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Abstract

Disease phenotyping algorithms are designed to sift through clinical data stores to identify
patients with specific diseases. Supervised phenotyping methods require significant quanti-
ties of expert-labeled data, while unsupervised methods may learn spurious or non-disease
phenotypes. To address these limitations, we propose the Semi-Supervised Mixed Mem-
bership Model (SS3M) – a probabilistic graphical model for learning disease phenotypes
from partially labeled clinical data. We show SS3M can generate interpretable, disease-
specific phenotypes which capture the clinical features of the disease concepts specified by
the labels provided to the model. Furthermore, SS3M phenotypes demonstrate competitive
predictive performance relative to commonly used baselines.

1. Introduction

Phenotypes are powerful tools for working with observational clinical data in the absence
of reliable disease labels (Hripcsak and Albers, 2012). Disease-specific phentoypes allow
researchers to sift through large-scale clinical data stores to identify patients with evidence
of specific clinical conditions. By answering the question of who has what disease, pheno-
types power essential tasks such as cohort selection, trial recruitment and clinical outcome
prediction (Hripcsak and Albers, 2012; Richesson et al., 2013, 2016; Pathak et al., 2013).

Traditionally, phenotypes were developed by groups of clinical experts who painstakingly
hand-tuned rule-based algorithms. The limited scalability of this approach has led to the
development of automated methods for learning phenotypes directly from clinical data.
Many studies in this vein utilize supervised machine learning methods to build phenotyping
algorithms (Bergquist et al., 2017; Esteban et al., 2017). Though this approach avoids
laborious expert knowledge engineering, it requires significant amounts of labeled clinical
data generated by manual chart review.

To avoid costly, expert-generated disease labels, many authors have utilized unsuper-
vised methods to cluster patients according to underlying patterns in their clincal data
(Joshi et al., 2016; Ho et al., 2014a,b; Wang et al., 2015; Miotto et al., 2016). In this
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setting, such patterns play the role of phenotypes. Unsupervised phenotyping methods of-
ten learn multiple phenotypes simultaneouly, which may confer evidence of specific diseases.
However, such phenotypes are generally not guaranteed to represent single disease concepts.
This complicates their evaluation and use in downstream tasks.

In this paper we propose the Semi-Supervised Mixed Membership Model (SS3M), a
probabilistic graphical model which utilizes relatively few disease labels to learn multiple
disease-specific phenotypes from multi-modal observational clinical data. SS3M addresses
the limitations of supervised phenotyping by reducing the amount of labeled data needed
to learn disease phenotypes; disease labels are not required for all patients, and labeled
patients need not possess labels for all diseases. SS3M also addresses the limitations of
unsupervised phenotyping by associating disease labels with the phenotypes to be learned;
a label specifies which disease a phenotype is meant to represent. This simplifies both
the qualitative and quantitative evaluation of SS3M phenotypes. Qualitatively, phenotype
labels inform us as to what content we should expect to be well represented within a learned
phenotype. Quantitatively, we can evaluate how well learned phenotypes predict labels on
a held-out patient cohort using standard performance metrics.

Technical Significance SS3M introduces a mechanism for semi-supervised learning within
a class of unsupervised mixed membership models developed for inferring phenotypes from
multi-modal clinical data. In so doing, SS3M permits the researcher to specify which phe-
notypes she would like the model to infer. Importantly, this added input is minimal: only
a subset of cases need to be labeled as positive or negative for the model to learn a disease-
specific phenotype.

Clinical Relevance The secondary use of observational clinical often depends critically
upon the creation of disease-specific phentoypes. SS3M provides a method for constructing
phenotypes efficiently. Instead of hand tuning phenotype definitions, the user need only
identify a handful of patients which have or do not have a specific disease. Thus, SS3M
serves as a tool for widening this persistent bottleneck in clinical research and development
of clinical applications.

2. Cohort

We train all our models using clinical data extracted from the Medical Information Mart
for Intensive Care version III (MIMIC-III) (Johnson et al., 2016).

2.1. Cohort Selection

Our dataset is restricted to adult patients where adults are defined as patients who are
18 years of age or older upon admission. Age upon admission is calculated by subtracting
each patient’s recorded date of birth from their time of admission. This constraint yields a
cohort of 38,549 individual patients.
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2.2. Data Extraction

Each patient is represented by multiple sets of clinical observations (one set per data source)
and a set of labels (possibly empty). We limit ourselves to the clinical observations and
labels associated with each patient’s first hopsital admission.

Clincal observations are drawn from clinical notes, labs and medications. We refer to
these data types as data sources. Notes were restricted to the following types: “Physician”,
“General”, and “Discharge Summary”. No restrictions were placed on clinical labs and
medications.

In this work, we lack a set of true, expert-generated, gold-standard disease labels for
our patient cohort. For this reason we make use of readily availble ICD9 diagnosis codes
to contstruct our label set. Our labels correspond to a variety of disease conditions from
the single-level definitions of the Health Cost and Utilization (HCUP) Clinical Classification
Software (CCS). The HCUP CCS conditions are defined by groups of related ICD9 diagnosis
codes. Relative to raw ICD9 codes, HCUP CCS code groups are significantly less noisy,
which makes them attractive for phenotype prediction tasks in the absence of a true gold-
standard. We apply all HCUP CCS single-level definitions to the ICD9 cdoes for our cohort
and consider conditions with a least 103 positive cases (prevalence ≈ 2.5%). As MIMIC-III
is a critical care database, we further limit ourselves to well represented acute conditions.
This process led us to retain a total of 40 conditions for use in our experiments (See Table
3 and Figure 5 for our full list of HCUP CCS conditions). For each patient, we record a
binary label for each of these disease conditions specifying its presence (1) or absence (0).
We treat this label set as ground truth.

2.3. Feature Choices

For a given patient, we concatenate all associated clinical observations within each data
source. These observations are tokenized to yield a patient’s raw token representation in
terms of words (from notes), lab names and medication names.

Tokenized notes are further preprocessed to remove English stop words as well as any
word token with 20 appearances or less over the entire notes corpus. This latter step is
intended to a filter out the large quantity of misspelled words observed in the unfiltered
token vocabulary.

The notes vocabularly is further constrainted by applying a term-frequency/inverse-
document-frequence (TF-IDF) filter. For each patient d, and each token t observed in their
tokenized set of notes we calculate a tf-idf weight wdt as follows.

wdt = Ndt log2
D

Nt
, (1)

where Ndt is the number of times token t appears in patient d’s tokenized notes, Nd is the
total number of patient d’s note tokens, and D is the total number of patients. Next, we
average these weights over all patients and retain the top 104 mean weighted tokens. No
additional preprocessing was applied to clinical labs and medications post-tokenization.
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Algorithm 1 Generative process for SS3M

Initialize: α, β, β∗, {γs}Ss=1

# Sample global variables
Sample B∗ ∼ Gamma(β∗)

for each phenotype p = 1 to P do
Sample Bp ∼ Gamma(β)
Sample Cp ∼ Beta(α)

for each data source s = 1 to S do
Sample Φs,p ∼ Dirichlet(γs)

end

end

# Sample local variables
for each patient d = 1 to D do

for each phenotype p = 1 to P do
Sample Ad,p ∼ Bernoulli(Cp)

end

Sample Θd ∼Dirichlet(Ad,:�B:+(1−Ad,:)B
∗)

for each data source s = 1 to S do
for each observation n = 1 to Nsd do

Sample Zsdn ∼ Categorical(Θd)
Sample Wsdn ∼ Categorical(ΦsZsdn

)
end

end

end

ZsdnΘd

B∗

Bp Adp

Cp

β

β∗

α

Wsdn Φsp γs

Nsd

D

P

P

S

Figure 1: Graphical model for SS3M

Variable Description

D Number of patients
S Number of data sources
P Number of phenotypes
Nsd Number of tokens of source s for patient d
Vs Size of vocabulary for source s
A Phenotype activations (partially observed)
B Active phenotype parameters
B∗ Inactivate phenotype parameter
C Phenotype prevalences
Θ Patient-phenotype distribution parameters
Φ Phenotype-token distribution parameters
Z Phenotype assignments
W Token observations

α

Hyperparameters
β
β∗

γ

Table 1: SS3M variable descriptions

3. Methods

SS3M is a model for bag-of-words of data from multiple data sources. It is closely related to
Latent Dirichlet Allocation (LDA) (Blei et al., 2003), as well as its multisource (Pivovarov
et al., 2015) and supervised extensions (Ramage et al., 2009). When applied to clinical
data, SS3M treats patients as individual instances, where each instance is comprised of
observations from multiple clinical data sources (i.e. clinical notes, labs and medications)
as well as a set of disease labels. SS3M processes clinical observations to infer phenotypes
which capture the clinical characteristics of the conditions specified by labels its given.

Model Description Here we provide a detailed description of SS3M’s structure. The
model’s generative process and graphical model provide complementary perspectives and
are detailed in Algorithm 1 and Figure 1 respectively. Table 1 provides descriptions of all
model variables. Here and in the rest of the paper, we use bold capital letters to indicate
groups of variables and indices to refer to subsets or specific elements. A bold capital letter
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without indices indicates all variables within the group. A colon within a variable subscript
indicates all elements within the corresponding dimension.

Let D, S, and P be the number of patients, clinical data sources and phenotypes,
respectively. Each patient d ∈ {1, ..., D} is associated with several sets of tokenized clin-
ical observations Wsd: (e.g. medication names), one for each data source s ∈ {1, .., S}.
In addition, each patient has a set of partially observed binary labels. Patient d’s la-
bels specify the values of her phenotype activations, Ad,:, thereby indicating for her which
phenotypes p ∈ {1, ..., P} are set to be “on” or “off”. A latent phenotype assignment
Zsdn is assigned to each observation Wsdn. Each assignment is drawn from a categorical
patient-phenotype distribution parameterized by a normalized P -dimensional vector Θd. A
phenotype assignment specifies which categorical phenotype-token distribution an observa-
tion was drawn from. Each Φsp is a normalized Vs-dimensional vector parameterizing a
categorical phenotype-token distribution, where Vs is the size of the observered vocabulary
for data source s.

A patient’s label set directly impacts her patient-phenotype distribution, and thereby
all her assignments. This is due to the roles of A, B and B∗ in parameterizing the Dirichlet
distributions on the elements of Θ:

Θd ∼ Dirichlet(Ad,: �B: + (1−Ad,:)B
∗)

where � indicates element-wise multiplication. When Adp = 1, patient d has phenotype p
“on”; Bp is used to parameterize the pth dimension of the Dirichlet on Θd. When Adp = 0,
the phenotype is “off”, and B∗ is used instead. The hyperparameters β and β∗ parameterize
the gamma distributions on B and B∗ such that the model is encouraged to sample values
of Bp and B∗ to maintain Bp > 1 and B∗ < 1. In this setting, when Adp = 1 the values
of Θd push the patient-phenotype distribution toward allocating more probablity mass for
phenotype p. This in turn, results in a larger proportion of patient d’s observations being
assigned to phenotype p. During inference, this mechansim forms the connection between
labels, activations and the content of phenotypes. Labels set phenotype activations “on” or
“off” for each patient. For each patient, phenotypes that are “on” account for the majority
of phenotype assignments. Thus, labels, by way of activations, significantly influence the
quantity of observations that are funneled toward learning any given phenotype.

Activations are partially observed. If a patient d has an observed binary label for pheno-
type p, then the value of Adp is held fixed at the observed value. If the label is unobserved,
then the model samples the value of Adp during inference. In this latter case, Adp is mod-
eled as a binary variable drawn from a Bernoulli distribution parameterized by Cp – a beta
distributed latent variable controlling the likelihood of phenotype p being “on” within the
patient population (i.e. estimates its prevalence). This handling of partially observed labels
is what allows SS3M to function as a semi-supervised model.

SS3M can handle both semi-supervised phenotypes for which we have some number of
labels, as well as unsupervised phenotypes that lack labels all together. This is a useful
property when applying the model to clinical data. In this setting we are unlikely to have
labels for all the conditions represented in our dataset. The structure of the conditions
we lack labels for can be targeted by SS3M’s unsupervised phenotypes during inference.
Moreover, including unsupervised phenotypes can help semi-supervised phenotypes “focus”
on capturing the phenotypes that align with their labels.
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Inference We implement a collapsed Gibbs sampler to obtain posterior estimates of our
model’s latent variables. The variables C, Θ, and Φ are easily integrated out of the joint
distribution due to conjugate relationships between their distributions and those on A,
Z, and W respectively. The collapsed joint’s complete conditional distributions for the
elements of A and Z are discrete, easily normalized, and can be sampled from directly.
However, the complete conditionals for B and B∗ do not have closed forms. We use Hamil-
tonian Monte Carlo to sample from these (Neal et al., 2011). We set out path length to
L = 15 and step size to ε = 10−3, as these parameters yielded stable trajectories with high
acceptance rates in preliminary experiments. See the appendix for further details regarding
our inference algorithm.

4. Results

4.1. Experiments with Simulated Data

Here we evaluate SS3M’s ability to recover ground truth phenotypes when provided obser-
vations and labels from a cohort of simulated patients.

4.1.1. Data Simulation

We create simulated cohorts by drawing observations and labels from our model. To begin,
we define 10 ground truth phenotypes, Φtrue, in a manner inspired by (Griffiths and Steyvers,
2004). Each phenotype is a set of three categorical distributions defined over three seperate

1% 

5% 

Training
label %

Figure 2: Phenotype inference for simulated patient cohort. Top row: Ground truth phe-
notypes. Middle & Bottom rows: Phenotypes inferred using 1% and 5% of
ground truth labels for training. When training on 5% of available labels, SS3M
recovers ground truth phenotypes; phenotype-token distributions are recovered
and in the correct order.
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vocabularies each of length 25. This allows us to visualize each phenotype as a set of three
5× 5 grids. Each component of a phenotype places uniform probability mass over 5 tokens
corresponding to a row or column in the grid. Next, we simulate ground truth labels for each
patient. This is done by first drawing values for C from Beta distributions parameterized
with γ = (102, 103). This ensures each phenotype is active in about 10% of the cohort. We
then use the values of C to draw an array of ground truth labels Atrue. The values of B
and B∗ are set to (10., ..., 10.) and 10−2, respectively. These values ensure observations are
highly likely to be drawn from active phenotypes. Finally, we draw values for Θ and Z
which, along with Φtrue, are used to generate our simulated observations, W .

4.1.2. Phenotype Inference

We expose SS3M to simulated data and run our inference algorithm to recover the ground
truth phenotypes. We use the same training set of observations for each of our experiments.
We produce a label set for each experiment by downsampling ground truth labels in Atrue.
We run 2 experiments in which we retain 1% and 5% of positive labels. We then sample
negative labels to match the total number of positive lables for a given phenotype.

4.2. Simulated Data Results

Figure 2 contains the results of simulated studies. When training on 1% of available labels,
SS3M struggles to recover ground truth. Some of the inferred phenotypes appear to be
superpositions of multiple ground truth phenotypes. Though some of the phenotype-token
distributions do indeed mirror ground truth, many of the indices are mismatched. Full
recovery of ground truth requires both the recovery of phenotype structure as well as phe-
notype identity. Both of these requirements are met when SS3M is exposed to just 5% of
available lables. For our dataset of 1000 simulated patients, 5% of labels corresponds to
14-15 labeled patients per phenotype – half labeled positive and half labeled negative.

4.3. Experiments with Clinical Data

We are interested in evaluating SS3M’s ability to learn clincally meaningful phenotypes
and perform phentoype prediction on held-out patient data. Moreover, we aim to evaluate
SS3M’s performance in these tasks when trained on various proportions of labeled patient
data.

In the present setting, each patient has a full set of binary labels for each of our 40 HCUP
CCS condition targets. These labels are treated as ground truth, and we train SS3M with
subsets of them. To obtain each subset, we first specify a percentage of the training cohort
for which we wish to retain labels. We then sample the corresponding number of patients
from the training cohort and ensure the prevalence of each label in the labeled subset is
similar to that in the total training cohort. During training, we use the full set of labels for
each patient in the labeled subset. We carry out this process for various percentages of the
training cohort including 1%, 5%, 25%, 50%, 75%, and 100%.

As described in Section 3, SS3M handles both semi-supervised and unsupervised phe-
notypes. In preliminary experiments, we observed SS3M’s performance depended in part
on the total number of phenotypes modeled, P . To characterize this dependency, we train
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SS3M on the label subsets described above with P set to 40 (i.e. no unsupervised pheno-
types), 80 or 160.

Our total training cohort is comprised of 60% of the patient cohort described in Section
2. The remaining 40% is reserved for validation (20%) and testing (20%).

4.3.1. Quantitative evaluation

For each labeled subset and value of P , we obtain posterior estimates of SS3M’s global
latent variables (B, B∗, C, and Φ) by running our collapsed Gibbs sampler on the training
data. These global variables are then passed to untrained SS3M models for which we run
a partially collapsed Gibbs sampler (only Θ is integrated out of the joint distribution)
over the local latent variables (A, W , and Z) on the test set. Within the held out set,
the complete conditional likelihoods on each activation (Adp) are used as label prediction
probabilities which we evaluate using the areas under the receiver operating characteristic
and precision-recall curves (AUC-ROC, AUC-PR).

We compare SS3M’s predictive performance to that of several commonly used baselines.
These include k-nearest neighbors (KNN) and random forests (RF), which we train as mul-
tilabel classifiers. We also compare against L1-regularized logistic regression (LR) trained as
a set of 40 one-versus-rest classifiers, one for each target. Unlike, SS3M, our baselines were
not developed to handle partially labeled training data. Thus, for any given configuration
of the training cohort, we train baselinee on data for only those patients whose labels are
included within the labeled subset.

Performance curves and baselines are estimated using the Scikit-learn Python library
(Pedregosa et al., 2011).

4.3.2. Qualitative evaluation

Here we ask clinical experts to asses the quality of SS3M phenotypes relative to phenotypes
inferred with a Multi-Channel Mixed Membership Model (MC3M), a closely related un-
supervised model developed for phenotype inference (Pivovarov et al., 2015). Like SS3M,
MC3M learns mulitple phenotypes jointly from multi-source clinical data. We implement
a collapsed Gibbs sampler for MC3M, and run inference on note, lab and medication data
for the full training cohort.

We evaluate the quality of phenotypes learned with each model along three axis: co-
herence, granularity, and label quality. These axis and the methods for their evaluation are
detailed in Pivovarov et al..

Coherence A coherent phenotype is defined as a phenotype containing observations typ-
ical of a single disease while omitting observations atypical of said disease. The clinical
expert was asked to rate the coherence of individual phenotypes using a five-point Likert
scale, with 1 and 5 signifying low and and high coherence, respectively.

Granularity Phenotype granularity is defined in terms of three categories: (1) non-
disease, (2) mixture of diseases, (3) single disease. We asked our expert to assign each
phenotype to one of these categories.
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Figure 3: Qualitative evaluation results. Evaluator responses are aggregated within each
evaluation type. Shown are the proportions of each possible response (as defined
in Section 4.3.2). Means, where appropriate, are shown with vertical hashed
lines. Interrater reliabilities (Cohen’s κ): Coherence - 0.28; Granularity - 0.14;
True label matches phenotype? - 0.04; True label matches expert’s? - 0.50.

Label quality We asked our clinical expert to generate a label for each phenotype. If
no such label came to mind, the expert was asked to omit this step. If the phenotype in
question was learned using SS3M, the expert was asked if their label was equivalent to the
phenotype’s true label. In addition, the expert was asked to specify how well the true label
matched its learned phenotype using a five-point Likert scale with 1 indicating no match
and 5 a perfect match.

The phenotypes for our qualitative evaluations are learned using SS3M and MC3M mod-
els with P = 160. For SS3M, we use phenotypes learned using a labeled subset containing
75% of the training cohort. Individual phenotypes from each model are visualized as sets
of three word clouds, one for each data source (See Figures 4 and 5). Word clouds are
generated using the WordCloud Python library (Mueller, 2019).

We collaborate with two clinical experts to carry out our evaluation. Both evaluators are
medical doctors who have completed or are near completing residency training in internal
medicine.

To set up our evaluation we first randomly mix together the individual visualizations of
the 40 semi-supervised SS3M phenotypes and 40 randomly chosen MC3M phenotypes, mak-
ing sure to anonymize their model of origin. These visualizations are then given separately
to each clinical expert along with a set of instructions. Each evaluator is also provided a
spreadsheet for recording their evaluations. This spreadsheet specifies the order in which
phenotypes are to be evaluated, and, for SS3M phenotypes, contains all the ground truth
phenotype labels. Where applicable, we ensure evaluators are not exposed to a phenotype’s
ground truth label until they have completed its granularity and coherence assessments and
suggested their own expert label.
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C: 5|5 G: 3|3 MP: 3|4 ME: Y|Y C: 5|4 G: 3|3 MP: 5|4 ME: Y|Y

C: 5|5 G: 3|3 MP: 5|5 ME: Y|Y

C: 4|5 G: 3|3 MP: 5|5 ME: Y|Y

C: 5|5 G: 3|3 MP: 5|5 ME: Y|Y

C: 4|5 G: 2|3 MP: 3|5 ME: Y|Y

C: 4|5 G: 2|3 MP: 4|5 ME: Y|Y

C: 5|5 G: 3|3 MP: 5|5 ME: Y|Y

C: 5|5 G: 3|3 MP: 5|5 ME: Y|Y

TL: Acute cerebrovascular disease TL: Acute myocardial infarction TL: Chronic kidney disease TL: Chronic obstructive pulmonary 
disease

TL: Aortic, peripheral, and visceral 
artery aneurysms

TL: Epilepsy, convulsions TL: Gastrointestinal hemorrhage TL: Spondylosis, intervertebral disc 
disorders, other back problems

TL: Thyroid disordersTL: Congestive heart failure, 
nonhypertensive

C: 4|5 G: 3|3 MP: 5|5 ME: Y|Y

Figure 4: Sample of evaluated SS3M phenotypes. Token size is proportional to token like-
lihood within a phenotype. Red - words from clinical notes; Green - clinical lab
names; Blue - medication names. Evaluations from both clincal experts are pre-
sented below each phenotype. TL - True label; C - Coherence; G - Granularity;
MP - True label matches phenotype?; ME - True label matches expert’s?

We aggregate evaluations from each of our clinical experts and use Cohen’s Kappa to
calculate their interrater reliability within each evaluative task.

4.4. Clinical Data Results

Qualitative Evaluation Results Figure 3 summarizes the results of our qualitative
evaluation. On average, SS3M outperforms MC3M in terms of phenotype coherence and
granularity. Over 90% of SS3M semi-supervised phenotypes showed high coherence (scores
of 4 or 5) and nearly 80% were considered to have single-disease granularity. Meanwhile,
unsupervised MC3M phenotypes had a more uniform distribution over all levels of coherence
and granularity. In terms of label quality, about 75% of SS3M phenotypes were found to
match well with their ground truth labels (scores of 4 or 5). Noteably, for nearly 80% of
SS3M phenotypes, our expert evaluators were able to suggest a label that matched the
ground truth label. This finding suggests that the large majority of SS3M semi-supervised
phenotypes communicated the characteristics of the conditions described by their ground
truth labels. Over all evaluative tasks, our expert evaluators demonstrate a fair degree
of interrater reliability. Figure 4 displays a sample of phenotypes which received strong
qualitative evaluations from both expert reviewers. Figure 5 shows the full set of semi-
supervised phenotypes employed in the qualitative evaluation.
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Acute and unspecified
renal failure

Acute cerebrovascular
disease

Acute myocardial
infarction

Acute posthemorrhagic
anemia Alcohol-related disorders

Aortic, peripheral, and
visceral artery aneurysms

Aspiration pneumonitis,
food/vomitus Asthma

Bacterial infection,
unspecified site

Cardiac arrest and
ventricular fibrillation

Cardiac dysrhythmias Chronic kidney disease
Chronic obstructive pulmonary

disease and bronchiectasis
Coagulation and

hemorrhagic disorders
Congestive heart failure,

nonhypertensive

Crushing injury or
internal injury

Delirium, dementia, and amnestic
and other cognitive disorders

Diabetes mellitus with
complications Epilepsy, convulsions

Gastrointestinal
hemorrhage

Heart valve disorders Hepatitis Intracranial injury Mood disorders Mycoses

Open wounds of head,
neck, and trunk

Pancreatic disorders (not
diabetes) Paralysis

Phlebitis, thrombophlebitis and
thromboembolism

Pleurisy, pneumothorax,
pulmonary collapse

Pneumonia Pulmonary heart disease
Respiratory failure, insufficiency,

arrest (adult) Secondary malignancies
Septicemia (except in

labor)

Shock
Spondylosis, intervertebral disc
disorders, other back problems

Substance-related
disorders Thyroid disorders Urinary tract infections

Figure 5: SS3M semi-supervised phenotypes. Phenotypes learned with P=160, and 75%
labels retained for training. Token size is proportional to token likelihood within
a phenotype. Red - words from clinical notes; Green - clinical lab names; Blue -
medication names.
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Quantitative Evaluation Results Table 2 summarizes the results of our quantitative
evaluation. In general, SS3M’s phenotype prediction performance, as measured by macro
and micro averaged AUC-ROC and AUC-PR, grows for all values of P as the percentage of
labeled patients increases from 1% to 100% of the training cohort. Moreover, performance
appears to increase as P increases, particularly for larger amounts of labeled training data.

SS3M demonstrated competitive predictive performance relative to our baselines. In
nearly all cases, SS3M with P ≥ 80 outperforms our multilabel classification baselines (RF
and KNN) once 25% of total labels are made available for training. In all cases, the set of 40
one-versus-rest L1-regularized logistic regression (LR) models outperformed all competitors.
However, SS3M was the only multilabel classifier that approached LR’s performance in at
least a subset of cases (e.g. micro averaged AUC-ROC for P = 160 and 100% training
labels).

Table 3 illustrates SS3M’s per-label predictive performance for various proportions of
labeled training data. As with the averaged predictive performance, per-label predictive
performance tends to increase as more labels are made available for training. However, this
trend is not entirely consistent. For some labels, performance increases for a time with the
percentage of training labels, but then suddenly suffers a steep drop, possibly followed by
a similarly steep rise. This volatility may be due in part to SS3M’s inference algorithm
getting caught in similar but distinct posterior modes.

AUC-ROC (Training label %) AUC-PR (Training label %)

Average Model 1% 5% 25% 50% 75% 100% 1% 5% 25% 50% 75% 100%

Macro

SS3M (P=40) 0.557 0.653 0.723 0.73 0.723 0.737 0.156 0.22 0.29 0.305 0.286 0.302
SS3M (P=80) 0.48 0.622 0.717 0.766 0.787 0.802 0.117 0.226 0.313 0.381 0.389 0.401
SS3M (P=160) 0.445 0.54 0.702 0.781 0.798 0.813 0.0955 0.162 0.331 0.412 0.444 0.464

RF (ML) 0.643 0.687 0.721 0.734 0.744 0.75 0.171 0.206 0.246 0.269 0.281 0.291
KNN (ML) 0.605 0.641 0.679 0.695 0.701 0.704 0.15 0.184 0.228 0.246 0.256 0.263
LR (OVR) 0.711 0.812 0.843 0.844 0.846 0.846 0.336 0.471 0.526 0.531 0.53 0.53

Micro

SS3M (P=40) 0.627 0.676 0.76 0.783 0.787 0.804 0.143 0.188 0.233 0.24 0.266 0.304
SS3M (P=80) 0.629 0.699 0.786 0.837 0.847 0.858 0.18 0.241 0.329 0.431 0.442 0.465
SS3M (P=160) 0.621 0.658 0.787 0.841 0.858 0.866 0.157 0.187 0.341 0.441 0.478 0.521

RF (ML) 0.716 0.751 0.779 0.788 0.796 0.8 0.239 0.296 0.345 0.369 0.38 0.389
KNN (ML) 0.657 0.693 0.725 0.74 0.743 0.746 0.193 0.239 0.288 0.309 0.319 0.325
LR (OVR) 0.766 0.842 0.864 0.865 0.867 0.867 0.407 0.533 0.576 0.578 0.576 0.572

Table 2: Quantitative evaluation summary. Macro and micro averages are calculated for
each model over all label targets. ML - multilabel classifier; OVR - one-versus-rest
classifier.
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Prevalence AUC-ROC (Training label %) AUC-PR (Training label %)

Label Train (full) Test 1% 5% 25% 50% 75% 100% 1% 5% 25% 50% 75% 100%

Acute and unspecified renal failure 0.205 0.207 0.505 0.483 0.808 0.569 0.841 0.856 0.242 0.246 0.64 0.362 0.681 0.671
Acute cerebrovascular disease 0.0841 0.0859 0.474 0.567 0.928 0.941 0.943 0.939 0.0834 0.123 0.599 0.711 0.714 0.744
Acute myocardial infarction 0.117 0.119 0.555 0.53 0.859 0.846 0.87 0.907 0.141 0.127 0.642 0.587 0.656 0.701
Acute posthemorrhagic anemia 0.0869 0.0939 0.616 0.484 0.499 0.729 0.746 0.766 0.141 0.108 0.107 0.311 0.367 0.379
Alcohol-related disorders 0.0866 0.0892 0.445 0.836 0.884 0.902 0.899 0.902 0.0811 0.563 0.636 0.652 0.68 0.665
Aortic, peripheral, and visceral artery aneurysms 0.0441 0.0419 0.502 0.434 0.888 0.907 0.906 0.871 0.0427 0.0344 0.52 0.459 0.545 0.5
Aspiration pneumonitis, food/vomitus 0.0706 0.0687 0.458 0.81 0.811 0.82 0.729 0.45 0.0639 0.268 0.39 0.271 0.219 0.0722
Asthma 0.0634 0.0659 0.478 0.475 0.906 0.891 0.894 0.898 0.0624 0.0634 0.383 0.349 0.371 0.354
Bacterial infection, unspecified site 0.0863 0.09 0.346 0.446 0.406 0.689 0.631 0.505 0.0684 0.0998 0.0822 0.254 0.249 0.142
Cardiac arrest and ventricular fibrillation 0.0339 0.0362 0.456 0.545 0.666 0.916 0.908 0.909 0.0389 0.055 0.104 0.396 0.323 0.298
Cardiac dysrhythmias 0.321 0.32 0.605 0.826 0.541 0.802 0.853 0.86 0.486 0.785 0.401 0.763 0.821 0.825
Chronic kidney disease 0.104 0.103 0.389 0.649 0.652 0.721 0.747 0.663 0.084 0.302 0.303 0.36 0.391 0.329
Chronic obstructive pulmonary disease and bronchiectasis 0.117 0.116 0.5 0.445 0.861 0.857 0.858 0.816 0.122 0.104 0.511 0.509 0.523 0.444
Coagulation and hemorrhagic disorders 0.109 0.102 0.332 0.671 0.447 0.732 0.756 0.757 0.0739 0.271 0.106 0.368 0.39 0.384
Congestive heart failure, nonhypertensive 0.241 0.233 0.545 0.45 0.832 0.79 0.805 0.85 0.328 0.214 0.727 0.655 0.688 0.745
Crushing injury or internal injury 0.0409 0.0424 0.513 0.604 0.903 0.873 0.877 0.895 0.0475 0.0633 0.456 0.457 0.481 0.538
Delirium, dementia, and amnestic and other cognitive disorders 0.0703 0.0687 0.394 0.419 0.83 0.855 0.871 0.874 0.0538 0.0575 0.448 0.434 0.369 0.419
Diabetes mellitus with complications 0.0757 0.08 0.444 0.401 0.932 0.942 0.935 0.918 0.068 0.0614 0.567 0.597 0.599 0.619
Epilepsy, convulsions 0.0643 0.063 0.448 0.917 0.933 0.92 0.931 0.919 0.0557 0.556 0.575 0.582 0.645 0.59
Gastrointestinal hemorrhage 0.0686 0.0732 0.407 0.472 0.921 0.914 0.902 0.897 0.0583 0.0775 0.579 0.559 0.612 0.611
Heart valve disorders 0.151 0.153 0.528 0.614 0.543 0.678 0.833 0.834 0.159 0.237 0.195 0.33 0.618 0.668
Hepatitis 0.0467 0.0482 0.417 0.746 0.858 0.794 0.842 0.801 0.0418 0.289 0.316 0.297 0.338 0.335
Intracranial injury 0.0633 0.0601 0.572 0.766 0.784 0.931 0.938 0.936 0.0811 0.185 0.257 0.552 0.595 0.565
Mood disorders 0.101 0.106 0.424 0.433 0.694 0.788 0.432 0.857 0.0896 0.0955 0.298 0.418 0.0972 0.486
Mycoses 0.0327 0.0358 0.301 0.425 0.552 0.481 0.572 0.559 0.0254 0.0378 0.073 0.0533 0.0906 0.0905
Open wounds of head, neck, and trunk 0.0283 0.0246 0.522 0.605 0.569 0.912 0.919 0.916 0.0294 0.0381 0.0323 0.236 0.252 0.235
Pancreatic disorders (not diabetes) 0.0283 0.0283 0.308 0.464 0.69 0.945 0.961 0.952 0.0192 0.032 0.216 0.416 0.502 0.426
Paralysis 0.0248 0.0298 0.39 0.44 0.533 0.555 0.655 0.585 0.0232 0.0267 0.0423 0.06 0.117 0.0756
Phlebitis, thrombophlebitis and thromboembolism 0.0584 0.0585 0.391 0.385 0.45 0.468 0.478 0.804 0.0494 0.0508 0.0581 0.0676 0.0727 0.35
Pleurisy, pneumothorax, pulmonary collapse 0.0949 0.101 0.432 0.495 0.622 0.69 0.679 0.616 0.0966 0.12 0.285 0.371 0.35 0.278
Pneumonia 0.133 0.142 0.348 0.48 0.754 0.778 0.791 0.81 0.111 0.171 0.498 0.509 0.506 0.541
Pulmonary heart disease 0.0635 0.0629 0.415 0.439 0.669 0.618 0.691 0.676 0.0519 0.0569 0.186 0.221 0.294 0.262
Respiratory failure, insufficiency, arrest (adult) 0.219 0.211 0.369 0.466 0.733 0.773 0.587 0.792 0.179 0.246 0.496 0.547 0.421 0.642
Secondary malignancies 0.0611 0.0611 0.463 0.482 0.958 0.959 0.959 0.958 0.0617 0.0616 0.617 0.647 0.625 0.615
Septicemia (except in labor) 0.136 0.133 0.362 0.549 0.534 0.705 0.506 0.778 0.111 0.216 0.204 0.422 0.183 0.52
Shock 0.0801 0.0791 0.406 0.583 0.531 0.852 0.876 0.859 0.0783 0.134 0.15 0.447 0.498 0.458
Spondylosis, intervertebral disc disorders, other back problems 0.0448 0.0468 0.439 0.478 0.721 0.748 0.761 0.804 0.0432 0.0505 0.211 0.226 0.228 0.254
Substance-related disorders 0.0419 0.0409 0.455 0.441 0.466 0.609 0.848 0.792 0.0375 0.0376 0.0383 0.101 0.288 0.3
Thyroid disorders 0.103 0.105 0.431 0.497 0.47 0.952 0.947 0.953 0.0895 0.11 0.105 0.664 0.691 0.68
Urinary tract infections 0.125 0.123 0.472 0.436 0.483 0.435 0.833 0.843 0.129 0.114 0.134 0.116 0.558 0.544

Macro Average 0.445 0.54 0.702 0.781 0.798 0.813 0.0955 0.162 0.331 0.412 0.444 0.464
Micro Average 0.622 0.658 0.788 0.842 0.858 0.866 0.158 0.188 0.341 0.44 0.476 0.518

Table 3: SS3M per-label predictive performance. Shown are results for P = 160, and 75%
labels retained for training.
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5. Conclusion

SS3M is a model for semi-supervised learning of disease phenotypes from clinical data.
We exposed SS3M to data for a simulated cohort of patients as well as data for a cohort
of patients from the MIMIC-III clinical database. Our simulated results demonstrate the
effectiveness of the semi-supervised mechanism we built into the model. With only a small
set of labels retained for training, SS3M is able to fully recover the ground truth phentoypes
used to generate our dataset.

Encouraged by these results, we applied SS3M to clinical data using HCUP CCS ICD9
code groups as our label set. Here again our semi-supervised mechanism demonstrated its
utility. Our clinical expert evaluators judged that a signifcant proportion of the phenotypes
inferred by our model did indeed recover the clinical characteristics of their associated
disease labels. Furthermore, relative to several commonly used baselines, SS3M showed
competetive performance in phenotype label prediction on a held-out patient cohort.

The labels we employ in our experiments with clinical data were derived from readily
available ICD9 diagnosis codes. Though we reduce the noisiness of our labels by utilizing
HCUP CCS code groups, we still lack a true gold-standard to train and test our model
against. This limitation complicates our evaluation of the model particularly in comparison
to our baselines. Specifically, because we do not completely trust that our labels accurately
represent the disease status of the patients in our cohort, there is some doubt regarding the
accuracy of the predictive performance assessments of all our models.

In future work we will obtaina small set of expert-generated, gold-standard disease labels
for use in training and testing our semi-supervised model and our baselines. Using a true
gold-standard will give us more confidence in the performance of our models, and will allow
us to carry out error analysis to better identify cases for which SS3M struggles to recover
a patient’s ground truth disease status.
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Appendix A.

Here we provide additional details regarding the derivation of SS3M’s collapsed Gibbs sam-
pler. The implementation is available at https://github.com/victorarodri/SS3M.

Collapsed Joint Distribution

The joint distribution for SS3M is

p(A,B,B∗,C,Θ,Φ,Z,W ;α, β, β∗, γ) = p(B∗;β∗)

P∏
p=1

p(Bp;β) (2)

× p(Cp;α)

D∏
d=1

p(Θd|Ad:,B, B
∗)p(Adp|Cp)

S∏
s=1

p(Φsp; γs)

Nsd∏
n=1

p(Wsdn|Zsdn,Φs:)p(Zsdn|Θd).

The distribution for each factor on the RHS is given in the generative process described
in Algorithm 1.

We integrate C,Θ and Φ out of SS3M’s joint distribution to obtain the collapsed joint:
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p(A,B, B∗,Z,W ;α, β, β∗, γ) = p(B∗;β∗)

P∏
p=1

p(Bp;β)

×
S∏

s=1

D∏
d=1

Nsd∏
n=1

∫
Cp

p(Adp|Cp)p(Cp;α)dCp (3)

×
∫
Θd

p(Zsdn|Θd)p(Θd|Ad:,B, B
∗)dΘd

×
∫
Φsp

p(Φsp; γs)p(Wsdn|Zsdn,Φs:)dΦsp

= p(B∗;β∗)
P∏

p=1

p(Bp;β)

×
D∏

d=1

Γ(α1 + α2)

Γ(α1)Γ(α2)

Γ(α1 +
∑

dAdp)Γ(α2 +D −
∑

dAdp)

Γ(α1 + α2 +D)

(4)

×
Γ(

∑
p rdp)∏

p Γ(rdp)

∏
p Γ(rdp + ndp)

Γ(
∑

p rdp + ndp)

×
S∏

s=1

Γ(
∑

v γsv)∏
v Γ(γsv)

∏
v Γ(γsv + nspv)

Γ(
∑

v γsv + nspv)
,

where Γ(·) indicates the Gamma function, rdp = Adp�Bp+(1−Adp)B
∗, ndp is the number

of patient d’s observations assigned to phenotype p, and nspv is the number of times token
v from data source s has been assigned to phenotype p.

Complete Conditional Distributions

Here we obtain proportionalities for the complete conditional distributions of each latent
variable in our collapsed joint. Note we use “−” to indicate all variables in the joint excluding
that which appears on the left side of the conditioning bar.

p(Adp|−) ∝ Γ(α1 +
∑
d′

Ad′p)Γ(α1 +D −
∑
d′

Ad′p)
Γ(

∑
p′ rdp′)

Γ(rdp)

Γ(rdp + ndp)

Γ(
∑

p′ rdp′ + ndp′)
(5)

p(Bp|−) ∝ Gamma(Bp;β)
D∏

d=1

Γ(
∑

p′ rdp′)

Γ(rdp)

Γ(rdp + ndp)

Γ(
∑

p′ rdp′ + ndp′)
(6)

p(B∗|−) ∝ Gamma(B∗;β∗)

D∏
d=1

Γ(
∑

p rdp)∏
p Γ(rdp)

∏
p Γ(rdp + ndp)

Γ(
∑

p rdp + ndp)
(7)

17



Phenotype Inference with Semi-Supervised Mixed Membership Models

p(Zsdn|−) ∝ (rdp + n−sdn
dp )

γsv + n−sdn
spv∑

v′ γsv′ + n−sdn
spv′

(8)

In the proportionality for p(Zsdn|−), the n−sdn
· terms indicate total token assignment

counts excluding the current assignment, Zsdn. The index v refers to the observed value of
Wsdn.

The proportionalities for p(Adp|−) and p(Zsdn|−) are simple to normalize, and can be
sampled from directly afterward. This is not the case for p(Bp|−) and p(B∗|−), which we
sample from using Hamiltonian Monte Carlo (HMC).

Hamiltonian Monte Carlo

To use HMC must calculate a potential energy function proportional to our target distri-
bution and calculate its gradient with respect to the corresponding random variable. Note
that the B and B∗ are constrained to R+. We remove this constraint by applying a change
of variables to sample in log space.

p(B̂p|−) ∝ exp(B̂pβ1 − exp(B̂p)/β2)

D∏
d=1

Γ(
∑

p′ r̂dp′)

Γ(r̂dp)

Γ(r̂dp + ndp)

Γ(
∑

p′ r̂dp′ + ndp′)
(9)

p(B̂∗|−) ∝ exp(B̂∗β∗1 − exp(B̂∗)/β∗1)
D∏

d=1

Γ(
∑

p r̂
∗
dp)∏

p Γ(r̂∗dp)

∏
p Γ(r̂∗dp + ndp)

Γ(
∑

p r̂
∗
dp + ndp)

, (10)

where B̂p = logBp, B̂
∗ = logB∗, r̂dp = Adp � exp(B̂p) + (1 −Adp)B

∗, and r̂∗dp = Adp �
Bp + (1−Adp) exp(B̂∗).

The potentials we require are obtained by taking the negative log of our transformed
target distributions.

U(B̂p) = − log p(B̂p|−) (11)

∝ exp(B̂p)/β2 − B̂pβ1 (12)

−
D∑

d=1

log Γ(
∑
p′

r̂dp′)− log Γ(r̂dp) + log Γ(r̂dp + ndp)− log Γ(
∑
p′

r̂dp′ + ndp′)

U(B̂∗) = − log p(B̂∗|−) (13)

∝ exp(B̂∗)/β∗1 − B̂∗β∗1 (14)

−
D∑

d=1

log Γ(
∑
p

r̂∗dp)− log Γ(
∑
p

r̂∗dp + ndp) +
D∑

d=1

P∑
p=1

log Γ(r̂∗dp)− log Γ(r̂∗dp + ndp)
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Their gradients are as follows.

∂U(B̂p)

∂B̂p

= −β1 + exp(B̂p)[
1

β2

+

D∑
d=1

{Ψ(r̂dp)−Ψ(
∑
p′

r̂dp′) + Ψ(
∑
p′

r̂dp′ + ndp′)−Ψ(r̂dp + ndp)}Adp] (15)

∂U(B̂∗)

∂B̂∗
= −β∗1 + exp(B̂∗)[

1

β∗2

+
D∑

d=1

P∑
p=1

{Ψ(r̂∗dp)−Ψ(
∑
p′

r̂∗dp′) + Ψ(
∑
p′

r̂∗dp′ + ndp′)−Ψ(r̂∗dp + ndp)}(1−Adp)], (16)

where Ψ(·) indicates the Digamma function.
As detailed in Neal et al., given a step size, ε, and path length, L, these gradients allow

us to integrate trajectories in log space to arrive at new candidate states for our random
variables. We then evaluate the total energy change using our potential energy functions
to decide whether to accept or reject our candidate states.

Collapsed Gibbs Sampler

We now have all the necessary elements to construct a collapsed Gibbs sampler for SS3M.
The procedure is described below in Algorithm 2.
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Algorithm 2 Collapsed Gibbs Sampler for SS3M

Intialize: α, β, β∗, {γs}Ss=1

Sample: A,B, B∗,Z from their priors in the complete joint
Load: tokenized observations into W & labels into A

for each iteration do
for each patient d = 1 to D do

for each data source s = 1 to S do
for each observation n = 1 to Nsd do

Sample Zsdn ∼ p(Zsdn|−)
end

end
for each phenotype p = 1 to P do

if Adp does not have a fixed label then
Sample Adp ∼ p(Adp|−)

end

end

end
for each phenotype p = 1 to P do

Bp ← exp(HMC(B̂p, U(B̂p),∇B̂p
U(B̂p), ε, L))

end

B∗ ← exp(HMC(B̂∗, U(B̂∗),∇B̂∗U(B̂∗), ε, L))

end

Return: Samples of A,B, B∗,Z

Note, in Algorithm 2 we refer to the gradients in Equations 15 and 16 using the symbol ∇.
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