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Abstract

Deciding what and when to observe is critical when making observations is costly. In a
medical setting where observations can be made sequentially, making these observations
(or not) should be an active choice. We refer to this as the active sensing problem. In this
paper, we propose a novel deep learning framework, which we call ASAC (Active Sensing
using Actor-Critic models) to address this problem. ASAC consists of two networks: a
selector network and a predictor network. The selector network uses previously selected
observations to determine what should be observed in the future. The predictor network
uses the observations selected by the selector network to predict a label, providing feedback
to the selector network (well-selected variables should be predictive of the label). The goal
of the selector network is then to select variables that balance the cost of observing the
selected variables with their predictive power; we wish to preserve the conditional label
distribution. During training, we use the actor-critic models to allow the loss of the selector
to be “back-propagated” through the sampling process. The selector network “acts” by
selecting future observations to make. The predictor network acts as a “critic” by feeding
predictive errors for the selected variables back to the selector network. In our experiments,
we show that ASAC significantly outperforms state-of-the-arts in two real-world medical
datasets.

1. Introduction

In many medical settings, making observations is costly Weinstein et al. (1996). For
example, performing lab tests on a patient incurs a cost, both financially as well as causing
fatigue to the patient Koch et al. (2009); Kumwilaisak et al. (2008). In such settings, the
decision to observe is important. This decision involves a trade-off between the value of the
information obtained from the observation and the cost of making the observation. This
problem presents itself when the data can be observed sequentially, so that we can observe a
particular measurement before deciding which other measurements to observe. This problem

c© 2019 .
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Figure 1: Comparison of Active Sensing and Instance-wise Variable selection in the static
setting.

presents itself in both static and in time-series settings, with the key difference being that in
the time-series setting, the values for a given stream1 will change over time and thus we
may wish to re-measure this, whereas in the static setting we know that once we observe a
stream, we know its (fixed) value.

Genetic tests, for example, will have the same outcome whether we perform them now
or later. As such, it may be advantageous to perform some tests, observe the results, and
then decide on further tests to perform based on the results of the first Billings et al. (1992).
Because the outcome of the tests will not change over time (we are in a static setting), there
is no need to perform the tests we have already performed again and also no “worry” that
we might miss something by not measuring it now (we can always go back and measure it
later).

On the other hand, in an Intensive Care Unit (ICU) setting Ezzie et al. (2007) where
important lab tests are being repeated and the results are always changing, we can no longer
ignore a stream once it has been measured (its value may have changed since the last time
we measured it) and moreover if we decide not to measure something, then we have missed
our chance to measure it in that particular instant (we cannot go back and measure its value
in the past). We can, however, still use past observations in determining what to measure
next.

We refer to the problem of deciding what to observe in the future based on the mea-
surements observed so far as active sensing Yu et al. (2009); Alaa and van der Schaar
(2016). This problem presents itself in many healthcare applications Alaa and van der Schaar
(2016); Schroeder et al. (2010). We formalize the problem of active sensing as a sequential
decision making process in which, at each step, we select variables to measure based on all
previously selected variables. When selecting variables, we wish to select those which are
most predictive of the label, while also minimising cost.

This formulation of active sensing is related to instance-wise variable selection frameworks
such as Yoon et al. (2019); Chen et al. (2018). In instance-wise variable selection, the goal is

1. We use the term stream to refer to both the sequential values of a time-series variable and the single
value of a static variable interchangeably.
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to find a minimal subset of variables such that the conditional label distribution is preserved.
However, in instance-wise variable selection, all of the variables should be measured before
making the decision of which to select. In such settings, the goal is to efficiently summarize
the information present in the entire feature vector in a lower dimensional feature vector.
This is typically because the costly part there is not in observing the value of a variable
but rather in presenting the value of the variable. In the active sensing framework, the cost
has been shifted from presenting the information to measuring it and as such features that
are not selected are not measured. Moreover, in the static setting of instance-wise variable
selection, only a single selection is made, whereas for active sensing, both in the static and
time-series settings, a sequence of selections is made. Fig. 1 illustrates these differences
between active sensing and instance-wise variable selection. In the Supplementary Materials,
we also illustrate these differences in the time-series setting.

Technical Significance In this paper, we propose ASAC (Active Sensing using Actor-
Critic models), an algorithm capable of addressing active sensing in both static and time-series
settings. ASAC consists of two networks: a selector network and a predictor network. The
selector network uses previously selected features to determine which streams to observe
next. The predictor network uses the selected features to predict a label. The networks are
trained to minimize a Kullback-Leibler divergence between the conditional label distribution
given all features and the conditional label distribution given only the selected features (thus
ensuring that the selected features are as predictive of the label as all the features). Cost
is introduced by adding a penalty term to the loss. We draw on actor-critic methodology
Konda and Tsitsiklis (2000) to allow “back-propagation” through the sampling process of the
selector network. We model each network using LSTMs Hochreiter and Schmidhuber (1997)
to deal with sequential inputs and outputs, though any sequential model (e.g. temporal
convolutions Van Den Oord et al. (2016)) could be used.

In our experiments, we demonstrate the efficacy of ASAC in a variety of scenarios using
synthetic data. Then, using two real-world medical datasets (ADNI Petersen et al. (2010)
and MIMIC-III Johnson et al. (2016)) we show that ASAC significantly outperforms the
existing state-of-the-art methods.

Clinical Relevance: In medicine, making observations is usually costly and there is a
clear trade-off between cost of measurements (e.g. MRI) and the value of observations (e.g.
understanding the patient states based on the observation) Heywang-Köbrunner et al. (1997).
Therefore, ASAC can do a critical role in clinical decision support that provides advice
which observation should be measured and when. The proposed active sensing framework
(ASAC) can be widely applied in various medical settings.

For instance, in an Intensive Care Unit (ICU) setting, there are more than 100 possible
measurements on vital signs and lab tests Ezzie et al. (2007) and of course not all the
possible tests are necessary for the entire patients Roberts et al. (1993) 2. Among these
extensive combinations of the measurements (and their timings), the proposed methods
can provide advice which lab tests and vital signs should be measured and when based on
the patient states estimated by the previously measured patients’ observations. In breast
cancer screening setting, there are various methods to screen the breast cancer such as
mammogram, ultrasound, MRI and biopsy Saslow et al. (2007). Of course, not all the

2. The missing (unmeasured) data can be imputed by imputation methods such as GAIN Yoon et al. (2018a)
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patients need to be screened by all of the above methods Force et al. (2009). Most patients
only need mammogram to screen the breast cancer and only the subset of the patient needs
further screening tools Gøtzsche and Jørgensen (2013). The proposed model can provide the
advice in this case as well that which patient needs additional screening examination based
on the previous screening results (e.g. mammogram results).

The proposed methods try to minimize the observation costs without minimum informa-
tion loss by not observing some measurements. We verify the proposed model in Intensive
Care Unit (ICU) setting using MIMIC-III dataset and chronic disease setting using ADNI
dataset.

1.1. Related Works

This paper draws motivation from existing instance-wise variable selection frameworks
such as L2X Chen et al. (2018), LIME Ribeiro et al. (2016), Shapley Lundberg and Lee
(2017), DeepLIFT Shrikumar et al. (2017) and in particular, Instance-wise variable selection
(INVASE) Yoon et al. (2019). As noted above, a key difference between instance-wise variable
selection and active sensing is in what is measured before making the selection. In addition,
each of these works formalize the problem only in the static setting (where there are no
temporal features). The applications for this problem are restricted to model interpretation
and the models cannot be extended to the active sensing framework.

Deep Sensing Yoon et al. (2018b) is the work most closely related to ours. Like us, they
attempt to solve the active sensing problem using deep learning, especially RNNs. The
Deep Sensing framework involves learning 3 different networks: an interpolation network, a
prediction network and an error estimation network. Each network is separately optimized
for its own objective and then combined together after training to be used for active sensing.
On the other hand, ASAC jointly optimizes the selector and predictor networks, both for the
objective of active sensing, doing so by leveraging ideas from actor-critic methods Konda
and Tsitsiklis (2000). Furthermore, Deep Sensing treats each feature independently, deciding
what to measure by looking at the affect of a single feature on the label in isolation. ASAC,
on the other hand, jointly estimates the effect of multiple features on the label prediction.
This is critical when the features are highly correlated and also when the cost of measuring
one feature differs significantly from measuring another noisier correlated feature. In the
experiments, we show that our framework significantly outperforms the state-of-the-art in
all settings. Due to space limitations, further details of other related works Bahdanau et al.
(2014); Vaswani et al. (2017); Xu et al. (2015); Yu et al. (2009); Alaa and van der Schaar
(2016) can be found in the Supplementary Materials.

2. Problem Formulation

In this section, we first describe the active sensing problem in the static setting, and then
explain the differences in the time-series setting.

2.1. Static Setting

Let X = X 1× ...×X d be a d-dimensional feature space and Y be a label space (either R for
regression problems or {1, 2, ..., C} for multi-class classification problems with C classes).
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We consider random variables X ∈ X , Y ∈ Y with some joint distribution p (and marginal
distributions pX and pY ). For each feature, we assume that there is some cost, ci, where
i = 1, ..., d, associated with measuring the i-th feature. The cost vector is denoted as
c = (c1, ..., cd).

A sensing decision is a vector s = (s1, ..., sd) ∈ {0, 1}d where si = 1 corresponds to
observing i-th feature. Let ∗ be any point not in X 1, ...,X d. For any sensing vector s and
any feature vector x = (x1, ..., xd) ∈ X let x(s) be the vector obtained by

x(s)i =

{
xi if si = 1
∗ if si = 0

(1)

We refer to x(s) as the observed feature vector. In the static setting, we define a sensing
decision sequence as (s1, ..., sm) where each sj sensing decision and we require that if
sij−1 = 1, then sij = 1 so that the sensing decisions form a nested sequence (this is simply

so that sj describes fully which features have already been measured at step j) and each
sj = sj(x(sj−1)) is allowed to depend on x(sj−1).

Our goal, then, is to find a sensing decision sequence (s1, ..., sm) that minimizes the total
cost of measuring the chosen variables (i.e. cT sm =

∑d
i=1 c

i× sim) subject to the conditional
distribution of Y given X being equal to the conditional distribution of Y given X(sm).
That is, we wish to select variables that still allow us to predict Y as well as if we had
measured everything, and among the sets of variables that do this, we wish to find the set
with minimal measuring cost.

2.2. Time-series setting

In the time-series setting, a few modifications need to be made to the problem formulation
given in Section 2.1. Instead of considering simple random variables, we now consider an
indexed family (or sequence) of these random variables X = (Xt)t∈T and (Yt)t∈T where t
is an index in some time indexing set T with T being some bounded subset of either R or
N. In our case we focus on the discrete setting where T = {1, ..., T} ⊂ N where T is some
random stopping time (whose distribution we absorb into p), with our random processes
assumed to be regularly sampled.

In contrast to the static setting, a sensing decision sequence now no longer requires that
if sit−1 = 1, then sit = 1, since now the values for each component of the process may vary
between decisions and so will need to be remeasured if selected again (thus incurring a new
cost). In addition, each sensing decision is allowed to depend on all observations made so
far, that is st = st(x(s1), ...,x(st−1)).

3 We denote s≤t = (s1, ..., st), x≤t = (x1, ...,xt) and
x(s≤t) = (x1(s1), ...,xt(st)) to simplify notation.

In addition, we can extend this formulation further by allowing measurement delays to
be included. Now that we have incorporated a time element, it also becomes natural that
some features will take more or less time to measure than others (for example blood cultures
can take up to one week to perform). To incorporate this into our formulation, we define a
measurement time vector τ = (τ1, ..., τd) ∈ T d which indicates the length of time it takes

3. This is actually no different to the static setting where x(sj) contains all information found in
x(s1), ...,x(sj−1).
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to measure each feature. Then in this setting, our “current” feature vector, xt(s≤t), now
depends on all4 selections made in the past (i.e. on s≤t rather than just st) and is defined by

xt(s≤t)
i =

{
xit−τi if sit−τi = 1

∗ if sit−τi = 0
(2)

so that if feature i was selected τi steps ago, then its value appears now in the current set of
measured values. In this setting, we also write x(s≤t) = (x1(s≤1), ...,xt(s≤t)).

The goal here is as in the static setting, where the total cost is now
∑T

t=1 cT st =∑T
t=1

∑d
i=1 c

i× sit and the conditional distribution constraint requires that Yt given X≤t has
the same distribution as Yt given X(s≤t) for all t ∈ {1, ..., T}.

A time-series dataset, which we denote by D, consists of N patient observations, assumed
i.i.d. according to p so that D = {(xt,i, yt,i)Tit=1}Ni=1 where (xt,i, yt,i)

Ti
t=1 is the stream

corresponding to patient i of (random) length Ti.
In the remainder of the paper, the more general time-series setting will be used by default.

When reading the rest of the paper, keep in mind that the discussion also applies to the
static setting.

2.3. Optimization problem

Based on the above problem formulations, the optimization problem can be determined as
follows.

min
s1,...,sT

T∑
t=1

Ex∼pX

[
cT st

]
s.t. (Yt|X≤t = x≤t)

d
= (Yt|X(s≤t) = x(s≤t)) for all t ∈ {1, 2, ..., T}

(3)

In order to find a suitable (tractable) sensing decision sequence, we transform the distribu-
tional constraint into a soft constraint using the Kullback-Leibler (KL) divergence. To do
this, we consider the problem of minimizing the KL divergence between the two conditional
distributions with an added cost penalty term. The objective function we aim to minimize
(with respect to the sensing decision sequence) is then

T∑
t=1

Ex∼pX

[[
KL((Yt|X≤t = x≤t)||(Yt|X(s≤t) = x(s≤t)))

]
+ λcT st

]
(4)

where λ ≥ 0 is a hyper-parameter that trades-off between the constraint (KL term) and the
objective (cost term).

We can rewrite the KL divergence term as

KL((Yt|X≤t = x≤t)||(Yt|X(s≤t) = x(s≤t)))

=

∫
Y
pY (y|x≤t)

[
log(pY (y|x≤t))− log(pY (y|x(s≤t)))

]
dy

4. In fact, it depends only on su for u ∈ {t−τi : i = 1, ..., d}, i.e. the times in the past in which measurements
were “started” and whose results would be reported now.
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and we note that log(pY (y|x≤t)) is independent of the sensing decision sequence s≤t. We
can therefore define an equivalent loss, l(x≤t, s≤t), as follows

l(x≤t, s≤t) =

∫
Y
pY (y|x≤t)

[
− log(pY (y|x(s≤t)))

]
dy. (5)

Then, the new optimization problem is defined as

min
s1,...,sT

T∑
t=1

Ex∼pX

[
l(x≤t, s≤t) + λcT st

]
. (6)

3. Proposed model

In order to solve the optimization problem given in equation (6), we first need to estimate
the unknown density function: pY (·|x(s≤t)). To do this, we introduce a predictor function
fφ :

∏t
i=1(X × {0, 1}d)→ Y parameterized by φ which will be trained to predict y given all

(selected) observations up until time t (i.e. x(s≤t) and s≤t).
In order to perform sensing decisions (which are binary), we introduce a selector function

fθ :
∏t
i=1(X × {0, 1}d)→ [0, 1]d parameterized by θ that will output continuous values in

[0, 1]d which will be treated as probabilities to then be sampled from to create an output
in {0, 1}d. The selection mechanism is therefore probabilistic in nature, and as such our
optimization problem in (6) now needs to include an expectation over the sensing decision
sequence s≤T . This selector function fθ will take measurements up until time t as input and
then output probabilities from which the decision sequence for time t+ 1 will be sampled.
In order to “back-propagate” through the sampling process, we draw on actor-critic models
Konda and Tsitsiklis (2000) to derive the gradient of our selector function loss in Section
3.2.

These two networks will be trained iteratively. This is important because both functions
influence each other. The predictor function directly determines the loss of the selector
function and thus has a direct impact on the training of the selector function. The selector
function, on the other hand, has the more subtle effect of changing the distribution over
which the predictor function needs to perform well. As the selector function is updated, the
input distribution for the predictor network changes, and it is important that the predictor
function performs well on the new distribution. As such, the predictor network needs to be
updated after each selector function update (and vice-versa).

3.1. Predictor function

The predictor function is trained to minimize a prediction loss

L(φ) =

T∑
t=1

Ex∼pX [lt(φ)] (7)

where for C-class classification we have the standard cross-entropy loss given by

lt(φ) = −
C∑
i=1

yit log(f iφ(x(s≤t), s≤t)) (8)
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Figure 2: Block diagram of ASAC.

and for regression we have the standard mean-squared error loss given by

lt(φ) = (yt − fφ(x(s≤t), s≤t))
2. (9)

We then use lt(φ) as our estimate for l(x≤t, s≤t).
fφ can be implemented using any function approximator capable of dealing with time-

series inputs (though in the static setting it needs only to be able to deal with static inputs).
In this paper, we model fφ as a Recurrent Neural Network (RNN) (in particular as an LSTM
Hochreiter and Schmidhuber (1997)).

We explicitly model the predictor function fφ using the RNN structure as follows. At
time stamp t, we first define the hidden state Ht by

Ht = f1(Ht−1, st,x(st))

where f1 is some function parameterized as a fully connected network (the same network is
used for each time point). The output of the predictor network is then given by

fφ(x(s≤t), s≤t) = f2(Ht) = f2(f1(Ht−1, st,x(st)))

for another function f2 parameterized as a (different) fully connected network.
Note that Ht depends on Ht−1, st and x(st). Iterating this dependency we get that Ht

depends on s≤t and x(s≤t).
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3.2. Selector function

The selector function, fθ :
∏t
i=1(X × {0, 1}d) → [0, 1]d, outputs probabilities from which

we sample independently to obtain a sensing decision. The probability of a given sensing
decision, s = (s1, ..., sd) given the observations and selections made until time t is given by

πθ(s|x(s≤t), s≤t) =

d∏
i=1

fθ(x(s≤t), s≤t)
si(1− fθ(x(s≤t), s≤t))

1−si

Using a slight abuse of notation, we will write s ∼ θ and st ∼ θ|s≤t−1 to denote the marginal
and conditional distribution of the sensing decision induced by the selector network (note that
both of these are conditional on x≤t−1). Using this, the objective function in equation (6)
can be rewritten as follows (we omit the outer expectation (Ex∼pX ) due to space limitation
and replace l(x≤t, s≤t) with lt(φ)):

L(θ) =
T∑
t=1

Es∼θ
[
lt(φ) + λcT st

]
(10)

=
T∑
t=1

Es1∼θ

[
· · ·Est∼θ|s≤t−1

[
lt(φ) + λcT st

]]
=

T∑
t=1

∑
s1∈{0,1}d

πθ(s1)
[ ∑
st∈{0,1}d

πθ(st|s≤t−1)×
[
lt(φ) + λcT st

]]

=
T∑
t=1

∑
s≤t∈{0,1}d×t

[
t∏

τ=1

πθ(sτ |s≤τ−1)]
[
lt(φ) + λcT st

]
Using ideas from actor-critic models Konda and Tsitsiklis (2000) (details can be found in
the Supplementary Materials), the gradient of this loss ∇θL(θ) can be shown to be

∇θL(θ) =

T∑
t=1

t∑
j=1

Es∼θ
[
[lt(φ) + λcT st]∇θ log πθ(sj |s≤j−1)

]
(11)

where ∇θ log πθ(sj |s≤j−1) is

d∑
i=1

[
sij∇θ log f iθ(x(s≤j−1), s≤j−1)− (1− sij)∇θ log f iθ(x(s≤j−1), s≤j−1)

]
. (12)

which can be directly deduced from Equation (10).
We explicitly model the selector function fθ using the RNN structure as follows. At time

stamp t, we first define the hidden state ht by

ht = f3(ht−1, st,x(st))

where f3 is some function parameterized as a fully connected network (the same network is
used for each time point). The output of the selector network is then given by

fθ(x(s≤t), s≤t) = f4(ht) = f4(f3(ht−1, st,x(st)))

9



ASAC: Active Sensing using Actor-Critic models

𝒉௧ 𝒉௧ାଵ𝒉௧ିଵ

𝒙௧ିଵ ∘ 𝒔௧ିଵ

𝒔௧ିଵ

𝒙௧ ∘ 𝒔௧

𝒔௧

𝒙௧ାଵ ∘ 𝒔௧ାଵ

𝒔௧ାଵ

𝒆௧

Random 
Sampler

𝒔௧

𝒆௧ାଵ

Random 
Sampler

𝒔௧ାଵ

𝒆௧ାଶ

Random 
Sampler

𝒔௧ାଶ

𝑯௧ 𝑯௧ାଵ𝑯௧ିଵ

𝒙௧ିଵ ∘ 𝒔௧ିଵ

𝒔௧ିଵ

𝒙௧ ∘ 𝒔௧

𝒔௧

𝒙௧ାଵ ∘ 𝒔௧ାଵ

𝒔௧ାଵ

𝒚ෝ௧ିଵ

Loss

𝒚௧ିଵ

𝒚ෝ௧

Loss

𝒚௧

𝒚ෝ௧ାଵ

Loss

𝒚௧ାଵ

P
re

d
ic

to
r 

N
et

w
or

k
Se

le
ct

or
 N

et
w

or
k

B
ack-propagation

R
ew

ards F
eedback

Figure 3: Block diagram of ASAC in a time-series setting.

for another function f4 parameterized as a (different) fully connected network.
Note that ht depends on ht−1, st and x(st). Iterating this dependency we get that ht

depends on s≤t and x(s≤t).
Fig. 2 illustrates the entire structure of ASAC. Fig. 3 illustrates ASAC in the time-series

setting. The lower part of Fig. 3 depicts the selector network (et represents the output of fθ
at time stamp t) and the upper part of the Fig. 3 depicts the predictor network.

3.3. Training the networks

The selector and predictor networks are jointly and iteratively trained. First, the predictor
network (fφ) is trained to minimize the predictor loss L(φ) given the sensing decisions
made by the selector network (fθ). We investigated the effect of sampling multiple sensing
decisions for the same time-step and sample but found that this had very little effect on the
performance. As such, when we create a mini-batch to train the predictor network with, we
sample only 1 sensing decision for each sample in the mini-batch.
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The parameters of the predictor network are updated according to

φ← φ− β 1

nmb

nmb∑
i=1

Ti∑
t=1

(yt,i − fφ(x(s≤t,i), s≤t,i))
2

where nmb is the size of the mini-batch and β > 0 is the learning rate (specific to the
predictor network). Then, given a fixed predictor network, the selector network parameters
are updated according to

θ ← θ − α 1

nmb

nmb∑
i=1

Ti∑
t=1

t∑
τ=1

[[
lt,i(φ) + λcT st,i

]
×∇θ log fθ(x(s≤τ,i), s≤τ,i)

]
where α > 0 the learning rate (specific to the selector network). Pseudo-code can be found
in the Supplementary Materials.

3.3.1. Missing Data during Training

The loss we have derived lends itself naturally to missing data in the training set. By
inspecting Equations (11) and (12), we see that the gradient is made up of a sum over each
feature. During training, when “back-propagating” to the selector network, for features that
were selected by the network but were missing (and so their measurement can’t be given),
we do not back-propagate their loss. The selector network only back-propagates for both
not-selected features and selected-and-not-missing features.

4. Experiments

4.1. Data Description

We use two real-world medical datasets to evaluate the performance of ASAC against Deep
Sensing Yoon et al. (2018b) for various cost constraints.

ADNI dataset: The Alzheimers Disease Neuro-imaging Initiative (ADNI) study data
is a longitudinal survival dataset of per-visit measurements for 1,737 patients Petersen
et al. (2010). The data tracks disease progression through clinical measurements at 1/2-year
intervals, including quantitative biomarkers, cognitive tests, demographics, and risk factors.
For this dataset, the adverse event we predict is unstable state occurrence.

MIMIC-III dataset: The MIMIC-III dataset Johnson et al. (2016) has de-identified
electronic health records (EHR) from Beth Israel Deaconess Medical Center from 2001 to
2012. It was collected from two information systems (Philips CareVue Clinical and iMDsoft
MetaVision ICU) that have very different data structures. We only use data collected by
MetaVision (after 2008) for consistency. We extract 40 physiological data streams from
lab tests (20) and vital signs (20) that have the lowest missing rates (including heart rate,
respiratory rate, blood pressures). The number of patients is 23,153 and there are 5,143
sequences of length larger than 100 time steps with the longest being 1,487 time steps. For
this dataset, the adverse event we predict is death.
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Figure 4: Results on risk predictions on both ADNI and MIMIC-III dataset with various
cost constraints in terms of AUROC and AUPRC. X-axis is cost constraints (rate of selected
measurements). Y-axis is predictive performance.

4.2. Experimental Results

We evaluate the performance of ASAC against 3 benchmarks: (1) Deep Sensing Yoon et al.
(2018b), (2) Contextual Bandit Li et al. (2010); Agarwal et al. (2014), (3) Markovian Bandit
Gai et al. (2011). Furthermore, we also evaluate our model when replacing the actor-critic
methodology with TD learning Sutton (1988) and refer to this model as ASAC with TD
learning. We randomly divided the dataset into mutually exclusive training (80%) and
testing (20%) sets. We conducted 10 independent experiments with different training/testing
sets in each and we report the mean and standard deviation of the performance in the 10
experiments.

In Fig. 4, we plot AUROC and AUPRC against the average measurement rate of all
features (corresponding to all features being assigned the same cost). In MIMIC-III, we
ignore the cost when a missing feature is selected.

As can be seen in Fig. 4, ASAC (and ASAC with TD learning) consistently outperforms
all 3 benchmarks, achieving higher predictive power for the same cost across all costs.
Variance analysis can be found in the Supplementary Materials showing that ASAC achieves
statistically significant improvements over all 3 benchmarks. We see from Fig. 4(c)(d) that
ASAC is robust to missing data, where we note that around 40% of the data is missing in
the MIMIC-III dataset. ASAC and ASAC with TD learning achieve similar performances
indicating that the ASAC framework can be robustly combined with various Reinforcement
Learning frameworks to address the active sensing problem.

We can see a trade-off between accuracy and observational costs. In the ASAC framework,
we can either maximize the accuracy given constraints on observational costs or minimize
the cost given the desired accuracy constraint. As can be seen in the grid line in Figure 4;
the horizontal line represents fixing the accuracy, vertical line represents fixing the cost. We
illustrate these trade-off curves for ASAC in Figure 4, which shows that ASAC outperforms
state-of-the-art under both types of constraints.
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4.3. Analysis on ASAC with Synthetic datasets

We perform 3 synthetic experiments that we believe capture key attributes of an active sensing
method. In each simulation, the feature distribution is a 10 dimensional auto-regressive
Gaussian model over 10 time steps, i.e.

Xt = φ�Xt−1 + (1− φ)� Zt (13)

where � denotes element-wise multiplication, φ ∈ [0, 1]10 is a vector that determines the
dependency of each feature on the past (a higher φ corresponds to a larger dependency on
the past) and Zt is an independent Gaussian noise vector Zt ∼ N (0, I10).

4.3.1. Time dependency vs Measurement rate

In our first experiment, we investigate the effect of time dependency on measurement rate
of a variable. If we fix the cost and label-dependency of all variables to be the same, then
we would expect a variable with a large φ to be measured less frequently by a good active
sensing method (due to being more easily predicted from previous values).

To do this, we set the label, Yt according to

Yt = exp(−0.1× |
10∑
i=1

Xi
t |) + ε (14)

where ε ∼ N (0, 0.1). We set the cost for each variable to be the same, which we vary from 1
to 5. We set φ = (0, 0.1, ..., 0.9). The measurement rate (the selection probability) of each
variable is reported in Table 1, along with the overall RMSE for each experiment.

φi/Cost 1 2 3 4 5

0 (X1
t ) 1.00 1.00 1.00 0.46 0.38

0.1 (X2
t ) 1.00 1.00 1.00 0.44 0.36

0.2 (X3
t ) 1.00 1.00 1.00 0.30 0.26

0.3 (X4
t ) 1.00 1.00 1.00 0.25 0.12

0.4 (X5
t ) 1.00 1.00 1.00 0.22 0.10

0.5 (X6
t ) 1.00 0.98 0.23 0.21 0.07

0.6 (X7
t ) 1.00 0.94 0.13 0.10 0.05

0.7 (X8
t ) 1.00 0.93 0.07 0.03 0.01

0.8 (X9
t ) 0.92 0.41 0.03 0.02 0.0

0.9 (X10
t ) 0.45 0.11 0.01 0.01 0.0

RMSE 0.106 0.110 0.126 0.138 0.146

Table 1: Measurement rate of each feature when each feature has a different auto-regressive
coefficient.

As can be seen in Table 1, ASAC meets our expectations. Features with a low φ, are
regularly re-measured since past values are not as predictive of the present value, whereas
features with a high φ are measured less frequently. As cost increases, we also see a monotonic
decrease in the measurement rate of all variables.
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4.3.2. Cheaper but noisier features

In our second synthetic experiment, we investigate the effect of having cheaper, noisier
versions of our original 10 features. In this experiment we are interested in understanding
how well ASAC can trade-off between the cost and noise level of the noisy versions. This
setting has several real-world parallels; in medicine, cheap at-home tests (such as blood
pressure tests and home pregnancy tests) exist, but are less reliable (noisier) than the more
expensive state-of-the-art procedures that would be used in, say, a hospital setting.

To model this, we introduce 10 new noisy features

X̂t = Xt + δ (15)

where δ ∼ N (0, γ) with γ > 0 controlling the “noisiness”. In this experiment, we set the
label according to

Yt = exp(−|0.1X1
t + 0.2X2

t + 0.3X3
t + 0.4X4

t |) + ε (16)

where now we have set different magnitudes for the coefficients of the first 4 variables (and
the last 6 variables are now just there as pure noise). We would expect that as we increase
the cost of the true variables (or equivalently decrease the cost of the noisy variables), the
variables with lower importance (X1 and X2) will be the first ones to be “replaced” with
their noisy version, whereas it will take a higher cost for X4 to be replaced with X̂4.

We fix the cost of the original features to be 1, and investigate noise levels γ ∈
{0.2, 0.4, 0.6} and vary the cost of a noisy feature to be ĉ ∈ {0.1.0.2.0.5}. We set φi = 0.5
for all i. In Table 2 we report the measurement rate of each of the first 4 variables and their
noisy versions.

γ
Cost 1 0.1 1 0.2 1 0.5

Features Xt X̂t Xt X̂t Xt X̂t

0.2

X1 0.00 1.00 0.00 1.00 0.00 1.00
X2 0.00 1.00 0.00 1.00 0.29 0.70
X3 0.00 1.00 0.00 1.00 1.00 0.00
X4 0.00 1.00 0.00 1.00 1.00 0.00

0.4

X1 0.00 1.00 0.00 0.94 1.00 0.00
X2 0.00 1.00 0.30 0.65 1.00 0.00
X3 1.00 0.00 1.00 0.00 1.00 0.00
X4 1.00 0.00 1.00 0.00 1.00 0.00

0.6

X1 0.00 1.00 0.51 0.33 1.00 0.00
X2 0.75 0.25 1.00 0.00 1.00 0.00
X3 1.00 0.00 1.00 0.00 1.00 0.00
X4 1.00 0.00 1.00 0.00 1.00 0.00

Table 2: Measurement rate based on different cost and noise parameter γ for original feature
(Xt) and noisy feature (X̂t).
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As can be seen in Table 2, ASAC meets our expectations. As we move right and down
in the table (corresponding to an increasing cost for the noisy feature and increasing noise,
respectively), we see that true features are selected more frequently but that the noisy
versions for the less predictive features (X1 and X2) are sometimes selected even at higher
costs and noise levels. In particular, at (γ, ĉ) = (0.2, 0.2), only the noisy features are selected.
When γ is increased to 0.4, ASAC starts to select X3 and X4 all of the time, and X2 some
of the time, while the noisy version of X1 is always preferred. When we increase γ to 0.6,
the true version of X2 is the only version selected by ASAC and the true version of X1

finally becomes desirable enough to measure (sometimes).

4.3.3. Y dependent cost

η 0.1 0.3 0.5

Features Xt X̂t Xt X̂t Xt X̂t

Yt = 1 0.89 0.10 0.63 0.21 0.25 0.69
Yt = 0 0.13 0.81 0.14 0.80 0.12 0.78

Table 3: Measurement rate when the cost is different for Yt = 1 and Yt = 0.

In our final synthetic experiment, we allow for a cost that depends on Y . In our medical
example, this could correspond to the fact that when a patient is sick, it is more important
to be sure about it, than when a patient is well. In the presence of the cheaper-but-noisier
features from 4.3.2, we expect a worsening condition to create a switch in selections. While
a patient is healthy, we are happy to monitor the patient using the at-home tests, but when
a patients condition appears to be deteriorating, it becomes more important that accurate
measurements are made than cost being kept low.

We model this by incorporating the patients condition into the cost, setting the cost
when the patient is sick (Yt = 1) to be η ∈ [0, 1] times the cost when the patient is healthy
(Yt = 0)5. We investigate η ∈ {0.1, 0.3, 0.5}.

We generate the true features as before, now with φi = 0.9 for all i, and generate noisy
features as in 4.3.2 with γ = 0.4. We set the label to be binary according to

Yt =

{
1, w.p exp(−0.1× |

∑10
i=1X

i
t + ε− 2|)

0, w.p 1− exp(−0.1× |
∑10

i=1X
i
t + ε− 2|)

where “w.p” means “with probability”.
We see from Table 3 that ASAC is able to correctly identify that measuring the true

features is more important when Yt = 1, with measurement frequencies while Yt = 1 for
the true features being higher for all 3 values of η. When η = 0.5, which corresponds to
the cost being half as important while the patient is sick, we see that true features are
measured twice as frequently. As η decreases, and so accurate predictions become more
important, we see that ASAC selects true features more frequently. When η = 0.1, ASAC

5. By reducing the measurement cost, we are equivalently up-weighting the importance of accurately
predicting.
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selects true feature nearly 7 times more frequently while the patient is sick compared to
when they are not. ASAC can therefore be used to handle settings where the trade-off
between measurement cost and prediction accuracy varies according to the label (which is
often the case in medicine).

5. Conclusion

We propose a novel active sensing framework, called Active Sensing using Actor-Critic
models (ASAC), to address the important question of what and when to observe. This is
critical when observations are costly. We demonstrated through real-world and synthetic
experiments that the ASAC framework can significantly reduce the cost of observation with
only a small loss in predictive power. Using the MIMIC-III dataset we also demonstrated
that ASAC is robust to missing data.

We believe ASAC has wide-ranging applications, both in cost reduction but also for
things such as planning, in which patients can be told when they might expect to need their
next check-up and for what (i.e. personalized screening).
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Derivation of the gradient of L(θ)

∇θL(θ) =
T∑
t=1

∑
s≤t∈{0,1}d×t

∇θ[
t∏

τ=1

πθ(sτ |s≤τ−1)]
[
lt(φ) + λcT st

]

=

T∑
t=1

∑
s≤t∈{0,1}d×t

t∑
j=1

∇θπθ(sj |s≤j−1)
πθ(sj |s≤j−1)

× [

t∏
τ=1

πθ(sτ |s≤τ−1)]
[
lt(φ) + λcT st

]

=
T∑
t=1

∑
s≤t∈{0,1}d×t

t∑
j=1

∇θ log πθ(sj |s≤j−1)× [
t∏

τ=1

πθ(sτ |s≤τ−1)]
[
lt(φ) + λcT st

]

=
T∑
t=1

t∑
j=1

Es∼θ
[
∇θ log πθ(sj |s≤j−1)× [lt(φ) + λcT st]

]
Further Related Works

Parallels can be drawn between active sensing and attention mechanisms Bahdanau et al.
(2014); Vaswani et al. (2017), though like instance-wise variable selection, attention observes
the entire set of measurements and then decides which time points to “focus on”. In contrast
to instance-wise variable selection, attention is typically applied over time. Attention was
first introduced and has been more thoroughly explored as “soft” attention Bahdanau
et al. (2014); Vaswani et al. (2017) in which different time points are weighted (and not
hard-selected) according to their importance. Active sensing, on the other hand, is only
meaningful in a hard-selection setting (since weighting measurements still requires them
to be measured and therefore the cost is still incurred). Hard attention mechanisms do
exist Xu et al. (2015), but they share the characteristic found in both instance-wise variable
selection and soft attention in that all values must be observed before a selection is made.

In Yu et al. (2009), they propose a solution for active sensing using a Bayesian approach
with Gaussian processes. Data stream are modelled as Gaussian processes and therefore, the
complexity of the algorithm increases quadratically in the dimensionality of the data and
estimation accuracy decreases quickly with the number of dimensions. Alaa and van der
Schaar (2016) discuss the active sensing problem for a single data stream observed over time,
reducing the problem from what and when to observe to just when to observe. In Alaa and
van der Schaar (2016), they explicitly model the stream as a given stochastic process and
use the characteristics of the assumed process to learn optimal sampling times. This work
cannot be applied in the multi-stream setting we investigate in this paper.
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The information bottleneck Tishby et al. (2000) attempts to find a representation X̃
that is a function of X trading off between maximizing the mutual information between
X̃ and Y and minimizing the mutual information between X̃ and X. The first contrast
with the active sensing framework is that when constructing X̃, the entire features are
used, whereas in active sensing, the decision of what to select is only based on previously
selected features. Moreover, X̃ does not necessarily correspond to a subset of the features,
but can lie in an entirely different representation space. In ASAC, the selected features
are necessarily a subset of the features, and cannot just be any arbitrary mapping of them.
We also aim to minimize the cost of the selection, which is not the same as minimizing the
mutual information between X̃ and X.

Active Time- Multi- (Non-) Optimization
sensing series variate Causal

ASAC X X X Causal Joint
Yoon et al. (2018b) X X X Causal Individual

Qin et al. (2017) X X Non-causal Joint
Bahdanau et al. (2014) X X Non-causal Joint
Vaswani et al. (2017) X X Non-causal Joint

Yoon et al. (2019) X Non-causal Joint
Alaa and van der Schaar (2016) X X Causal Joint

Table 4: Comparison of related works. Causal refers to whether or not a selection depends
on future selections or not.
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Additional Real-world Experiments: Variance Analysis

Figure 5: Risk predictions on ADNI and MIMIC-III datasets. X-axis is cost constraints
(rate of selected measurements). Y-axis is predictive performance. Error bar represents the
confidence bounds of the performance.
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Pseudo-code

Algorithm 1 Pseudo-code of ASAC

Inputs: learning rates α, β > 0, mini-batch size nmb > 0, dataset D, hyper-parameter
λ ≥ 0
Initialize parameters θ, φ
while training loss has not converged do

Sample a mini-batch (x≤Ti,i,y≤Ti,i)
nmb
i=1 ∼ D

for i = 1, ..., nmb do
for t = 1, ..., Ti do

Calculate selection probability vector

et,i ← fθ(x(s≤t,i), s≤t,i)

Sample selection vector from et,i

st,i ∼ Ber(et,i)

Calculate loss lt,i(φ)

lt,i(φ)← (yt,i − fφ(x(s≤t,i), s≤t,i))
2

end for
end for
Update the predictor network parameters φ

φ← φ− β 1

nmb

nmb∑
i=1

Ti∑
t=1

(yt,i − fφ(x(s≤t,i), s≤t,i))
2

Update the selector network parameters θ

θ ← θ − α 1

nmb

nmb∑
i=1

Ti∑
t=1

t∑
τ=1

[[
lt,i(φ) + λcT st,i

]
×∇θ log fθ(x(s≤τ,i), s≤τ,i)

]
end while
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