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Abstract

We study methods for assessing the degree of systematic over- or under- estimation, known
as calibration, of a learned risk model in an independent validation cohort. Here, we
advance methods for evaluating clinical risk prediction models by deriving a population
parameter measuring the average calibration error of the predicted risk from the true
risk, and providing a method for estimation and inference. Our approach improves upon
commonly-used goodness of fit tests that depends on subjective bin thresholding and may
yield misleading results by reporting confidence intervals for the calibration error instead
of a simple P -value that conflate calibration error and sample size. This approach enables
comparison among multiple risk prediction models, and can guide model revision. We
illustrate how our new method helps to understand the calibration of risk models that have
been profoundly influential in clinical practice, but controversial due to their potential
miscalibration.

1. Introduction

Medical practitioners increasingly use machine learning to estimate disease risks for patients
that ultimately guide decisions on the benefit, or harm, of particular treatments as the field
of “precision medicine” expands. In theory, clinical risk models should help practitioners
determine which patients will experience the most benefit, and the least harm, from a
treatment. Yet recent evaluations raised a grave concern that current goodness of fit tests
for clinical risk models can lead to grossly miscalibrated models being used in clinical
practice (Cook and Ridker, 2016). Defining a rigorous calibration approach to evaluate
clinical risk prediction models has been a major stumbling block for precision medicine.
For example, in cardiovascular disease prevention, the commonly-used ACC/AHA pooled
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cohort equations (PCEs) for estimating 10-year cumulative ASCVD risk (Goff et al., 2014)
passed common metrics of calibration in existence today, but is actually mis-calibrated
for the general US population (Cook and Ridker, 2016; Yadlowsky et al., 2018). Hence,
it is important to examine whether the risk prediction model is appropriately calibrated
in the target population. The traditional goodness of fit test examines the compatibility
between the observed data and the risk prediction via significance level, but the testing
result entangles the effects of the power of the test and underlying calibration error of the
model, while we are only interested in the latter.

To make this problem concrete, for an time-to-event outcome T ∈ R+, a fixed time
t0 ∈ R+, and a set of clinical relevant features represented by a vector X ∈ Rd, consider the
problem of using the features to predict the cumulative risk at a landmark time point t0,

m0(x) = P (T ≤ t0 | X = x).

This problem is a key staple of data-driven medicine, where clinicians want to perform
quantitative risk / benefit analyses for individual patients utilizing known information about
their health.

Beyond the usual challenges of constructing an accurate predictive model with regression
or machine learning methods, one important, yet often neglected, problem is evaluating the
performance of an existing prediction model and calibrating such a model, if needed. In
this paper, we focus on evaluating a given (or previously learned) predictive score m(x) on
fresh validation data. To this end, define the calibration curve for the model m(·) as

γ(r) = P (T ≤ t0 | m(X) = r). (1)

For given predicted risk level r ∈ [0, 1], the calibration error r − γ(r) reflects the degree of
over/under estimation of this prediction rule in the population of interest.

A common approach for assessing the quality of a predictive model relies on a goodness
of fit test. Existing calibration tests, such as the Greenwood-Nam-D’Agostino (GND) test
(Demler et al., 2015), are in the same spirit as the famous Hosmer-Lemeshow test for
logistic regression (Hosmer Jr and Lemeshow, 2013), which categorizes the continuous risk
score m(x) into bins, and compares the true risk with the average risk prediction within
each bin (D’Agostino and Nam, 2003; Crowson et al., 2016; Demler et al., 2015). If the
null hypothesis that the model is correctly calibrated is not rejected at a given significance
level, then one may conclude that the data don’t conflict with the prediction model. Often,
researchers (falsely) assume that the risk prediction rule therefore is well calibrated in the
target population. The exact formulation of what it means to be correctly calibrated in
each bin varies between models and testing methods.

There are two significant issues with these approaches. First, the practice of null hy-
pothesis testing in such a setting is notoriously problematic. Since m(x) is learned from
past data, the risk prediction is almost certainly not perfectly calibrated, especially in a
new population. That means that given adequate sample size, the null hypothesis of zero
calibration error is always rejected. On the other hand, with a small sample size, it is
very difficult to reject the null even for a poor model, due to limited power. Moreover, the
goodness of fit test doesn’t provide insight on the magnitude of the calibration error; for
instance a model with mild calibration error is still clinically useful, if not perfect. Second,
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these approaches can be sensitive to the ad-hoc choices of the categorization (May and Hos-
mer, 2004). Different cut-off values for defining bins may lead quite different conclusions.
In order to overcome those difficulties, we propose a metric measuring the overall calibra-
tion error of a model, and associated statistical inference procedure based on potentially
censored data.

Technical Significance Let R = m(X) ∈ [0, 1] be the estimated risk, and let w(r) :

[0, 1] → R+ be a weight function, and consider the (weighted) mean squared calibration
error,

θ = E[w(R){R− γ(R)}2]. (2)

θ is a intrinsic performance measure of calibration and doesn’t depend on the sample size
as in a goodness of fit test. We construct estimators and confidence intervals (CIs) of θ,
and provide guidance on interpreting them. These CIs are more informative than P -values
from hypothesis testing: the location and width of the CI inform both the quality of the
risk prediction’s calibration and the degree of confidence in this conclusion. Our approach
is semi-parametric in nature: we estimate γ(r) non-parametrically, and then construct a
plug-in estimator for θ. The resulting estimator converges to θ at the regular

√
n rate and

is asymptotically normal under mild regularity conditions, which facilitates the construc-
tion of the 95% confidence interval for θ. In next two sections, we present the estimator
and associated inference procedure and demonstrated that the proposed method has good
coverage in finite samples via simulation studies.

Clinical Relevance When risk prediction models inform important clinical decisions,
e.g., on prescribing appropriate drugs (such as statins, Stone et al. 2014; Grundy et al. 2018;
anti-hypertensive medications, Basu et al. 2017; Whelton et al. 2018; and anticoagulant
medications Yeh et al. 2016; Bibbins-Domingo et al. 2016) to clinical populations, a model
with high calibration error can skew the decision making process, leading to significant
over-treatment or under-treatment at the population level. Cook and Ridker (2016) and
Yadlowsky et al. (2018) found that, for example, the commonly-used ACC/AHA Pooled
Cohort Equations for predicting the 10-year cumulative risk of atherosclerotic cardiovascular
diseases (ASCVD) among adults that passed the traditional GND test (Goff et al., 2014;
Muntner et al., 2014) is actually poorly calibrated. As we discussed above, sample size
affects these analyses in a way such that they provide very little information about the
intrinsic quality of PCEs. The failure to identify calibration error of the model has serious
clinical consequences: serious risk over-estimation noted among White women, for example,
leads to over-prescription of statin drugs and unnecessary adverse events and costs from
over-prescription (Cook and Ridker, 2016), while under-estimation of risk among many
African-American adults leads to under-treatment, an ultimately unnecessary, preventable
myocardial infarctions, strokes, and deaths (Yadlowsky et al., 2018). Accurately estimating
the calibration of risk prediction models in these subgroups can help researchers to assess
the fairness and equitable performance of machine learning models in diverse populations.
Similarly, for blood pressure treatment, risk models used by clinicians to estimate who
should undergo “intensive” blood pressure treatment (treatment of systolic pressure down
to < 120 mmHg) pass the GND test, but still lead to a high rate of clinical errors (Basu
et al., 2017). Our approach yields both a point estimator and confidence interval for an
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interpretable metric of the overall calibration error, which quantifies the level of evidence
regarding the quality of these risk predictions and helps to resolve such controversies.

2. Methods

Time to event outcomes are often subject to right censoring. We assume that the observed
data consist of n independent, identically distributed copies of (U,DT , X) : {(Ui, DT i, Xi), i =
1, · · · , n}, where U = min(T,C), C is the censoring time and DT = 1{T<C}. Due to the
fact that γ(R) = E[1{T≤t0}|R], we re-write θ as

E
[
w(R)(R− 1{T≤t0}){R− γ(R)}

]
.

By factoring (γ(r)−r)2 this way, the above representation is more robust to mis-specification
of γ(R) and yields better estimates of θ. Due to right censoring, we only observe U and
DT instead of T. Therefore, in order to construct an estimator for θ, we must replace the
unobserved quantities in the above display by observed counterparts. To this end, assume
that censoring is non-informative about the outcome, meaning C ⊥⊥ T | R. Let

D = 1{C≥min(t0,T )} = DT + (1−DT )1{U≥t0}, and

G(u, r) = E(D | T = u,R = r) = P (C > min{u, t0} | R = r).

Note that if D = 1, then we observe the value of the binary indicator 1{T≤t0}. Then, in
terms of fully observable quantities and identifiable functional parameters γ(r) and G(u, r),

θ = E
[
w(R)

D

G(U,R)
(R− 1{T≤t0})(R− γ(R))

]
. (3)

2.1. Interpretation and weight function choice

We consider a number of natural weight functions for the calibration error. Of course, the
most straightforward is a constant weight function, w(r) = 1 (to meet the conditions of
Theorem 1, use w(r) = 1{a≤r≤b}, where 0 < a < b < 1). Then, the calibration error θ is
the mean squared calibration error. However, it treats the difference between r = 0.01 and
γ(r) = 0.05, and the difference between r = 0.5, and γ(r) = 0.54 equally. This may not
be desirable in practice, since the true risk is 5 times the estimated risk in the former case,
and only 1.08 in the latter case.

The relative calibration error may be more interpretable. Consider the weight function
w(r) = min{r2, (1− r)2}−1. Then,

w(r){r − γ(r)}2 =

[
r − γ(r)

r

]2
1{r≤0.5} +

[
1− r − {1− γ(r)}

1− r

]2
1{r>0.5}

Therefore, the weighted calibration error θ with this weight function corresponds to the
mean squared relative calibration error. This way, 10% relative calibration error is weighted
similarly at all risk levels. In this case

√
θ, can be interpreted as approximately the root

mean squared relative calibration error. Unfortunately, this weight function is unstable,
because risk estimates near 0 or 1 lead to unbounded weights. However, miscalibration is
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usually most important for individuals with moderate risk; predicting an individual’s risk
as 0.001 versus 0.0001 is rarely consequential in clinical practice. As a result, we suggest to
trim the weights, using

wε(r) =
1{ε≤r≤1−ε}

min{r2, (1− r)2}
,

for an appropriate choice of ε. This also ensures that the weight function meets the require-
ment of Assumption 6. For example, in the ASCVD estimation example discussed below,
treatment recommendations are usually based on thresholds between 5% and 10% and the
calibration error for risks below 1% is rarely consequential unless it is dramatic. Thus,
ε = 0.01 would be a reasonable choice in such a case.

Finally, to balance between the untrimmed version of the weights and the strict threshold
proposed, one could use two thresholds 0 < ε1 < ε2, where ε1 controls exploding weights,
and ε2 controls boundary bias, and let

w(r) =
1{ε1≤r≤1−ε1}

max{min{r2, (1− r)2}, ε2}
.

As the sample size grows, it may be reasonable to shrink ε1 towards zero, but leave ε2 at
a reasonable level. One downside with this choice of weight function is that the bias and
variance at extremely low (or high) risk levels may still dominate the overall calibration
error, because the difference in weight between w(0.5) = 4 and w(ε2) = ε−12 may be large.
Therefore, one should be careful in choosing ε2 to balance the risks of poor statistical
properties with the benefits of interpretability. We note that this issue is not unique to
our approach; the popular GND test (Demler et al., 2015) faces a similar issue, which they
resolve by combining low risk deciles if the number of events is not large enough for stable
statistical inference.

2.2. Estimator

We propose to estimate the overall calibration error θ via a two-step, nonparametric esti-
mation procedure based on the representation (3).

In the first step, estimate the calibration curve γ(·) and the censoring probabilities
G(·, ·) using the non-parametric (kernel) conditional Kaplan-Meier estimator (Beran, 1981;
Dabrowska, 1986, 1989). For a symmetric kernel function K(u) with a finite support, and
a sequence of bandwidths an → 0, Beran’s estimator of γ(r) is

γ̂(r) = 1−π
t<t0

(1− dΛ̂(t|r))

where

Λ̂(t|r) =

∫ t

0

dĤ1(s, r)

Ĥ2(s−, r)
,

is an estimator of the cumulative hazard function, which is itself composed from estima-
tors Ĥ1(s, r) and Ĥ2(s, r) of the counting process for the outcome and the at risk process
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(respectively) defined by

Ĥ1(s, r) =
1

nan

n∑
i=1

1{Ui>t,Di=1}K
(
r−Ri
an

)
, and

Ĥ2(s, r) =
1

nan

n∑
i=1

1{Ui>t}K
(
r−Ri
an

)
. (4)

Similarly, the corresponding estimator of G(u, r) is

Ĝ(u, r) = π
t≤min{u,t0}

(1− dΛ̂C(t|r)),

with

Λ̂C(t|r) =

∫ t

0

dĤ0(s, r)

Ĥ2(s−, r)
,

Ĥ0(s, r) =
1

nan

n∑
i=1

1{Ui>t,Di=0}K
(
r−Ri
an

)
,

and Ĥ2(·, ·) defined as in (4).
In the second step, estimate θ by the a simple plug in estimator

θ̂ =
1

n

n∑
i=1

Di

Ĝ(Ui, Ri)
(Ri − 1{Ti≤t0}){Ri − γ̂(Ri)}.

Note that this point estimator for θ may take negative values, when the true θ is very
close to zero. However, it is actually advantageous for ensuring the asymptotic normality
of the estimator and allows straightforward statistical inference. A simple analogy is to use
the sample mean to estimate a non-negative population mean: although the sample mean
may be outside the parameter space, its distribution can always be approximated well by a
Gaussian.

2.3. Asymptotic properties and inference

For I = [a, b], with 0 < a, b < 1, τ > 0, g : [0, 1] × R+ → [0, 1], and h : [0, 1] → [0, 1],
let ‖g(t, r)‖τI = sup0≤t≤τ,r∈I |g(r, t)| and ‖g(r)‖I = supr∈I |g(r)|. Dabrowska (1989) showed

that under appropriate regularity conditions, ‖Ĝ − G‖t0I = OP (a2n +
(
log(n)/nan

)1/2
) and

‖γ̂ − γ‖I = OP (a2n +
(
log(n)/nan

)1/2
). While this rate of convergence is slower than

√
n,

Theorem 1 below shows that
√
n(θ̂ − θ) still converges to a mean zero normal distribution

under the following conditions.

Assumption 1 T ⊥⊥ C | R.

Assumption 2 R has a density p(r) that is twice differentiable and bounded 0 < γ ≤
p(r) ≤ Γ <∞ for r ∈ [a, b].
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Assumption 3 (t, r) 7→ P (T ≤ t | R = r) and (t, r) 7→ P (C ≤ t | R = r) are twice
differentiable with uniformly bounded derivatives on 0 ≤ t ≤ t0 and a ≤ r ≤ b.

Assumption 4 For some ε > 0, supr∈[0,1] P (C ≤ t0 | R = r) < 1− ε.

Assumption 5 K : R → R+ is a symmetric, twice differentiable, kernel function with
K(u) ≤ K0 <∞ everywhere, K(u) = 0 outside the interval [−1, 1] and

∫ 1
−1K(u)du = 1.

Assumption 6 There exists δ > 0 such that w(r) = 0 for a ≤ r < a+ δ and b− δ < r ≤ b.

Assumption 1 establishes that censoring C is non-informative about the distribution
of T , and resolves the identifiability issue in survival analysis (van der Laan and Robins,
2003). An stronger assumption that C ⊥⊥ (T,R) is often used in survival analysis, the
stated version is much more general and can account for the situation where censorship is
higher (or lower) in high risk patients than low risk patients.

Assumptions 2 and 3 are smoothness assumptions required for the validity of kernel
smoothing estimates of γ(r) and G(r, u). They are fairly standard in the literature for non-
parametric and semi-parametric statistics (Dabrowska (1989); Li and Doss (1995); Newey
and McFadden (1994)).

Assumption 4 ensures that we observe the survival status at t0 for at least a ε fraction
of the population at any estimated risk level r.

Similarly, Assumption 6 reduces the well known boundary bias of kernels smoothing.
Newey and McFadden (1994) imposes a similar requirement on the boundary weights, but
notes that it is possible to relax this assumption by employing more delicate technical
analysis as done by Robinson (1988).

Theorem 1 Under Assumptions 1-6, if an → 0,
√
na2n → 0 and na3n/ log(an)→∞, then

√
n
(
θ̂ − θ

)
d→ N(0, σ2),

where σ2 = Var
(
w(R){s1(U,D,R) + s2(U,D,R) + s3(U,D,R)}

)
,

s1(U,D,R) =
D

G(U,R)
(R− 1{T≤t0})(R− γ(R)),

s2(U,D,R) = (γ(R)−R)(1− γ(R))

(
D1{U≤t0}

SU (U |R)
−
∫ min{U,t0}

0

dΛT (s|R)

SU (s|R)

)
,

s3(U,D,R) = (R− γ(R))

∫ t0

0

dNC(s)− Y (s) dΛC(s|R)

SC(s|R)

(
R− P (T ≤ t0 | T ≥ s,R)

)
,

SU (u|r) = P (U ≥ u|R = r), SC(s|r) = P (C ≥ s|R = r), Y (s) = 1{U≥s}, and ΛC(· | R) and
ΛT (· | R) are cumulative hazard functions of C and T conditional on R, respectively.

The proof can be found in Appendix A.
The choice of the bandwidth an in Theorem 1 is crucial to the performance of the

constructed estimator. It requires that
√
na2n → 0, suggesting that an is smaller than the
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optimal bandwidth O(n−1/5) for standard optimal non-parametric estimation. Effectively,
it “under-smooths” the kernel estimate, reducing the bias at the cost of higher variance. The
condition na3n/ log(an)→∞ is stronger than usually is necesary for semi-parametric models.
We use this condition to control error terms coming from linearizing the conditional Kaplan-
Meier estimator uniformly over r and t, and may be possible to further relaxed. These error
terms go to zero almost surely, and therefore may be relaxed by a more careful analysis
only requiring weak convergence. In practice, we propose to first use cross-validation to
chose an initial bandwidth bn minimizing the regular mean squared estimation error and let
an = bnn

−δ, where δ ensures that an satisfies the conditions in the Theorem. For example,
δ = 0.1 is a reasonable choice.

Lastly, the empirical variance

σ̂2 = n−1
n∑
i=1

w(Ri)
2{ŝ1(Ui, Di, Ri) + ŝ2(Ui, Di, Ri) + ŝ3(Ui, Di, Ri)}2,

is a natural estimator of σ2 in Theorem 1, with ŝj(u, d, r) obtained by replacing all unknown
functions in sj(u, d, r) by their consistent estimators. With this variance estimator σ̂2, we
may construct a 95% confidence interval for θ as

ĈI =

[
θ̂ − 1.96

σ̂√
n
, θ̂ + 1.96

σ̂√
n

]
.

2.4. Cross fitting

Furthermore, we propose to employ the cross fitting procedure to improve the estimation
of θ. Cross fitting is an effective technique to reduce same-sample bias that originates from
overfitting the nuisance parameters to the same data used to construct the semi-parametric
estimate. For a general discussion of this approach, see Chernozhukov et al. (2018) and
Newey and Robins (2018). To perform cross-fitting here, (1) split the data into J folds with
Ij and I−j denoting the data in and out of the jth fold, respectively; (2) use the data in
I−j to estimate γ(·) and G(·, ·) via the proposed kernel smoothing approach and denote the

resulting estimators by γ̂j(·) and Ĝj(·, ·); (3) apply the estimators γ̂j and Ĝj to the data

from Ij to construct the plug-in estimator of θ̂. In summary, θ can be estimated as

1

n

J∑
j=1

∑
i∈Ij

Di

Ĝj(Ui, Ri)
(Ri − 1{Ti≤t0})(Ri − γ̂j(Ri)).

As noted by Powell et al. (1989), the difference between cross fitting and regular fitting will
be small in practice under the strong smoothness assumptions used here. In our case, it
will only affect the remainder terms governing the rate of convergence to the asymptotic
distribution. However, we find that it tends to have better finite sample performance.
Most notably, it tends to be more robust with respect to the kernel bandwidth selection.
Therefore, with slightly abuse of notations, the cross-fitting estimator for θ above is also
denoted as θ̂ hereafter and used in the numerical studies.
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3. Simulation study

We conducted a Monte Carlo simulation study to assess the performance of the proposed
confidence intervals in finite sample. To generate data, we let γ(R) be some known function

detailed below, the risk prediction R
i.i.d.∼ Uniform[0, 1], Z

i.i.d.∼ Uniform[0, 1], and T =
1 + Z − γ(R). We sampled the censoring time C as Uniform[0, 8/3], independent of Z
and R. In total, we generated n copies of (U,D,R) = (min(T,C),1{T<C}, R) for analysis.
Under this model, P (T ≤ 1 | R) = P (Z ≤ γ(R)) = γ(R). The goal of the analysis was to
estimate the overall calibration error of the risk prediction R. If γ(r) = r, then this model
is correctly calibrated. To evaluate the performance of our approach for a miscalibrated
risk prediction, we considered

γα(r) = (1− α)r + αr2, (5)

here α ∈ [0, 1] is a tuning parameter. When α > 0, the risk prediction R overestimates the
true risk and vice versa. The true calibration error is

θ = α2

∫ 1

0
r2(1− r)2w(r)dr.

We considered three α levels of 0, 0.1, and 0.25 in this simulation study.
In our implementation, we used the Quartic kernel, K(u) = 15/16(1− u2)2, u ∈ [−1, 1]

for kernel smoothing, and J = 6 folds for cross fitting. To choose the kernel bandwidth, we
used the cross validation to select an initial bandwidth b̂n that optimizes the mean squared
estimation error of Ĥ0 and Ĥ1 and then set an = bnn

−0.1. Since the initial bandwidth
bn = O(n−1/5), the rate condition

√
na2n → 0 is satisfied.

In our first set of simulations, we repeated the proposed analysis in B = 1000 simulated
datasets of sample sizes n = 500, 1000, 2000, and 4000 for each fixed α level. With each
generated dataset, we calculated θ̂ and the associated 95% confidence interval ĈI using the
weight function w(r) = 1. We then calculated the empirical bias and standard error of θ̂,
and the empirical coverage level of the 95% confidence intervals. Table 1 summarizes the
results. It appears that the bias of θ̂ is almost negligible, and its empirical standard error
is close to the proposed estimated standard error. Furthermore, the coverage level of the
95% confidence interval approximates its nominal level, especially when α > 0. Under the
unlikely situation that the overall calibration error is zero, the proposed confidence interval
is slight conservative with a coverage level of 98%.

In our second set of analyses, we investigated the role of the weight functions w(r).
To this end, using the same simulation setup as above, with α = 0.3 and n = 1000, we
compared the weight function w(r) = 1 and wε(r) = 1{ε≤r≤1−ε}/min{r2, (1− r)2} in terms

of the empirical bias and variance of θ̂, and the confidence interval coverage. Additionally,
we changed the distribution of R from uniform to the empirical distribution of the predicted
ASCVD risk prediction in the ACC/AHA pooled cohort detailed in the next section, and
repeated a similar comparison. Table 2 contains detailed results. When the distribution was
uniform, inference with the constant weight function performed better than with wε(r). This
matches the good performance of the constant weight function in our first set of simulations.
However, when the distribution of R matched that of the real data, inference with wε(r)
results in substantially smaller bias and more reliable variance estimation than those with
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Table 1: The performance of the proposed point estimator and the associated 95% confi-
dence intervals using the weight function w(r) = 1. The baseline risk R is uni-
formly distributed, and the simulated mis-calibrated risk estimate was generated
according to equation (5).

Miscalibration α n Bias S.E. (10−3) CI coverage

0.00 500 8.04×10−5 1.92 0.986

0.00 1000 -5.46×10−5 1.07 0.976

0.00 2000 3.61×10−5 0.60 0.982

0.00 4000 -2.61×10−7 0.35 0.983

0.15 500 7.33×10−5 2.29 0.957

0.15 1000 3.38×10−5 1.44 0.964

0.15 2000 2.54×10−6 0.90 0.948

0.15 4000 4.84×10−5 0.61 0.948

0.30 500 1.56×10−4 3.54 0.924

0.30 1000 1.73×10−5 2.16 0.944

0.30 2000 1.44×10−5 1.59 0.940

0.30 4000 1.04×10−5 1.01 0.945

constant weights. A possible explanation is that most patients in ASCVD cohort have low
to moderate risk, and thus the non-parametric estimates of relevant nuisance parameters
were more accurate at low risk levels. In addition, the true parameter θ with constant
weight is small in this simulation, which amplifies the relative bias and standard error.

Table 2: Simulation comparing constant weights w(r) = 1 and relative weights wε(r) =
1{ε≤r≤1−ε}/min{r2, (1 − r)2} for different underlying distributions of risk, where
ε = 0.025. The baseline risk R is either uniformly distributed or distributed as the
estimated baseline risk in the PCEs for ASCVD estimation and the simulated mis-
calibrated risk estimate was generated according to equation (5). The relative bias
is the ratio of empirical bias to the true parameter θ, and the relative standard
error is the ratio of the empirical average of standard error estimators to the
empirical standard error.

Distribution of R Weight function Relative bias Relative S.E. CI coverage 0 6∈ CI

Uniform Constant -0.023 0.457 0.936 0.666

Uniform wε(r) 0.079 1.180 0.936 0.032

ASCVD predictions Constant 0.472 0.969 0.992 0.178

ASCVD predictions wε(r) -0.110 0.755 0.942 0.196
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4. ASCVD Example

The goal of this analysis was to estimate the calibration error of the 2013 ACC/AHA pooled
cohort equations (PCEs) (Goff et al., 2014), as well as the updated equations recommended
in Yadlowsky et al. (2018). A variety of claims that these prediction equations are well
calibrated (Muntner et al., 2014), and that they are poorly calibrated (Cook and Ridker,
2016; Yadlowsky et al., 2018) has left confusion regarding the value of these models. Our
approach allows us to better quantify the degree of calibration by reporting point estima-
tors and confidence intervals, as opposed to simple P -values for an un-interpretable null
hypothesis. We also consider the calibration of the Framingham Risk Score (FRS) from
DAgostino et al. (2008) for comparison. Because the FRS predicts the incidence of differ-
ent cardiovascular events (Goff et al., 2014) and was fit based on the Framingham Heart
Study cohort believed to no longer represent modern populations (Yadlowsky et al., 2018),
the score is expected to be poorly calibrated for the outcomes considered here. A good
calibration assessment method should be powerful enough to identify that the FRS is not
well calibrated for estimating incidence of ASCVD.

4.1. Cohort Selection

As previously described in Yadlowsky et al. (2018), individual participant data were in-
cluded from six longitudinal cohorts: (i) Atherosclerosis Risk in Communities Study (ARIC,
1987-2011); (ii) Cardiovascular Health Study (CHS, 1989-1999); (iii) Coronary Artery Risk
Development in Young Adults (CARDIA, 1983-2006); (iv) Framingham Heart Study Off-
spring (FHS, 1971-2014); (v) Jackson Heart Study (JHS, 2000-2012); and (vi) Multi-Ethnic
Study of Atherosclerosis (MESA, 2000-2012). Note that the original 2013 PCEs (Goff et al.,
2014) were developed based on the orignal Framingham Heart Study cohort (1948-2014),
ARIC, CHS, CARDIA. Finally, the FRS was fit using only data from the Framingham
Heart Study cohort.

4.2. Participants

We adopted the same eligibility criteria used in the derivation of the original PCEs in 2013
(Goff et al., 2014), i.e., including participants 40-79 years old; of White or Black race; and
without prior history of myocardial infarction, stroke, congestive heart failure, percutaneous
coronary intervention, coronary bypass surgery, or atrial fibrillation (N = 26, 689). We
excluded 4.9% of these participants from the analysis without a valid ASCVD risk prediction
due to missing covariates.

4.3. Outcome

The same outcome as the 2013 PCEs was defined, for consistency and comparability (Goff
et al., 2014): nonfatal myocardial infarction or coronary heart disease death, or fatal or
nonfatal stroke, over a 10-year period among people free from CVD at the beginning of the
period.
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4.4. Feature choices

We used the same predictors used in the 2013 PCEs for comparison purposes: age, sex,
race (Black vs White), current tobacco smoking status, total and high-density lipoprotein
(HDL) cholesterol, treated or untreated systolic blood pressure, and diabetes.

4.5. Analysis

The goal of the analysis was to estimate the calibration error of aforementioned two risk
predictions. Our analysis may shed light on solving the controversy on the quality of
PCEs in the medical literature (Muntner et al., 2014; Cook and Ridker, 2016; Yadlowsky
et al., 2018), since the proposed method doesn’t solely rely on the statistical significance of
hypothesis testing as the previous analyses.

First, we divided the data into a training and a test cohort and applied the same method
Goff et al. (2014) used to derive the 2013 ACC/AHA PCEs to construct an 10-year ASCVD
risk prediction rule based on the training cohort. Similarly, we also applied the method in
Yadlowsky et al. (2018) to derive the revised prediction rule again based on the training
cohort only. We then estimated the calibration error of these two derived prediction models
using the proposed methodology based on the test cohort only. The FRS was used directly
as derived and reported in DAgostino et al. (2008). Given the simulation evidence that for
the distribution of risk in the ASCVD data, the scaled weight function wε(r) is less biased,
we used this choice with ε = 0.025 in this analysis.

4.6. Results

The upper end of the 95% confidence interval of θ is 0.047 and 0.079 for the revised PCEs
and the ACC/AHA PCEs, respectively, among all adults. Therefore, with more than 95%
confidence, the revised PCEs have less than

√
0.047 = 22% average relative calibration

error. The conclusion for the original PCEs is less clear based on the wide confidence
interval, and its average relative calibration error may potentially be up to

√
0.079 = 28%.

Also note that the point estimator for θ is very close to zero for the revised PCEs, but
corresponds to 15% average relative calibration error for the original PCEs. We repeated
the same analysis in difference race/gender subgroups: black women, white women, black
men and white men. Table 3 contains detailed results. Unfortunately, the intervals for θ
are too wide in all subgroups to reach any definitive conclusions. This fact suggests that
more data are needed in order to evaluate the quality of PCEs and the variation thereof for
predicting ASCVD risk and some large p values reported in the goodness of fit test could
be attributable to both lack of power and the quality of the risk prediction. The confidence
intervals for the calibration of the FRS do not include 0 for among all adults, and in most
age and sex subgroups. This shows that, at least for significantly miscalibrated models, the
approach is powerful enough to identify miscalibration.

5. Discussion

In this paper, we propose a statistical inference procedure for a new parameter measuring
how well a given risk prediction is calibrated in the population of interest. From a theoretical
perspective, the interesting fact is that the proposed estimator, although non-parametric in
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Table 3: Calibration error estimation and 95% confidence interval for the ACC/AHA
PCEs, revised PCEs from Yadlowsky et al. (2018), and the FRS (DAgostino
et al., 2008) 10-year cumulative risk prediction in an independent validation sam-
ple of the updated pooled cohorts. Calibration error is weighted by wε(r) =
1{ε≤r≤1−ε}/min{r2, (1− r)2}, with ε = 0.025. For reference, a calibration error of
θ = 0.0625 corresponds to an average 22% miscalibration.

Risk equation Lower 95% CI Estimate Upper 95% CI

All adults

Revised PCEs -0.0343 0.0064 0.047

2013 ACC/AHA PCEs -0.0272 0.0259 0.079

Framingham Risk 0.0826 0.1632 0.244

Black women

Revised PCEs -0.113 0.0255 0.164

2013 ACC/AHA PCEs -0.122 0.0241 0.170

Framingham Risk -0.112 0.2973 0.707

White women

Revised PCEs -0.0586 0.0457 0.150

2013 ACC/AHA PCEs -0.0855 0.0279 0.141

Framingham Risk 0.0410 0.0640 0.087

Black men

Revised PCEs -0.155 0.1010 0.357

2013 ACC/AHA PCEs -0.293 -0.0178 0.258

Framingham Risk 0.035 0.1719 0.309

White men

Revised PCEs -0.123 -0.0299 0.064

2013 ACC/AHA PCEs -0.0798 0.0464 0.173

Framingham Risk 0.0963 0.2164 0.337
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nature, i.e., valid without requiring any restrictive parametric assumption, converges to the
true parameter at the fast

√
n rate. Practically, this means that our inference procedure is

valid for a wide range of applications. The proposed method can be used to compare two
prediction rules and guide their revision. Practitioners and clinical guidelines increasingly
use risk prediction models for highly-prevalent conditions, such as blood pressure treatment
(Basu et al., 2017; Whelton et al., 2018), anticoagulation treatment (Yeh et al., 2016;
Bibbins-Domingo et al., 2016), and cancer therapies (Hurria et al., 2019). The use of our
calibration metric has important clinical relevance to precision medicine as clinical practice
adopt the use of these computational tools.

One limitation of our approach is that the confidence intervals have good coverage prob-
ability, but are relatively wide. In our simulations, we found that the sample size needs
to be large for the confidence intervals to exclude 0 for a moderate θ > 0. Relatedly, the
lower confidence intervals for the PCE calibration analysis were all negative, even though
Yadlowsky et al. (2018) found that the GND test rejects the null hypothesis that the cali-
bration error was zero in some cases. While the upper confidence intervals are meaningful
for all adults, they are also very large in each of the race / sex subgroups. Finding more
efficient estimators with tighter confidence intervals is an important topic for future work.

It is important to note that it is possible that a well calibrated prediction rule has high
prediction error. For example, the naive risk prediction rule m0(x) = P (T ≤ t0) is perfectly
calibrated but useless in practice. How to evaluate a risk prediction model accounting for
both the systematic calibration bias and the prediction accuracy warrants future research.
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Appendix A. Proof of Theorem 1

Proof We make two simplifications in the proof. First, the algebra is simpler with a
constant weight function, so we shall choose w(r) = 1{arb}. Therefore, we will omit it,
and simply condition on R 2 [a, b].

Verifying the assumptions of the following theorem by Newey and McFadden (1994)
(with notation adapted to match the present work) proves the main result.

Theorem A.1 (Newey and McFadden 1994, Theorem 8.1) Suppose that E[m(z, ⌘0)] =
0, E[(m(z, ⌘0))2] < 1, and there is �(z) with E[�(z)] = 0, E[�2(z)] < 1, and (i) (lineariza-

tion) there is a function M(z, ⌘�⌘0) that is linear in ⌘�⌘0 such that for all ⌘ with k⌘�⌘0k
small enough, km(z, ⌘) � m(z, ⌘0) � M(z, ⌘ � ⌘0)k  b(z)k⌘ � ⌘0k2, and E[b(z)]

p
nkb⌘ �

⌘0k2
p! 0; (ii) (stochastic equicontinuity)

P
n

i=1
[M(zi, b⌘�⌘0)�

R
M(z, b⌘�⌘0) dF0]/

p
n

d! 0;

(iii) (mean-square di↵erentiability) there is �(z) and a measure bF such that E[�(z)] = 0,
E[�2(z)] < 1 and for all k⌘ � ⌘0k small enough,

R
M(z, b⌘ � ⌘0) dF0 =

R
�(z) d bF ; (iv) for

the empirical distribution eF ,
p
n[
R
�(z) d bF �

R
�(z) d eF ]

p! 0.

Then,
p
n
P

n

i=1
m(zi, b⌘)

d! N(0,⌃), where ⌃ = Var[m(zi, ⌘0) + �(zi)].

To this end, we will write bp(r) = 1

n

P
n

i=1
Kan(r�Ri), which estimates the density p(r) =

dP (R  r)/ dr. Then, throughout this proof, we will define bH(u, r) = bp(r) bG(u, r) as an
estimator for H(u, r) = G(u, r)p(r) and b⇢(r) = bp(r)b�(r) as an estimator for ⇢(r) = �(r)p(r).
Then, we will write ⌘(u, r) = (H(u, r), ⇢(r), p(r))> and b⌘(u, r) = ( bH(u, r), b⇢(r), bp(r))>.

c� 2019 S. Yadlowsky, S. Basu & L. Tian.
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Verifying (i) linearization For any Z = (U,D,R)> with sub-component R satisfying
a  R  b, write

m(Zi, ⌘) =
Di

H(Ui, Ri)
(Ri � 1{Uit0})(p(Ri)Ri � ⇢(Ri)),

and let Oi = 1{Tit0}. We have

m(Z, b⌘)�m(Z, ⌘) =
Di

bH(Ui, Ri)
(Ri �Oi)(Ribp(Ri)� b⇢(Ri))�m(Z, ⌘)

=
Di

H(Ui, Ri)
(Ri �Oi)(b⇢(Ri)� ⇢(Ri))

+
Di

H(Ui, Ri)
(Ri �Oi)Ri(bp(Ri)� p(Ri))

+
H(Ui, Ri)� bH(Ui, Ri)

H(Ui, Ri)

Di

H(Ui, Ri)
(Ri �Oi)(Rip(Ri)� ⇢(Ri))

+ (⇢(Ri)� b⇢(Ri))
H(Ui, Ri)� bH(Ui, Ri)

H(Ui, Ri)

Di

H(Ui, Ri)
(Ri �Oi)

+ (Rip(Ri)�Rbp(Ri))
H(Ui, Ri)� bH(Ui, Ri)

H(Ui, Ri)

Di

H(Ui, Ri)
(Ri �Oi)

+
Di

H(Ui, Ri)
(Ri �Oi)(Ri � ⇢(Ri))

⇣
H(Ui, Ri)� bH(Ui, Ri)

⌘
2

H(Ui, Ri) bH(Ui, Ri)
.

Then, we split M(Z, ⌘) = M⇢(Z, ⌘) +MH(Z, ⌘) +Mp(Z, ⌘) into three terms, where

M⇢(Z, b⌘ � ⌘) =
D

H(U,R)
(R� Y )(b⇢(R)� ⇢(R)),

Mp(Z, b⌘ � ⌘) =
D

H(U,R)
(R� Y )R(bp(R)� p(R))

and

MH(Z, b⌘ � ⌘) =
D

H(U,R)
(R� Y )(Rp(R)� ⇢(R))

H(U,R)� bH(U,R)

H(U,R)
.

Then, the linearization condition (i) holds with

b(Z) =
2D

(H(U,R))2
+

D

(H(U,R))2(H(U,R)� ✏/2)
,

where ✏�  inf{H(u, r) : u, r 2 [0, t0] ⇥ [a, b]} is a lower bound on the probability of
being uncensored, by Assumptions 2 and 4. Dabrowska (1989) showed that with bn =

log(an)/(nan), b1/2n k� � b�k = OP (1) and b1/2n kG � bGk = OP (1). Here,
p
nbn ! 0 for

the choice of an, since (
p
nan)/ log(an) ! 1. This result will hold for bounding the

di↵erences H � bH and ⇢� b⇢, as well, as they are simply un-normalized counterparts of the

7
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quantities above. This, along with the fact that |E[b(Z)]|  1, most importantly because
H(u, r) � ✏� > 0, satisfies

p
nE[b(Z)](kH � bHk2 + kH � bHkk⇢� b⇢k+ kH � bHkkp� bpk) = Op

✓
log(an)p

nan

◆
= op(1).

Verifying conditions (ii)-(iv) will involve frequently invoking the following asymptotic
representation of Beran’s conditional Kaplan-Meier estimator, due to Su (2018):

Proposition 1 (Su 2018, Proposition 3) Let FT |R(t | r) = P (T  t | R = r), FD

U |R(u |
r) = P (U  t,D = 1 | R = r), and

bFT |R(t | r) = 1�
nY

j=1

exp

0

B@�
1{Ujt}K

⇣
Rj�r

an

⌘

P
n

`=1
1{UjU`}K

⇣
R`�r

an

⌘

1

CA .

If (Ui, Di, Ri)ni=1
are drawn i.i.d. under Assumptions 1-6, then

F̂T |R(t|r)� FT |R(t|r) =
1

P
n

j=1
K
⇣
Ri�r

an

⌘
nX

i=1

⇠⇤(Yi, �i; t, r)K
⇣
Ri�r

an

⌘
+ rn(t, r),

where

⇠⇤(y, �; t, r) =
h
1� FT |R(t|r)

i
2

4 1{yt,�=1}
1� FY |R(y|r)

�
Z

y^t

0

F �

Y |R(du|r)
(1� FY |X(u|r))2

3

5 ,

and

sup
(t,r)2[0,t0]⇥[a,b]

|rn(t, r)| = Oas

✓
log n

nh

◆
3/4

.

Note that while this Proposition is written for a slightly di↵erent version of the conditional
Kaplan-Meier estimator (closely related to the conditional Aalen-Nelson estimator), under
Assumption 3, these two will be asymptotically equivalent, as noted in the footnote follow-
ing the above proposition in Su (2018). Therefore, we will use this result applied to the
conditional Kaplan-Meier estimators bG(t|r) and b�(r) presented here.

Verifying (ii) stochastic equicontinuity The stochastic equicontinuity holds due to a
similar argument typical for proving stochastic equicontinuity of semi-parametric estimators
with 1st stage kernel regression (see Theorem 8.11 and the discussion in Section 8.3 of Newey
and McFadden (1994)), using the properties of U -statistics and a bias condition. In fact,
the result for bp(x) � p(x) follows exactly as in Theorem 8.11, and so we have omitted it.
The argument is nearly identical for M⇢(Z, b⌘� ⌘) and MH(Z, b⌘� ⌘), so we shall only prove
the latter case.

Because MH(Z, b⌘ � ⌘) only depends on b⌘ � ⌘ through bH � H. With slightly abuse of
notations, we write MH(Z, bH � H) ⌘ MH(Z, b⌘ � ⌘). First, let H̄ = E[ bH], and regroup
MH(Z, bH �H) = MH(Z, bH � H̄) +MH(Z, H̄ �H). To show that

p
n

0

@
nX

i=1

MH(Zi, bH � H̄)/n�
Z

MH(z, bH � H̄) dP (z)

1

A p! 0,

8
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let

vn(Zi, Zj) = MH(Zi, ⇠
⇤
C(Uj , 1�Dj , Ui, Xj)Kan(·� xj)),

vn2(Z) =

Z
vn(z̃, Z) dP (z̃),

vn1(Z) = MH(Z, H̄).

where ⇠⇤
C

is like ⇠⇤, but for the censoring distribution. Then, Lemma 8.4 of Newey and
McFadden (1994) ensures that

p
n

2

4
nX

i=1

MH(Zi, bH � H̄)/n�
Z

H(z, bH � H̄) dP (z)

3

5

=
p
n

2

4n�2

nX

i=1

nX

j=1

vn(Zi, Zj)� n�1

nX

i=1

vn1(Zi)� n�1

nX

i=1

vn2(Zi) + E[vn1(Z)]

3

5

= OP

⇣
E|vn(Z1, Z2)|/

p
n+ (E[vn(Z1, Z2)

2])1/2/
p
n
⌘
.

Because Assumption 4 implies 1�FC|R(y|r) > ✏ almost surely, |⇠⇤
C
(U2, 1�D2, U1, X2)| < 1.

Along with the assumption that K(u)  CK < 1,

|vn(Z1, Z2)| =
����

D1

H(U1, R1)
(R1 � Y1)(R1p(R1)� ⇢(R1))

⇠⇤
C
(U2, 1�D2, U1, R2)Kan(R1 �R2)

H(U1, R1)

����

 1

✏2
CK |⇠⇤C(U2, 1�D2, U1, X2)| < C̃.

Therefore, E[|vn(Z1, Z2)|]/
p
n ! 0 and E[|vn(Z1, Z2)|2]1/2/

p
n ! 0.

To show that
p
n
�P

n

i=1
MH(Zi, H̄ �H)/n�

R
MH(z, H̄ �H) dP (z)

� p! 0, we apply
Chebyshev’s inequality to write

P

0

@

������
n�1/2

nX

i=1

MH(Zi, H̄ �H)�
Z

MH(z, H̄ �H) dP (z)

������
> t

1

A  Var

0

@n�1/2

nX

i=1

MH(Zi, H̄ �H)

1

A /t2.

Then,

Var
�
MH(Zi, H̄ �H)

�
 E

h
M2

H(Zi, H̄ �H)
i

= E


D

H4(U,R)
(R� Y )2(Rp(R)� ⇢(R))2(H̄(U,R)�H(U,R))

�

 1

✏4

⇣
kH̄ �Hkt0

I

⌘
2

! 0,

which implies that
������
n�1/2

nX

i=1

MH(Zi, H̄ �H)�
Z

MH(z, H̄ �H) dP (z)

������
= oP (1).

9
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Verifying (iii) mean-square di↵erentiability Note that in Theorem A.1, condition
(iii) can be relaxed to

Z
M(z, b⌘ � ⌘) dP (z) =

Z
�(z) d bP (z) + qn,

where qn are remainder terms that satisfy
p
nqn

p! 0. Because

na3n
log(n)

! 1,

this allows usage of the representation in Proposition 1 to establish mean-square di↵eren-
tiability as follows. Again, the similarity between MH(Z, bH �H) and M⇢(Z, b⇢� ⇢) makes
the proofs repetitive, so we explicitly prove only the former. The latter holds with

�⇢(z) = (�(r)�r)(1��(r))

 
d1{ut0}
SU |R(u|r)

�
Z

min{u,t0}

0

d⇤T (s|r)
SU |R(s|r)

!
�(r��(r))r�E[(R��(R))R]

Likewise, the result for Mp(Z, bp � p) is omitted as it follows exactly from Newey and Mc-
Fadden (1994, Theorem 8.11), with �p(z) = (r � �(r))r � E[(R � �(R))R]. Note that this
cancels with the last term of �⇢(z), so that

�p(z) + �⇢(z) = (�(r)� r)(1� �(r))

 
d1{ut0}
SU |R(u|r)

�
Z

min{u,t0}

0

d⇤T (s|r)
SU |R(s|r)

!
.

Returning to showing the mean-square di↵erentiability for MH(z, bH�H), we use Propo-
sition 1 (for the censoring distribution) to write

Z
MH(z, bH �H) dP (z) =

Z
(r � 1{ut0})(rp(r)� ⇢(r))

d

H(u, r)

H(u, r)� bH(u, r)

H(u, r)
dP (d, u, r)

=

Z
(r � 1{ut0})(rp(r)� ⇢(r))

d

H(u, r)
⇥

P
n

i=1
⇠⇤
C
(Ui, 1�Di, u, r)Kan(Ri � r)

G(u, r)
dP (d, u, r)

=

Z Z
(r � 1{tt0})(r � �(r))⇥
P

n

i=1
⇠⇤
C
(Ui, 1�Di, t, r)Kan(Ri � r)

G(t, r)
dP (t | r) dr,

where P (d, u, r) and P (t|r) are the cumulative distribution function of (D,U,R) and T |R =
r, respectively. To simplify these terms, we use the following general property from plugging

10
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in the integral form of ⇠⇤
C
(y, d, t, r) and applying Fubini’s theorem:

Z 1

0

a(t, r)
⇠⇤
C
(Ui, 1�Di, t, r)Kan(Ri � r)

G(t, r)
dP (t | r)

=

Z 1

0

Z
t

0

dNC,i(s)� d⇤C(s|r)Yi(s)
SU |X(s|r) a(t, r) dP (t | r)

=

Z 1

0

Z 1

s

a(t, r) dP (t | r)dNC,i(s)� d⇤C(s|r)Yi(s)
SU |R(s|r)

=

Z 1

0

E[a(T, r) | T � s,R = r]ST |R(s|r)
dNC,i(s)� d⇤C(s|r)Yi(s)

SU |R(s|r)

=

Z 1

0

E[a(T, r) | T � s,R = r]
d⇤C(s|r)Yi(s)
SC|R(s|r)

.

Applying this to the above display gives
Z

MH(z, bH �H) dP (z)

=

Z Z
(r � 1{tt0})(r � �(r))⇥
P

n

i=1
⇠⇤
C
(Ui, 1�Di, t, r)Kan(Ri � r)

G(t, r)
dP (t | r) dr

=

Z nX

i=1

(r � �(r))

Z 1

0

dNC,i(s)� d�C(s|r)Yi(s)
SC|R(c|r)

�
r � P (T  t0 | T � s,R = r)

�
K(Ri � r) dr.

This satisfies condition (iii) with �(z) being the following function of s 2 [0, t0]:

�(z, s) =
(r � �(r))

�
r � P (T  t0 | T � s,R = r)

�

SC|R(s|r)
,

and bP (z) defined by integrals against test functions a(s, r) as
Z nX

i=1

Z 1

0

�
dNC,i(s)� d�C(s|r)Yi(s)

�
a(s, r)K(Ri � r) dr.

Verifying (iv) convergence to the empirical measure As done in Newey and Mc-
Fadden (1994, Theorem 8.11), we verify this by checking that the following two moments
go to zero, which will ensure the result by Chebyshev’s inequality.

(mean)
p
nE
"Z Z

(dNC,i(s)� d⇤C(s|r)Yi(s))�(r, s)Kan(Ri � r) dr

�
Z
(dNC,i(s)� d⇤C(s|Ri)Yi(s))�(Ri, s)

#
,

(variance) Var

"Z Z
(dNC,i(s)� d⇤C(s|r)Yi(s))�(r, s)Kan(Ri � r) dr

�
Z
(dNC,i(s)� d⇤C(s|Ri)Yi(s))�(Ri, s)

#
.

11
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To show that the mean converges to zero,we use the fact that �(r, s) is twice di↵erentiable
in r, with bounded derivatives that are uniformly continuous in t to write

�(r, s) = �(Ri, s) +
@

@r
�(Ri, s)(Ri � r) +

@2

@r2
�(Ri, s)(Ri � r)2 +�(Ri � r, s)(Ri � r)2,

with limu!0

R
t0

0
|�(u, s)| ds ! 0. A similar property will hold for �(r, s)⇤C(s|r).

Then,
�����
p
nE
"Z Z

dNC,i(s)�(r, s)Kan(Ri � r) dr

�
Z

dNC,i(s)�(Ri, s)

#�����

=

�����
p
nE
"Z Z

dNC,i(s)⇥
h

@

@r
�(Ri, s)(Ri � r) + @

2

@r2
�(Ri, s)(Ri � r)2 +�(Ri � r, s)(Ri � r)2

i
⇥

Kan(Ri � r) dr

#�����

Fubini’s theorem, along with the change variables u = (Ri � r)/an, and the fact thatR
uK(u) = 0 implies

�����
p
nE
"Z Z

dNC,i(s)⇥
h

@

@r
�(Ri, s)(Ri � r) + @

2

@r2
�(Ri, s)(Ri � r)2 +�(Ri � r, s)(Ri � r)2

i
⇥

Kan(Ri � r) dr

#�����

=

�����
p
nE
"Z Z

dNC,i(s)⇥

h
@
2

@r2
�(Ri, s)(uan)

2 +�(anu, s)(anu)
2

i
K(u) du

#�����

 CK2

 
p
na2n sup

s2[0,t0]

��� @
2

@r2
�(Ri, s)

���+
p
na2n sup

s2[0,t0]
|�(anu, s)|

!
,

where CK2 =
R
u2K(u) du < 1. Therefore, because

p
na2n ! 0, the mean term converges

to 0. A similar analysis shows that the term involving d⇤C(s|r)Yi(s)�(r, s) will converge
when d⇤C(s|r) = �C(s|r) ds is smooth with �C(s|r) uniformly bounded over r, and twice
continuously di↵erentiable in r.

12
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To show that the variance term converges to zero, we break it up into two parts, as
follows:

Var

"Z Z
(dNC,i(s)� d⇤C(s|r)Yi(s))�(r, s)Kan(Ri � r) dr

�
Z
(dNC,i(s)� d⇤C(s|Ri)Yi(s))�(Ri, s)

#

 2E[⇣21 + ⇣22 ],

with

⇣1 =

Z Z
(dNC,i(s)� d⇤C(s|Ri)Yi(s))�(r, s)Kan(Ri � r) dr

�
Z

(dNC,i(s)� d⇤C(s|Ri)Yi(s))�(Ri, s)

⇣2 =

Z Z
(d⇤C(s|r)� d⇤C(s|Ri))Yi(s)�(r, s)Kan(Ri � r) dr

To show that E[⇣2
1
] ! 0, notice that NC,i(s) � �C(s|Ri) is a martingale, so E[⇣1] = 0, and

by switching the order of integration,

E[⇣21 ] = E[
Z

a2(Ri, s) d⇤C(s|Ri)Yi(s)],

where

a(Ri, s) =

Z
(�(r, s)� �(Ri, s))Kan(Ri � r) dr

Using the same argument as to prove condition (iii), smoothness of r 7! �(r, s), uniformly
in s, implies Z

a2(Ri, s) ds  Ca2n,

for all Ri. Because an ! 0, E[⇣2
1
] ! 0.

We show that E[⇣2
2
] ! 0, by writing d⇤C(s|r) = �C(s|r) ds, with �C(s|r) uniformly

bounded and smooth in r. Then,

⇣22 =

✓Z Z
(�C(s|r)� �C(s|Ri)Yi(s))�(r, s)Kan(Ri � r) dr ds

◆
2

=

 Z
Ui

0

Z
(�C(s|r)� �C(s|Ri))�(r, s)Kan(Ri � r) dr ds

!


 Z

Ui

0

Z
( @

@r
�C(s|Ri)(r �Ri) + C|Ri � r|)�(r, s)Kan(Ri � r) dr ds

!
2

C�|an|2
 Z

Ui

0

Z
|u|�(Ri + anu, s)K(u) du ds

!
2

Then, E⇣2
2
. a2n ! 0 because r 7! �(r, s) is smooth and bounded, and

R
|u|K(u) du < 1.

13



Supplementary materials: A Calibration Metric for Risk Scores with Survival Data

References

Rudolf Beran. Nonparametric regression with randomly censored survival data. University
of California (Berkeley). Department of Statistics, 1981.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins. Double/debiased machine learning for treatment
and structural parameters. The Econometrics Journal, 21(1):C1–C68, 01 2018. ISSN
1368-4221. doi: 10.1111/ectj.12097. URL https://dx.doi.org/10.1111/ectj.12097.

Dorota M Dabrowska. Nonparametric regression with censored survival time data. Univer-
sity of California (Berkeley). Department of Statistics, 1986.

Dorota M Dabrowska. Uniform consistency of the kernel conditional kaplan-meier estimate.
Annals of Statistics, 17(3):1157–1167, 1989.

Olga V Demler, Nina P Paynter, and Nancy R Cook. Tests of calibration and goodness-of-fit
in the survival setting. Statistics in medicine, 34(10):1659–1680, 2015.

Gang Li and Hani Doss. An approach to nonparametric regression for life history data using
local linear fitting. The Annals of Statistics, pages 787–823, 1995.

Whitney K Newey and Daniel McFadden. Large sample estimation and hypothesis testing.
Handbook of Econometrics, 4:2111–2245, 1994.

Whitney K Newey and James R Robins. Cross-fitting and fast remainder rates for semi-
parametric estimation. arXiv preprint arXiv:1801.09138, 2018.

James L Powell, James H Stock, and Thomas M Stoker. Semiparametric estimation of
index coe�cients. Econometrica: Journal of the Econometric Society, pages 1403–1430,
1989.

Peter M Robinson. Root-n-consistent semiparametric regression. Econometrica: Journal of

the Econometric Society, pages 931–954, 1988.

Jiun-Hua Su. Essays on Structural Microeconometrics. PhD thesis, University of California
(Berkeley), 2018. Available at https://arxiv.org/pdf/1902.08502.pdf.

Mark J van der Laan and James M Robins. Unified Methods for Censored Longitudinal

Data and Causality. Springer-Verlag New York, 2003. doi: 10.1007/978-0-387-21700-0.

14


	Introduction
	Methods
	Interpretation and weight function choice
	Estimator
	Asymptotic properties and inference
	Cross fitting

	Simulation study
	ASCVD Example
	Cohort Selection
	Participants
	Outcome
	Feature choices
	Analysis
	Results

	Discussion

