ± 0.2
FT200-CE 47.8 ± 0.5 55.8 ± 0.7 24.0 ± 3.2 51.5 ± 0.4 55.2 ± 0.3 40.4 ± 2.4

PN 43.9± 0.4 48.7 ± 0.4 29.6 ± 2.4 44.9 ± 0.8 47.6 ± 0.4 37.1 ± 3.4
PCN (ours) 47.8 ± 0.7 53.7 ± 0.2 30.0 ± 2.8 50.9 ± 0.6 51.4 ± 0.3 49.6 ± 2.8

Table 1: Mean per-class accuracy (MCA) on top 200 classes. We focus on the low-shot setting,
using all training data for the base classes (the largest 150) and n = 5 or 10 examples for
the remaining 50 classes (denoted as “novel”). Note that FT200-CE and FT200-*NN use
training data for all 200 classes, whereas others use only the base classes for representation
learning, using support sets from novel classes after training to directly derive prototypes.

4.2. Main results

Table 1 highlights our main MCA results. The table shows test set MCA over the 200 classes
available during test time for two different low shot settings: train shots of 5 and 10 with test shot
of 5. In both low shot settings, we observe the following trends:

• FTK-CE and PCN share similar performance on combined MCA. However, their perfor-
mance on base and novel classes is quite distinct. Much of the performance gains for FTK-
CE come from the base classes that have a lot more training examples than novel classes. In
contrast, PCN, through episodic training aims at learning discriminative feature representa-
tions that are generalizable to novel classes with highly constrained numbers of examples;
this is evident by its significantly better performance (9% absolute gains) in generalizing to
novel classes. At the same time, PCN ensures that performance on novel classes does not
come at the cost of lower accuracy on base classes. Also note that the FTK-CE model re-
quires re-training for adding novel classes while PCN only requires a single forward pass to
learn prototypes for novel classes.

• FTK-*NN models learn robust representations for base classes, but are unable to generalize
to novel classes, outperforming a regular PN model on top-200 MCA but underperforming
against PCN. Interestingly, we find that increasing the number of nearest neighbors leads to
poor performance, especially on novel classes. This could be due to sparsity of training data.

• PCN outperforms PN on combined base and novel classes by a large margin. This demon-
strates that representing classes with multiple prototypes leads to better generalization on
both base and novel classes. In Figure 2, we show the nearest neighbor to class prototype for
PN and to four of the PCN prototypes, for select classes. We can see that PCN has learned
to model intra-class variability much more effectively. As an example, for eczema and acne
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Figure 2: Learned prototypes shown using their nearest neighbors in the training set. Each condi-
tion is displayed in a 2× 3 grid; The image below the name of the condition corresponds
to PN, while the 2×2 grid to its right corresponds to nearest neighbors of four (randomly
selected) cluster prototypes. +X% below the name denotes mcabase+novel improvement
of PCN over PN for that class. Note that novel classes such as ‘Distal splitting hang nail’
can also be diverse, as shown by clusters identified with PCN.

classes we can see that PCN learns clusters corresponding to these skin conditions in different
anatomical regions. We provide a more in-depth comparison in the next section.

In Table 2 we report balanced recall@k (br@k) performance. Here we clearly find PCN to
outperform all baselines owing to strong performance across the board on base and novel classes.
Further, in supplementary we provide a per-class performance comparison of our approach against
the FT200-CE baseline that highlights its strengths in diagnosis of data-poor novel conditions.

Finally, as a sanity check of the general applicability of our approach, as well as to compare
to the state of the art, we conduct experiments on the miniImageNet dataset (Vinyals et al., 2016),
an established benchmark in the few shot learning literature. We find that our approach performs
competitively with the state of the art. For details, please look at supplementary material.

4.3. Comparison between PCN and PN

PCN or PN with post-hoc clustering? To understand the effectiveness of PCN, we compare it to
a PN model with which we perform “post-hoc” clustering: (a) cluster novel class representations
using the PN model’s learned embeddings (with cluster size of 4) (b) cluster both base and novel
class representations (with cluster size of 10 and 4, as in PCN). Rows 1-3 in Table 3 compare
the performance between different post-hoc clustering variants of PN against PCN. We see that
PCN leads in all metrics across the board; thus such post-hoc clustering does not lead to improved
performance. A reason for this is that the PN model is optimized to learn representations assuming a
projection to a single cluster for each class, and hence clustering on such learned representation does
not improve performance. This further validates the importance of training with multiple clusters.

10



FEW-SHOT LEARNING FOR DERMATOLOGICAL DISEASE DIAGNOSIS

Approach br@5base+novel br@5base br@5novel br@10base+novel br@10base br@10novel

n=5
FT200-CE 65.4 ± 0.7 74.6 ± 0.2 38.0 ± 2.1 73.1 ± 0.5 82.3 ± 0.2 45.3 ± 1.5

PN 66.5 ± 0.6 67.6 ± 0.2 63.2 ± 2.3 75.3 ± 0.5 74.9 ± 0.1 76.3 ± 2.1
PCN (ours) 70.7 ± 0.6 74.5 ± 0.2 59.2 ± 2.6 79.1 ± 1.0 81.4 ± 0.3 72.2 ± 3.6

n=10
FT200-CE 69.9 ± 0.5 73.8 ± 0.6 58.0 ± 3.2 77.9 ± 0.6 81.9 ± 0.2 65.9 ± 2.6

PN 67.5 ± 0.4 66.0 ± 0.3 72.2 ± 1.7 75.9 ± 0.6 72.9 ± 0.3 84.7 ± 2.2
PCN (ours) 71.4 ± 0.7 70.4 ± 0.2 74.5 ± 2.6 79.9 ± 0.5 78.2 ± 0.2 85.0 ± 2.0

Table 2: Balanced Recall@k on top 200 classes.

Model
Eval CPC

(base / novel)
mcabase+novel mcabase mcanovel recall@5 recall@10

PN 1 / 1 43.9 ± 0.4 48.7 ± 0.4 29.6 ± 2.4 70.9 ± 0.4 80.2 ± 0.3
PN 1 / 4 44.4 ± 0.5 50.4 ± 0.4 26.4 ± 2.3 74.2 ± 0.2 83.5 ± 0.3
PN 10 / 4 43.8 ± 0.8 50.3 ± 0.2 24.2 ± 3.0 75.6 ± 0.2 84.0 ± 0.2

PCN (ours) 10 / 4 47.8 ± 0.7 53.7 ± 0.2 30.0 ± 2.8 77.8 ± 0.2 86.0 ± 0.4

Table 3: Does post-hoc clustering on PN help?

Varying test shot: Table 4 highlights the effect of number of support examples (shot). As we in-
crease the shot, the performance improves on both methods, but that improvement is larger for PCN
than for PN. Because of this, the performance gap between the two methods drastically increases.
PCN is better at utilizing the availability of more data by partitioning the space with clusters.
Extending the tail: We now vary the number of novel classes at test time from 50 to 150, bringing
the total number of classes up from 200 to 300. Table 4 reports results. We use a train and test shot
of 2 and 5 respectively, as tail classes are extremely sparse. Results are reported with 10-fold cross
validation. While there is a drop in performance for both models due to small shot sizes, we can see
that the performance gap between PCN and PN continues to hold.

PN PCN

Sh
ot


2
5

10

42.26 45.36
44.35 47.79
44.93 50.92

K


200
250
300

42.26 45.58
37.08 40.37
34.70 37.67

Table 4: Extending Shot, Tail.
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Figure 3: We compare PCN with PN and FT200-CE on query images from the test set. For each
image, we color code correct predictions in green and incorrect predictions in red. For
PN, we show the nearest neighbor to the prototype of the predicted class. Similarly,
for PCN, we show the nearest neighbor of the top cluster according to q(z|c, x) of the
predicted class. The last two columns correspond to examples from novel classes.

4.4. Qualitative Results

Figure 3 provides qualitative examples comparing the three methods. Consider column 1. Acne
is one of the largest classes in the base classes with large intra-class variability. Both FT200-CE
and PCN can diagnose this example correctly. However, PN due to its limited capacity to represent
the huge variability in the class is confused with another large class, eczema. PCN, due to having
access to multiple clusters can learn a better representation and correctly diagnose acne. The last
two columns correspond to novel classes.
Effectiveness of multiple clusters. In Sec 3, we show how PCN can interpolate between the learned
prototypes by modulating q(z|c, x). In Figure 4 we show some qualitative examples to illustrate this.
We show query images from the test set for various classes, with a mix of correct and incorrectly
classified examples. Below the class label, we show the nearest neighbor image from the training
set to each of the learned prototypes for the class predicted by PCN, and below each query image,
cluster responsibilities placed by the model on each of these prototypes. As an example, consider
Figure 4(a). This example (acne) is correctly classified by PCN. Interestingly, 4(a), the model
appears to interpolate between two prototypes that are similar to the query image in pose and skin
texture respectively to make its prediction. We can see that the q(z|c, x) distribution varies quite
a bit across examples, being a lot more diffuse in some cases than others. It can also be seen that
the model learns to accurate place probability mass on similar prototypes. Figure 4(c), (d)(bottom)
shows incorrectly predicted examples; Even for these examples, the model seems to interpolate,
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Figure 4: Effectiveness of using multiple clusters. Shown for base and novel classes. For each class,
we show the nearest neighbor to the learned prototypes of the class predicted by PCN, as
well as inferred cluster responsibilities q(z|c, x) conditioned on the prediction. (a)-(b):
Correctly classified test examples. (c): “Acne” test example misclassified as “perioral
dermatitis” (d): Test examples corresponding to novel classes.

albeit incorrectly, to make predictions. Note that Figure 4(d) corresponds to examples from novel
classes. Such visualizations lend a degree of interpretability to the model’s decision process.

5. Conclusion

We propose Prototypical Clustering Networks, a few shot learning approach to dermatological im-
age classification. This method is scalable to novel classes, and can effectively capture intra-class
variability. We observe that our approach outperforms strong baselines on this task, especially on
the long tail of the data distribution. Such a machine learning system can be a valuable aid to
medical providers, and improve access, equity, quality, and cost-effectiveness of healthcare.

There exist a number of future directions worth pursuing. The true utility of our system is in
aiding the physician, and this requires studies that include such a deployment. Other extensions
include determining the absence of any condition (adding i.e. a ‘normal’ class), and controlling
for demographic variables when appropriate. Another interesting direction would be to incorporate
additional modalities of data for more robust diagnosis. Further, while our approach learns features
end to end, a natural alternative would be to fuse such learned representations with features designed
using domain expertise, such as diagnostic markers and patient symptoms that are typically tracked
by dermatologists. Incorporating such medical symptoms into the classification task will be another
interesting direction of future work.
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Figure 1: Comparison between FT200-CE and PCN: Per-class accuracy. Each class is denoted by a
dot and the area of dot is proportional to the number of training examples for the class.

Supplementary Material: Few-Shot Learning for Dermatological
Disease Diagnosis

In this supplementary material we first provide a per-class performance comparison of our pro-
posed approach against the FT200-CE baseline. We then analyze the role of our training hyperpa-
rameters, and report additional recall@k metrics. We then provide additional qualitative examples
of the interpolation performed by our model. Finally, as a sanity check, we study the generality of
our approach by reporting performance on the standard miniImageNet benchmark.

1. Per-class Accuracy

In Figure 1 we provide a class-wise performance comparison on the Dermnet dataset between the
PCN and FT200-CE models as a scatter plot (shown here for the best performing PCN model eval-
uated with a train shot of 10 with mcabase+novel = 50.92).
We make the following observations: Overall metrics indicate that FT200-CE demonstrates slightly
stronger average performance on base classes. For a large fraction of the base classes, both meth-
ods have similar performance. For the ones in which PCN performance is lower, there is usually a
reasonable lower bound on the classification accuracy. In contrast, for novel classes, PCN performs
better on average. Importantly, when FT200-CE performance is lower than PCN, it is usually signif-

c© .
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Approach α mcabase+novel

PCN 0 45.62 ± 0.89
PCN 0.5 47.49 ± 0.71

PN 0 44.35 ± 0.53
PN* 0.5 45.84 ± 0.46

Table 1: Importance of episodic
memory
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Figure 2: Effect of temperature on PCN.

Approach r@5base+novel r@5base r@5novel r@10base+novel r@10base r@10novel

n=5
FT200-CE 77.7 ± 0.8 80.8 ± 0.8 38.0 ± 2.1 84.9 ± 0.5 88.1 ± 0.4 45.3 ± 1.5

PN 70.9 ± 0.4 71.5 ± 0.3 63.2 ± 2.3 80.2 ± 0.3 80.5 ± 0.2 76.3 ± 2.1
PCN (ours) 77.7 ± 0.2 79.2 ± 0.2 59.2 ± 2.6 86.0 ± 0.4 87.1 ± 0.2 72.2 ± 3.6

n=10
FT200-CE 78.6 ± 0.1 80.2 ± 0.3 58.0 ± 3.2 86.4 ± 0.3 88.1 ± 0.1 65.9 ± 2.6

PN 69.4 ± 0.3 69.1 ± 0.3 72.2 ± 1.7 78.6 ± 0.3 78.1 ± 0.3 84.7 ± 2.2
PCN (ours) 76.3 ± 0.2 76.4 ± 0.2 74.5 ± 2.6 85.0 ± 0.2 85.0 ± 0.3 85.0 ± 2.0

Table 2: Recall@k on top 200 classes.

icantly lower. As an example is the novel class ‘distal splitting hang nail’ for which PCN performs
significantly better.

2. Role of Hyperparameters

Importance of Temperature: Fig. 2 reports performance by varying ∆τ = τtest − τtrain, the
difference in temperature used in test versus train time. We can see that while performance is
agnostic for base classes, higher interpolation through an increased temperature leading to ∆τ > 0
leads to improved performance on novel classes. Conversely, when ∆τ < 0, performance drops.
This suggests that at inference time, the model requires interpolating between the cluster prototypes
to effectively predict a class label.
Does episodic memory help? Table 1 shows that we can get improvements even with a simple
online update rule that blends prototypes computed using the support set in the current episode with
the past, using α = 0.5. This trend is also seen for prototypical networks (denoted by PN*). We
leave as future work the task of modeling adaptive α.
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Figure 3: Effectiveness of using multiple clusters. Shown for base and novel classes. (a), (b), (d),
(e): Examples from test set that are correctly classified by PCN. For each class, we show the nearest
neighbor to the learned prototypes. We also present examples (columns) whose labels are correctly
predicted and the inferred cluster responsibilities q(z|c, x) conditioned on the correct class. (c):
Test set example that is misclassified by PCN. Correct label is shown in black, while the incorrect
prediction is shown in red. We show the nearest neighbors to the learned cluster prototypes of the
predicted (incorrect) class, and the corresponding cluster responsibilities. Note that green outlines
around query images denote correct classification while red denotes incorrect classification. (e)
corresponds to novel classes.
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3. Additional Metrics

In Table 2 we provide recall@5 and recall@10 metrics for PN, PCN, and FT200-CE approaches, for
train shots n = 5 and n = 10. PCN performs on par with the FT200-CE baseline and outperforms
PN on these metrics. Additionally, PCN and PN models dominate in recall@k on novel classes.

4. Qualitative Examples

Sec 3, we provide additional qualitative examples of how PCN can interpolate between the learned
prototypes by modulating q(z|c, x). As before, we show query images from the test set for various
classes, with a mix of correct and incorrectly classified examples. Below the class label, we show the
nearest neighbor image from the training set to each of the learned prototypes for the class predicted
by PCN, and below each query image, cluster responsibilities placed by the model on each of these
prototypes. We can see that the q(z|c, x) distribution varies quite a bit across examples, being a lot
more diffuse in some cases than others. For instance, while classes in the first row see relatively
diffuse responsibility distributions, the distribution is far more peaked for the varicella class in
(d). Overall, it can be seen that the model learns to accurately place probability mass on similar
prototypes. Figure 3(c) shows an incorrectly predicted example. In Figure 3(e), we show similar
examples for novel classes.

5. Applicability to miniImageNet
As a sanity check, we evaluate our approach on the miniImageNet dataset (Vinyals et al., 2016). We
use the splits proposed in Ravi and Larochelle (2016), and match our implementation and training
to prior work (Snell et al., 2017; Vinyals et al., 2016). Our embedding network is a CNN architecture
comprised of four convolutional blocks, that leads to 1600-dimensional embeddings.

n=1 n=5
5-way 20-way 5-way 20-way

PN 56.58 44.43 70.83 48.29
PCN 56.70 44.97 74.93 53.49

Table 3: miniImageNet accuracy on Kbase2 ∪Knovel−test

Recall that our primary objective is learning without forgetting. To evaluate this, we modify
the existing miniImageNet benchmark as follows: Similar to Hariharan and Girshick (2017), we
train a base classifier and validate it on heldout data from base classesKbase(representation learning
phase). Next, in the low-shot learning phase, we split Kbase into disjoint subsets Kbase1 ∪Kbase2 .
We cross-validate hyperparameters on Kbase1 ∪ Knovel−val classes, and report averaged accuracy
over test 600 episodes on Kbase2 ∪Knovel−test classes. Note that as before, both PN and PCN get
access to the appropriate subset of the entire training set to generate prototypes for base classes.
Table 3 presents results of various classification settings, with a test-query size of 15 and averaged
over 600 test episodes. As seen, PCN strongly outperforms PN in the 5-shot case and has similar
performance in the 1-shot case, where interpolation for novel classes is not possible. Our best
performing PCN model is trained with 5 clusters per class, and uses 1 cluster for novel classes and
a temperature value of 4.0 (all values picked via grid search).

4



SUPPLEMENTARY MATERIAL: FEW-SHOT LEARNING FOR DERMATOLOGICAL DISEASE DIAGNOSIS

5-shot 5-way

Baseline-NN (Ravi and Larochelle, 2016) 51.0 ± 0.7%
MN (Vinyals et al., 2016) 55.3 ± 0.7%
MAML (Finn et al., 2017) 63.1 ± 0.9%
PFA-Simple (Qiao et al., 2017) 67.9 ± 0.2%
PN (Snell et al., 2017) 65.3 ± 0.7%
PCN (ours) 66.9 ± 0.7%

Table 4: Accuracy on miniImageNet. We report mean accuracies with 95% confidence intervals.
Note that PFA-Simple corresponds to the ‘Ours-Simple’ model reported in Qiao et al. (2017).

Further, we report numbers on the standard miniImageNet benchmark in Table 4, and compare
against recently proposed work. We note that while several other approaches have also been pro-
posed that report performance using deeper residual features, for fairness we only compare against
approaches that use identical CNN architectures. We observe that our model outperforms several
prior approaches and is competitive with the current state of the art. As with prior work, we train
our model by monitoring generalization performance on unseen novel classes from the validation
set, and report performance on 5-shot-5-way performance averaged over 600 episodes from the test
split. We train with a way of 20 at train time. We use the identical CNN architecture as in Snell et al.
(2017), with 4 convolutional blocks, leading to 1600-dimensional embeddings for the 84x84 images
in the miniImageNet dataset. Each block is structured as follows: a 64-filter 3x3 convolution layer,
batch normalization layer, ReLU nonlinearity, and 2x2 max-pooling layer. We train our models via
SGD with Adam (Kingma and Ba, 2014), starting with a learning rate of 1e-3 that we anneal by
half every 2000 episodes. Note that we our PCN model is built on top of our PN reimplementation,
and for fair comparison we report performance with our implementation of Prototypical Networks
in row 3, which achieves slightly lower performance than that reported in Snell et al. (2017).
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