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Abstract

Predicting Phase 3 clinical trial results is a critical step of Go/No-Go decision making
and Phase 3 trial design optimization. To predict the overall treatment effect for patients
enrolled into a Phase 3 trial, we propose a framework consisting of two models. First, an
individual trough pharmacokinetic concentration (Ctrough) model is developed to predict
the trough pharmacokinetic concentration for a potentially new treatment regime planned
for Phase 3. Second, an individual treatment effect model is built to model the relationship
between patient baseline characteristics, Ctrough and clinical outcomes. These two models
are combined together to predict Phase 3 clinical trial results. Since the clinical outcomes
to be predicted are longitudinal and the predictors are a mix of time-invariant and time-
variant variables, a novel neural network, Residual Semi-Recurrent Neural Network, is
developed for both models. The proposed framework is applied in a post-hoc prediction of
Phase 3 clinical trial results, and it outperforms the traditional method.

1. Introduction

Recent failures of drugs (Harrison, 2016) with novel mechanisms of action in Phase 3 clin-
ical trials suggest that our understanding of human biology is still limited and that the
traditional model-informed drug development (MIDD) approach needs to be improved. US
Food and Drug Administration (FDA) recently published 22 case studies where Phase 3
and Phase 2 had divergent results (FDA, 2017). Although some of the divergent examples
were due to failure of translation of drug benefit seen on short term endpoint to long term
endpoint, several of them had consistent endpoints but still failed in Phase 3. This is due to
the biased prediction of Phase 3 results caused by multiple confounding effects in Phase 2,
inadequate model assumptions, and/or the population shift between Phase 2 and Phase 3.
It indicates that traditional MIDD methods which focused on population level prediction
with manual feature extraction may not be able to predict Phase 3 results reliably based
on early phase clinical trial data with a small sample size.

To solve this problem, we propose to predict Phase 3 trial results based on the ag-
gregation of predicted individual treatment effects with an automated feature extraction
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procedure. It consists of two deep learning models. First, given the baseline characteristics
of Phase 3 patients, their trough concentrations (Ctrough) can be predicted by a Ctrough
model, which models the pharmacokinetic (PK) relationship between the dose level and the
exposure of the active ingredient of the treatment. This is a critical step because the PK
exposure level is a key factor that drives a patient’s clinical response, and such a model can
be used to predict PK concentrations for the Phase 3 patients even when the Phase 3 treat-
ment regimens are different from those in Phase 2 (Mould and Upton, 2012). With both the
baseline characteristics and predicted Ctrough, an individual treatment effect (ITE) model
can be built using the Phase 2 subject level data to predict ITEs for the Phase 3 patients.
Finally, the ITEs will be aggregated to provide a prediction of the average treatment effect
(ATE) for the Phase 3 trial. The whole procedure can be replicated multiple times to obtain
a prediction confidence interval and probabilities of success for all outcomes of interest.
We propose to use deep learning models due to the following three reasons.

1. Although traditional population PK (PopPK) models can provide accurate estimate to
the average trough concentration for the whole population (FDA, 2005), deep learning
models (also called neural networks or artificial neural networks) (LeCun et al., 2015)
are shown to be able to provide more accurate predictions for individual patient PK
concentration (Brier et al., 1995). The PK relationship can be heterogeneous, highly
nonlinear, and impacted by many patient characteristics, so it is often challenging for
traditional models to accurately capture the complex nonlinear relationship at sub-
ject level, and we often have to construct the desired features by ourselves with expert
knowledge, which is a nontrivial task (Mould and Upton, 2012). However, according
to the universal approximation theorem (Hornik et al., 1989), a feed-forward neural
network with a single hidden layer can well capture complex nonlinear relationships,
defined by any continuous functions on compact subsets of an Euclidean space. Ac-
tually, neural networks can automatically construct the desired features without any
expert knowledge (Bengio et al., 2013).

2. Deep learning methods enable us to use an unified framework to predict the Ctrough
and individual treatment effects. Traditionally, NONMEM (Beal et al., 1992) is used
to fit a nonlinear mixed effects model based on differential equations (Sheiner and
Beal, 1980) for pharmacokinetic/pharmacodynamics (PK/PD) analysis, and then the
fitted model is transferred manually from NONMEM to another computing platform,
say R (R Core Team, 2017) or Python, for integration with Phase 3 clinical trial design
to predict clinical trial results. The proposed deep learning framework connects these
two tasks together and completes them using the same kind of model within one
computing platform.

3. Although the size of the clinical trial data is relatively small, the signal-to-noise ratio
is relatively large, which makes it possible to train a deep learning model with a
relatively small data set.

In addition, we decide to use the recurrent neural network (RNN), instead of the feed-
forward network, because the clinical trial data are longitudinal data and it is critical to
take account of the correlation between time steps, which can be achieved by RNN (Choi
et al., 2015, 2016). Furthermore, the size of the clinical trial data is usually small, but the
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predictors in the data are often a mix of many time-invariant variables (e.g., patient baseline
characteristics) and few time-variant variables (e.g., dose level and/or Ctrough). To effi-
ciently analyze this special kind of data, we tailor the traditional RNN model and propose
a novel RNN - Residual Semi-Recurrent Neural Network (RS-RNN). Roughly speaking,
RS-RNN feeds the large number of time-invariant predictors to the initial time step of
the recurrent layer only, instead of feeding them to every time step of the recurrent layer.
Beyond that, RS-RNN further creates a shortcut to directly propagate the information
contained in the time-invariant predictors to the final output and facilitate the backward
propagation of errors. We will detailedly introduce the proposed RS-RNN in Section 3.2.

Technical Significance We pioneer the use of RNN to model pharmacokinetic concen-
trations. The RNN model may yield better predictions of individual patient PK concentra-
tions, and thus a better prediction of overall clinical trial result by aggregating individual
predictions. To handle the special structure of the small-scale clinical trial data, we pro-
pose a novel deep learning model — Residual Semi-Recurrent Neural Network by tailoring
the traditional RNN model. Compared with the traditional RNN, RS-RNN reduces model
complexity, utilizes information contained in the longitudinal data more efficiently, and
models the relationship between responses and predictors (consisting of time-invariant and
time-variant variables) in a more intuitive manner.

Clinical Relevance The proposed framework can provide more accurate predictions of
clinical trial results, which assists clinical project teams to make informed Go/No-Go deci-
sions for reducing drug failure rate in Phase 3 and to better design Phase 3 trials, since the
proposed framework carefully considers the key factors in the design of Phase 3 trial, e.g.,
dose level and dosing frequency.

2. Cohort

For the purpose of not disclosing confidential information about the investigational product,
limited details are provided here.

2.1. Cohort Selection

Patients were enrolled into a double-blind randomized Phase 2 clinical trial for evaluation
of the efficacy and safety of an investigational product. Similar inclusion and exclusion
criteria were used for a confirmatory Phase 3 clinical trial, of which the clinical trial results
were blinded to the modeler who applied the proposed framework to the Phase 3 trial, to
avoid cherry picking in the model optimization procedure.

2.2. Data Extraction

The outcomes of interest are patients’ responses to an investigational treatment measured
by change from baseline of a physical function at Week 16. Patients’ baseline characteristics
pre-specified in the primary and exploratory analyses of the Statistical Analysis Plan of the
Phase 2 study were included as time-invariant predictors for the response variable. Dose
level and Ctrough of each patient in the Phase 2 trial were time-variant predictors since
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they change week by week. The above subject level data of all patients in Phase 2 were
used to build the models.

2.3. Feature Choices

Patient disease history, medication history, demographic information, clinical trial partic-
ipation date, lab test results and disease related biomarkers measured at baseline before
randomization were included as the features for the prediction task. The choice of each fea-
ture follows the principle that any variable included in the exploratory and primary analyses
of the Statistical Analysis Plan for the Phase 2 study was included.

3. Methods
3.1. The Proposed Framework

As mentioned above, our framework consists of two models. The first model is the Ctrough
model, which predicts the Ctrough for Phase 3 patients and can be trained using Phase 2
clinical trial data. The second model is the ITE model, which predicts ITE with Ctrough
and baseline profiles as input and can be trained using observed subject level data from the
Phase 2 trial. Deep learning methods are used to build both the two models.

First, we build the trough concentration model to predict the Ctrough for given baseline
characteristics and dose levels. More specifically, we train and validate the trough concen-
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representing the p baseline characteristics of the ith patient, dZ@) is the sequence of actual
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(2
ith patient. We want to emphasize that qg is trained and validated using only the patients
in the finished Phase 2 clinical trial who will be assigned to the training set used to train
the following ITE model and have at least one observed nonzero Ctrough (k in the above
expression is just the number of such patients).

Next, we predict the ITE for patients in the Phase 3 clinical trial and the average

treatment effect with the following four steps:

dose levels assigned to the ith patient, and ¢;”’ is the sequence of observed Ctrough of the

1. Train, validate and test the ITE model f using {y§2),i"l(-2)}?:1, where n is the number
(2) 2 42 .2)

of patients in the finished Phase 2 clinical trial, 7, ; He

values in 02(2) are imputed by qg((xEQ),dEQ))), and yZ@) is an r-dimensional response
vector consisting of the r endpoints of the ith patient in the finished Phase 2 clinical

trial (in this paper, we focus on only one endpoint so r = 1).

= (x ), the missing

2. Apply the ITE model f to 5:53) to get g)](-g) = f(:EEB)) for 7 = 1,...,m, where i§3) =

(:pgg),dg?’), égs)), :1:5.3) is a p-dimensional vector representing the p baseline character-

istics of the jth patient in the Phase 3 trial, d§3) is the dose level we plan to assign
to the jth patient in the Phase 3 trial, 65-3) = qg((xg-g), dg-?’))), and gjj(s) is the predicted
response of the jth patient when the patient receives dose level d§.3).
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3. Let the d§3) and 65-3) in Step 2 be 0, and then repeat Step 2 to get gjj(-s), which is the
predicted response of the jth patient when the patient receives placebo.

4. The ITE of the jth patient in the Phase 3 clinical trial is %(3) — gjj(-g), and the average

treatment effect of the Phase 3 clinical trial is Z;'n:l@]('?)) — gjj(.g)) /m.

Step 1 involves training the model on the training set, fine-tuning the hyperparameters

of the model on the validation set and testing the prediction performance on the test set.
(2)

Steps 1 and 2 are illustrated by Figure 1. In addition, we require that x;” consists of the
(3)

same baseline characteristics as x 5
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Figure 1: Steps 1 and 2 for ITE prediction.

3.2. Residual Semi-Recurrent Neural Network (RS-RNN)

Deep learning is a machine learning method where we use a multiple-layer neural network to
fit the relationship between the response and predictors. In this section, we will introduce
the traditional RNN and the novel RNN we proposed to build the above-mentioned Ctrough
model and ITE model. We also introduce the hyperparameter optimization techniques we
used to fine-tune RS-RNN in the Appendix.

3.2.1. RECURRENT NEURAL NETWORK (RNN)

The recurrent neural network is a class of functions f defined as follows. For a given instance
1 and a sequence of inputs {:Uit}tT;'I, the sequence of outputs g;; = f(z;) can be obtained by

sio = 0, Sl't:U(UZL‘it+WSi,t71+b), t=1,...,T;
Uit = o(Vsit + a), t=1,...,T;,

where the first equation defines a recurrent layer, the second equation defines a fully-
connected layer, o is a component-wise activation function, x;; € RP, s;; € R?, g,y € R”
and U € R7”*P, W € R7*4, b € RY, V € R"™4, a € R" are the parameters we need to
train. Training an RNN means finding a set of parameters U, W, b, V, a, or equivalently a
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particular function f, to make g; close to the observed response y;;. This means we want
to solve the optimization problem

T.
1 o
1 Ll
pnin, E E (Git> Yit)»

=1 t=1

where n is the number of training instances, and L is a pre-specified loss function. This
optimization problem is often solved by the stochastic gradient descent (SGD).

We want to emphasize that the above definition is more like a general framework and
it actually has tons of variants. For example, the output does not have to be a sequence
over time and one can use the output at a particular time step only, e.g., the last time
step i1, € R". There could also be multiple layers, i.e., one can regard s;; as x;; and then
stack one more recurrent layer on top of s;;, or one can also regard ¥;; as s and then stack
one more fully-connected layer on top of ¢;;. There are also different ways to define the
recurrent layer, e.g., regular recurrent layer, LSTM layer, GRU layer, etc. Furthermore,
one may also use different activation functions, use different numbers of neurons in each
layer, and so on. All of these are called hyperparameters of a recurrent neural network.
Such a flexibility enables the recurrent neural network to handle various kinds of problems
but it also incurs a problem of choosing those hyperparameters - a bad hyperparameter
combination will lead to very poor prediction result. We introduce how to find a good
hyperparameter combination in the Appendix.

3.2.2. RESIDUAL SEMI-RECURRENT NEURAL NETWORK (RS-RNN)

In the framework introduced in Section 3.1, suppose we directly apply the above-mentioned
traditional RNN model. When we train 55 and f , for a given instance i, the sequence of inputs
is {(mgtz), dl(tz))};f;1 and {(ml(tz), dl(-f), Cz(tz))};[;1 respectively, where xff) = xg) = $§§), e, = yvl(%z
actually do not change over time since they are baseline characteristics. In other words, we
actually only have two time-variant predictors - the does level and Ctrough, but in order to
use the traditional RNN model, we have to regard the time-invariant baseline characteristics
also as time-variant predictors, which creates a large amount of duplicated data, unneces-
sarily makes the RNN model too complicated, and leads to poor prediction performance.
This will be a more serious problem in the high-dimensional scenarios where we have a
large number of time-invariant predictors, which is exactly the case in our application (af-
ter representing the categorical predictors using one-hot vectors, we have 50 time-invariant
predictors).

In order to handle this special kind of data - the longitudinal data with a large number
of time-invariant predictors and few time-variant predictors, we propose the RS-RNN. The
key idea of RS-RNN is to divide the high-dimensional longitudinal data into two parts: one
part consists of all the time-invariant predictors and the other part consists of all the time-
variant predictors. Next, we feed the time-invariant predictors to a multilayer perceptron
(MLP), which is nothing but multiple stacked fully-connected layers. Then we use the
output of this MLP as the initial state of the traditional RNN layer, and feed the time-
variant predictors into the traditional RNN layer as usual. In addition, it is also possible
that the time-invariant predictors are more influential than the time-variant predictors. In
order to take care of this case, we create shortcut connections between the MLP used to
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handle the time-invariant predictors and the fully-connected layers stacked on top of the
recurrent layers. This will create a shortcut to directly propagate the information contained
in the time-invariant predictors to the final output and facilitate the backward propagation
of errors, which is very similar to the idea of Residual Network (He et al., 2016). Hence, we
call our final model the Residual Semi-Recurrent Neural Network.

Mathematically, the RS-RNN is defined as follows. For a given instance 4, the time-
invariant predictors z; and a sequence of time-variant predictors (z;1, zi2, . . ., ziT;), the se-
quence of outputs g = f7° (xi, zi1, 2i2, - - -, ziT;) is obtained by

sio=0Tz;+c¢), sip=0Uzys+ Ws;p—1+ b), t=1,...,T;,
git:O'(Vsit—’_a)—i_PSiO; tzla"‘7ﬂ7
where s;90 = o(Tx; + ¢) is a fully-connected layer of the MLP to handle the time-invariant

predictors, x; € ]Rk, zit ERP sy € RY, gy e RMand T € R2%k ¢ RY, U € R?*P, W € R7*4,
beRI, VeR™ ageR", PecR™ are the parameters we need to train. For the Ctrough

model, we have x; = a:EQ) and z; = dz(f), while for the ITE model, we have x; = xz@) and
Zit = (dz(tz), cl(.tz)). We illustrate the RS-RNN in Figure 2.
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Figure 2: The proposed RS-RNN.

The MLP to handle the time-invariant predictors may contain more than one fully-
connected layers. In addition, when there are more than one recurrent layers, we may feed
the output of the MLP to the first recurrent layer only, or the last recurrent layer only, or
all the recurrent layers. Similarly, when there are more than one fully-connected layers on
top of the recurrent layers, we may add the output of the MLP to the first fully-connected
layer only, or the last fully-connected layer only, or all the fully-connected layers. We regard
these different choices as hyperparameters.

4. Results

4.1. Evaluation Approach/Study Design

We will demonstrate the superiority of RNN and the proposed RS-RNN by two real appli-
cations. In the first application, we apply RNN to the PK modeling problem. In our data,
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each patient has a long sequence of observed PK values (> 30 time steps). We use the root
of mean squared prediction error (RMSPE) as the evaluation criterion to measure how well
we fit the PK curves.

In the second application, we apply the proposed RS-RNN to predict the clinical trial
results for a drug. As mentioned in Section 2.2, we focus on only one endpoint — the change
from baseline of a physical function at Week 16 and use it as our response. The treatment
of interest is the low dose regime, which is coded as “low dose” arm. We train the proposed
RS-RNN by the Phase 2 clinical trial data consisting of 20 time-invariant predictors (they
become 50 predictors after representing the categorical ones using one-hot vectors) and 2
time-variant predictors - dose level and Ctrough. We test the model using the Phase 3
clinical trial data consisting of a large number of patients and the same set of predictors.

4.2. Application 1: PK Modeling

Pharmacokinetic modeling is a critical step of drug development, which models how a
drug interacts with human body, i.e., the time course of drug absorption, distribution,
metabolism, and excretion. Traditionally, differential equations borrowed from the field of
fluid dynamics were used to model such interactions between drug and human body. For
example, multiple-compartment differential equations models (Mortensen et al., 2008) were
used to model the PK curves on the data set we are considering. Differential equations
can describe the underlying physical process inside human body after being dosed. How-
ever, they may not be able to take into account all the heterogeneities between patients.
Therefore, the PK prediction for each individual patient given by this method may be poor,
though the prediction at population level could be accurate.

For each patient in our data set, there is a sequence of observed PK values, two baseline
characteristics - age and sex, and a sequence of cumulative amounts of drug injected. They
correspond to the 052), x§2) and dl@) in Section 3.1. The fitting result of RNN on a validation
set with 12 patients is shown in Figure 3.

Note that the RNN model accurately fits the PK curve for each of the 12 patients, where
there are two PK curves with very high peaks that have not been seen in the training set.
The RMSPE on the validation set is 12, which is very small when considering the range
of PK values. This indicates that the RNN model is able to capture the heterogeneous
and complex nonlinear relationship between the PK values, and the cumulative amounts of
drug injected and the baseline characteristics. This example shows that it is promising to
perform the PK modeling using deep learning models like RNN.

4.3. Application 2: Clinical Trial Prediction

According to the results of a Phase 2 clinical trial, the drug can significantly improve
patients’ health. However, after a Phase 3 trial, people found its effect shrunk. This may
be due to many reasons, such as population shift, change of endpoints, change of treatment
regime, etc.. With the help of the proposed framework, the reason of inconsistent treatment
effects can be better examined, because the framework adopts the deep learning methods
that can capture very complex relationships.

As mentioned in Section 3.1, we will build a Ctrough model and an ITE model, and
feed the observed Phase 3 patients’ baseline characteristics and treatment regimes into the



PRrREDICT PHASE 3 CLINICAL TRIAL RESULTS USING DEEP LEARNING

D=8 D=9 D=10 D=19 D=20

0 0 0 0 0
ms ] ms ms ms ms
169 { 169 169 169 169
5o 55 55 ML ML
rszh““‘ 52 52 52 52
T T U ws b s U m oms s P ™ PR 1 T ™ P
D=21 D=33 D=40 D=45 D =50

8904 290 290 290 890
ms] s ms s ms
1691 159 169 1159 169
MLH mk_ ML i ML

52 =2 52 =2 52
W5 w2 ms se o W owm ms B am s w1 ms Bs s 95 w2 ms B am U5 w2 ms Bs
D=5t D=65

590{ 90
ms{ ms
169 { 169
ssaﬁ 58 n

52 =52

05 502 1009 116 m3 05 02 109 516 3

Figure 3: Fitting result of RNN on a validation set with 12 patients (blue curves are ob-
served PK curves and red curves are predicted PK curves).

Ctrough model and the ITE model to predict the Phase 3 trial results. The predicted
average treatment effects (ATE) are displayed in Figure 4. Specific hyperparameters of the
Ctrough model and ITE model can be found in Table 1 in the Appendix.

Looking at the two bars on the right of Figure 4, we find that without using the observed
Phase 3 responses (i.e., only using Phase 2 data and Phase 3 data excluding responses),
RS-RNN predicts that the ATE for the “low dose” arm in the Phase 3 clinical trial is 1.58.
This is very close to the ATE predicted by a mixed effect model using the observed Phase
3 responses 1.61. We believe the value 1.61 given by the mixed effect model should be very
close to the true ATE of the drug, because it is obtained by using the large number of
observed Phase 3 responses. This indicates that the proposed framework with RS-RNN can
accurately predict the ATE in the Phase 3 clinical trial after all patients finish enrollment
but before unblinded results are obtained, which is useful for blinded clinical trial monitoring
and decision making.

Looking at the two bars on the left of Figure 4, we find that when using the Phase 2
data only, RS-RNN gives a prediction of 1.63, which is very close to the true ATE of Phase 3
trial and its own prediction without using the observed Phase 3 responses 1.58. This makes
sense since the distributions of the patients in the two trials are similar. However, when
using the Phase 2 data only, the traditional mixed effect model predicts that the ATE is
2.27, which is much higher than the true ATE. This indicates that the traditional method
used to analyze the Phase 2 data fails to identify important confounding factors and model
their relationships.
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Figure 4: The predicted average treatment effect (ATE).

Finally, we interpret the prediction results of RS-RNN for the Phase 3 trial by the
GUIDE regression tree (Loh, 2002) in Figure 5.

5. Discussion and Related Work

Translation from Phase 2 trial to Phase 3 trial is challenging. In this paper, we propose
a new framework to predict the Phase 3 clinical trial results based on the Phase 2 clinical
trial data. Under this framework, we further propose a novel RNN model, RS-RNN, to
predict the Ctrough and treatment effects in the Phase 3 clinical trial. We showed by a real
application that the new framework and the proposed deep learning method significantly
outperform the traditional method in terms of predicting the Phase 3 results. In addition,
we pioneer the use of RNN to model pharmacokinetic concentrations. We find the RNN
model performs well and is a promising alternative method for PK modeling.

The future work is as follows. First, we will use the bootstrap technique to get a con-
fidence interval for the predicted average treatment effect in the Phase 3 trial. A narrow
confidence interval that covers the true average treatment effect will demonstrate the reli-
ability of the proposed method.

Second, now we only use the change from baseline of a physical function at Week 16 as
the response and only predict responses in one treatment group in the Phase 3 trial, but
we can also use multiple endpoints as the responses and extend the predictions to other

10
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Figure 5: Interpretation by the regression tree: the value below each node is the median of
the predicted responses for the patients in the node.

treatment groups. Thanks to the flexibility of the neural network, this is straightforward
and incurs little additional work.

Third, the proposed framework needs baseline characteristics of the patients enrolled in
Phase 3 trial as the input to the models. If we do not know which patients will enroll in
the Phase 3 trial, then we can simulate these patients in the following ways. First, we can
randomly resample the Phase 2 patients to obtain the Phase 3 patients (Marshall et al.,
2016). However, this method relies on a homogeneity assumption that Phase 3 patients
are similar to Phase 2 patients in terms of distributions of baseline characteristics, which is
often violated in practice (Hanin, 2017). Actually, as pointed out in the aforementioned FDA
report, the Phase 3 population is often much more heterogeneous than Phase 2 population.
One possible reason is the change in treatment regime, for example dosing frequency, and
another possible reason is the change in the inclusion and exclusion criteria, which brings
in new patients with different distributions of characteristics. Second, when the real world
information, e.g., electronic health records (EHR), is available, we can obtain the Phase 3
patients by randomly sampling the patients in the EHR data set who meet the Phase 3
inclusion criteria. However, this method assumes the equal probability of enrollment, which
may yield a biased estimate to patient baseline profiles in the Phase 3 trial, because some
patients, e.g., the patients with more severe conditions and low standard of care, are more
likely to participate in a clinical trial than the others.

Therefore, we plan to add to our framework a third deep learning model — the enroll-
ment model, that will predict the probability of enrollment for each patient in the EHR data
set who meets the Phase 3 inclusion criteria, and then we sample the patients according
to the predicted probabilities. More specifically, we may simulate patients in the Phase 3
clinical trial using the enrollment model (instead of using the true patients as we did) with
the following four steps:

11
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1. Get the data set {pgz),zi@)}fil from the EHR data set, where N is the number of

patients who meet the Phase 2 inclusion criteria, zl-(Q) is a g-dimensional vector repre-
senting the ¢ baseline characteristics of the ith patient who meets the Phase 2 inclusion
(2)

criteria, p;,” is a binary scalar, that can only be 0 or 1, indicating whether the ith
patient actually enrolled in the Phase 2 clinical trial (0 if the patient didn’t enroll and
1 otherwise).

2. Train, validate and test the enrollment model § using {pz(?), zi(z) N

3. Apply the enrollment model § to z](-?’) to get ﬁf’) = g(z§3)) for j = 1,..., M, where

M is the number of patients who meet the Phase 3 inclusion criteria, zj(-3) is a ¢-

dimensional vector representing the ¢ baseline characteristics of the jth patient who
meets the Phase 3 inclusion criteria, ﬁgg) is the predicted enrollment probability of the
jth patient who meets the Phase 3 inclusion criteria.

4. Sample {zj(.?’)}j]\il according to ﬁ§.3) (i.e., the jth patient will be selected into the
sample with probability ]55-3) to get {x§3) L1, where m is the number of patients in
the simulated Phase 3 clinical trial, 335-3) is a p-dimensional vector consisting of p
components of z§3) (p <q).

Finally, we will also try to incorporate some expert knowledge to further improve the

performance of the Ctrough model and the ITE model.
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Appendix: Hyperparameter Optimization

As mentioned above, hyperparameter optimization is critical in building a deep learning
model since a bad hyperparameter combination will lead to very poor prediction results.
It is often impossible to enumerate all the hyperparameter combinations and pick the best
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one, since there will be too many combinations (for example, 30 hyperparameters with 2
candidate values for each give us 230 possible combinations) and training the deep learning
model once with a given hyperparameter combination may already be very time-consuming.
There are three commonly-used hyperparameter optimization techniques.

The first technique is simply random search, i.e., we randomly select a small number
of hyperparameter combinations from all the possible combinations, train the model with
each of the selected combinations, and pick the one that gives the smallest validation loss.

The second technique is the Latin hypercube search, which is based on the Latin hy-
percube design. Suppose now we have p factors and each factor has k candidate values. A
Latin hypercube design is just a k x p matrix, where the k candidate values appear once
and exactly once in each of the columns. This also applies to continuous factors since we
can always discretize them. If the factors do not have the same number of candidate values,
then we can simply require the k candidate values appear as uniformly as possible. Since
the hypercube design achieves the univariate stratification, i.e., it is uniform on each single
dimension, it has better space-filling properties and enables us to explore the space more
thoroughly to get the best hyperparameter combination.

The third technique is the Sequential Model-Based Global Optimization (SMBO) (Hut-
ter et al., 2011). It searches the space of hyperparameters as follows:

1. Gather some initial hyperparameter combinations {h;}°,, using random search or
Latin hypercube search and train the model with each of them to get the validation
losses {F'(h;)}°,. Let H = {(F(hs), hi)};°;.

2. Fort=1,2,...,T

(a) Fit a model M; using H.
(b) Select the next hyperparameter combination h* by h* = argmax;,S(h, My).
(c) Train the deep learning model with A* and get the validation loss F'(h*).

)

(d) Update H with H U (F(h*), h*).

Here, S is a criterion function and F' is a function whose input is a hyperparameter combina-
tion and output is the validation loss. Evaluating the function F' means training the model
once, which is often very time consuming. In our project, we used the SMBO to search the
hyperparameters for our proposed RS-RNN. More specifically, we use the Latin hypercube
search to get the initial hyperparameter combinations. Then we use the Gaussian process
model as M; and the Expected Improvement (EI) as our criterion function, i.e., we select
the next hyperparameter combination h* by

h* = argmax By (h)~N (u(h) 02 (n)) [max(y™ — Y (h), 0)],

where the mean p(h) and variance o2(h) of the random variable Y (h) at h are given by the
Gaussian process model and y* is the current minimum validation loss. We list some of the
key hyperparameters we searched and used to train the Ctrough model and the I'TE model
in Table 1.
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Table 1: Hyperparameters of Ctrough Model and ITE Model for Phase 3 Trial Prediction.

Layers

Hyperparameters

Ctrough Model

ITE Model

Loss function
Learning rate
Number of epochs
Regularization

MLP output

MSE

0.03

500

l1 regularization with A = 0.2

Use it as the initial state of the
last recurrent layer and add it
to all fully-connected layers on
top of the recurrent layers

MSE

0.01

500

l5 regularization with A = 1074

Use it as the initial state of the
first recurrent layer and add it
to all fully-connected layers on
top of the recurrent layers

Number of layers 2 8
Fully-connected Number of neurons 40, 14 46, 44, 42, 42, 38, 32, 28, 28
layers of the MLP Activation function ELU ELU
Batch normalization | Yes Yes
Number of layers 3 1
Number of neurons 18,9, 5 25
Recurrent layers
Activation function ELU ELU
Recurrent cell GRU GRU
Number of layers 1 3
Fully-connected Number of neurons 1 23,7, 1
layers on top of the
recurrent layers Activation function | ELU ELU
Batch normalization | Yes Yes
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