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Abstract

We consider the stochastic linear (multi-
armed) contextual bandit problem with the
possibility of hidden simple multi-armed ban-
dit structure in which the rewards are inde-
pendent of the contextual information. Al-
gorithms that are designed solely for one of
the regimes are known to be sub-optimal for
their alternate regime. We design a single com-
putationally efficient algorithm that simulta-
neously obtains problem-dependent optimal
regret rates in the simple multi-armed bandit
regime and minimax optimal regret rates in
the linear contextual bandit regime, without
knowing a priori which of the two models gen-
erates the rewards. These results are proved
under the condition of stochasticity of contex-
tual information over multiple rounds. Our
results should be viewed as a step towards
principled data-dependent policy class selec-
tion for contextual bandits.

1 Introduction

The contextual bandit paradigm involves sequential
decision-making settings in which we repeatedly pick
one out of K actions (or “arms”) in the presence of
contextual side information. Algorithms for this prob-
lem usually involve policies that map the contextual
information to a chosen action, and the reward feed-
back is typically limited in the sense that it is only
obtained for the action that was chosen. The goal is
to maximize the total reward over several (n) rounds
of decision-making, and the performance of an online
algorithm is typically measured in terms of regret with
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respect to the best policy within some policy class Π
that is fixed a priori. Applications of this paradigm
include advertisement placement/web article recom-
mendation [Li+10; Aga+16], clinical trials and mobile
health-care [Woo79; TM17].

The contextual bandit problem can be thought of
as an online supervised learning problem (over policies
mapping contexts to actions) with limited information
feedback, and so the optimal regret bounds scale like
O(
√
Kn log |Π|), a natural measure of the sample com-

plexity of the policy class [Aue+02; MS09; Bey+11].
These are typically achieved by algorithms that are
inefficient (linear in the size of the policy class). Much
of the research in contextual bandits has tackled com-
putational efficiency [LZ08; Aga+14; RS16; SKS16;
Syr+16; FK18]: do there exist computationally efficient
algorithms that achieve the optimal regret guarantee?
A question that has received relatively less attention
involves the choice of policy class itself. Even for a
fixed regret-minimizing algorithm, the choice of policy
class is critical to maximize the overall reward of the
algorithm. As can be seen in applications of contextual
bandits models for article recommendation [Li+10], the
choice is often made in hindsight, and more complex
policy classes are used if the algorithm is run for more
rounds. A quantitative understanding of how to do this
is still lacking, and intuitively, we should expect the
optimal choice of policy class to not be static. Ideally,
we could design adaptive contextual bandit algorithms
that would initially use simple policies, and switch over
to more complex ones as more data is obtained.

Theoretically, what this means is that the regret
bounds derived for a contextual bandit algorithm are
only meaningful for rewards that are generated by a
policy within the policy class to which the algorithm is
tailored. If the rewards are derived from a “more com-
plex" policy outside the policy class, even the optimal
policy may neglect obvious patterns and obtain a very
low reward. If the rewards are derived from a policy
that is expressible by a much smaller class, the regret
that is accumulated is unnecessary. Let us view this
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through the lens of the simplest possible example: the
standard linear contextual bandits [Chu+11] paradigm,
where we can choose one out of K arms and rewards
are generated according to the process

gi,t = µi + 〈θ∗, αi,t〉+ ηi,t, for all i ∈ [K],

where µi represents a “bias” of arm i, θ∗ ∈ Rd rep-
resents the linear parameter of the model (which is
shared across all arms1), αi,t ∈ Rd represents the con-
textual information and {ηi,t}nt=1 represents noise in
the reward observations. It is well-known that vari-
ants of linear upper confidence bound algorithms like
LinUCB [Chu+11] and OFUL [APS11]2 suffer at most
Õ((
√
d+
√
K)
√
n) regret with respect to the optimal

linear policy. However, setting θ∗ = 0 yields the impor-
tant case of the reward distribution being independent
from the contextual information. Here, a simple upper
confidence bound algorithm like UCB [ACF02] would
yield the optimal O(log n) regret bound, which does
not depend on the dimension of the contexts d. Thus,
we pay substantial extra regret by using the algorithm
meant for linear contextual bandits on such instances
with much simpler structure. On the other hand, upper
confidence bounds that ignore the contextual informa-
tion will not guarantee any control on the policy regret:
it can even be linear. It is natural to desire a single
approach that adapts to the inherent complexity of
the reward-generating model and obtains the optimal
regret bound as if this complexity was known in hind-
sight. Specifically, this paper seeks an answer to the
following question:

Does there exist a single algorithm that simultane-
ously achieves the O(log n) regret rate on simple multi-
armed bandit instances and the Õ((

√
d+
√
K)
√
n) regret

rate on linear contextual bandit instances?

1.1 Our contributions

We answer the question of simultaneously optimal re-
gret rates in the multi-armed (“simple”) bandit regime
and the linear contextual (“complex”) bandit regime
affirmatively under the condition that the contexts are
generated from a stochastic process that yields covari-
ates that are not ill-conditioned. Our algorithm, OSOM

1This is the model that was described in [Chu+11]. It is
worth noting that more complex variants of this model with
a separate θ∗i for every i ∈ [K] have also been empirically
evaluated [Li+10].

2Guarantees for OFUL were established under slightly
different constraints on θ∗ and the context vectors which led
to a regret bound of Õ((d+K)

√
n). We show in Lemma 6 that

a slight variant of OFUL has its regret bounded by Õ((
√
d+√

K)
√
n) in our setting. The regret bound scales with

√
d+√

K in our setting as the linear policy has dimension d+K.

(for Optimistic Selection of Models), essentially exploits
the best policy (simply the best arm) that is learned
under the assumption of the simple reward model -
while conducting a sequential statistical test for the
presence of additional complexity in the model, and
particularly whether ignoring this additional complexity
would lead to substantial regret. This is a simple sta-
tistical principle that could conceivably be generalized
to arbitrary policy classes that are nested : we will see
that the OSOM algorithm critically exploits the nested
structure of the simple bandit model within the linear
contextual model.

1.2 Related work

The contextual bandit paradigm was first considered
by Woodroofe (1979) to model clinical trials. Since
then it has been studied intensely both theoretically
and empirically in many different application areas
under many different pseudonyms. We point the reader
to [TM17] for an extensive survey of the contextual
bandits history and literature.

Treating policies as experts (EXP4 [Aue+02]) with
careful control on the exploration distribution led to the
optimal regret bounds of O(

√
Kn log |Π|) in a number

of settings. From an efficiency point of view (where effi-
ciency is defined with respect to an arg-max-oracle that
is able to compute the best greedy policy in hindsight),
the first approach conceived was the epoch-greedy ap-
proach [LZ08], that suffers a sub-optimal dependence
of n2/3 in the regret. More recently, “randomized-UCB"
style approaches [Aga+14] have been conceived that
retain the optimal regret guarantee with Õ(

√
n) calls

to the arg-max-oracle. This question of computational
efficiency has generated a lot of research interest [RS16;
SKS16; Syr+16; FK18]. The problem of policy class
selection itself has received less attention in the re-
search community, and how this is done in practice in
a statistically sound manner remains unclear. An appli-
cation of linear contextual bandits was to personalized
article recommendation using hand-crafted features of
users [Li+10]: two classes of linear contextual bandit
models with varying levels of complexity were compared
to simple (multi-armed) bandit algorithms in terms of
overall reward (which in this application represented
the click-through rate of ads). A striking observation
was that the more complex models won out when the
algorithm was run for a longer period of time (eg: 1
day as opposed to half a day). Surveys on contextual
bandits as applied to mobile health-care [TM17] have
expressed a desire for algorithms that adapt their choice
of policy class according to the amount of information
they have received (e.g. the number of rounds). At a
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high level, we seek a theoretically principled way of
doing this.

Perhaps the most relevant work to online policy
class selection involves significant attempts to corral a
band of M base bandit algorithms into a meta-bandit
framework [Aga+17]. The idea is to bound the regret
of the meta-algorithm in terms of the regret of the best
base algorithm in hindsight. (This is clearly useful for
policy class selection that we study here – by corralling
together an algorithm designed for the linear model and
one for the simple multi-armed bandits model.) The
Corral framework is very general and can be applied
to any set of base algorithms, whether efficient or not.
This generality is attractive, but it is not the optimal
choice of computationally efficient algorithm for the
multi-armed-vs-linear-contextual bandit problem for a
couple of reasons.

1. It is not clear what (if any) choice of base algo-
rithms would lead to a computationally efficient
algorithm that is also statistically optimal in a
minimax sense simultaneously for both problems.

2. The meta-algorithm framework uses an experts
algorithm (in particular, mirror descent with log-
barrier regularizer and importance weighting on
the base algorithms) to choose which base algo-
rithm to play in each round. Thus, it is impossi-
ble to expect the instance-optimal regret rate of
O(log n) on the simple bandit instance. More gen-
erally, the Corral framework will not yield instance-
optimal rates on any policy class3.

The Corral framework highlights the principal diffi-
culty in contextual bandit model selection that can be
thought of as an even finer exploration-exploitation
tradeoff: algorithms (designed for particular model
classes) that fall out of favor in initial rounds could
be picked very rarely and the information required to
truly perform model selection may be absent even after
many rounds of play. CORRAL tackles this difficulty
using the log-barrier regularizer for the meta-algorithm
as a natural form of heightened exploration [Fos+16],
together with clever learning rate schedules.

Closely related is the concurrent work of [FKL19]
which tackles the problem of selecting among a hier-
archy of linear classes with growing dimension. They
work with stochasticity assumptions on the contexts
that are weaker than the assumptions that we make

3On our much simpler instance of bandit-vs-linear-
bandit, we do obtain instance-optimal rates for at least
the simple bandit model.

in our paper. However, they are only able to estab-
lish a sub-optimal bound on the regret of Õ(d

1/3
∗ n2/3)

(where d∗ is dimension of the optimal linear policy)
as opposed to the minimax optimal regret rates (that
scale with n1/2) which we establish in our paper.

Our stylistic approach to the model selection problem
is a little different, as we focus on the much more
specific case of 2 models: the simple multi-armed bandit
model and the linear contextual bandit model. We
encounter a similar difficulty and obtain striking clarity
on the extent of this difficulty owing to the simplicity
of the models. On the other hand, we observe that
commonly encountered sequences of contexts can help
us carefully navigate the finer exploration-exploitation
tradeoff when the model classes are nested.

Our algorithm (OSOM) utilizes a simple “best-of-
both-worlds” principle: exploit the possible simple re-
ward structure in the model until (unless) there is sig-
nificant statistical evidence for the presence of complex
reward structure that would incur substantial complex
policy regret if not exploited. This algorithmic frame-
work is inspired by the initial “best-of-both-worlds” re-
sults for stochastic and adversarial multi-armed bandits;
in particular, the “Stochastic and Adversarial Optimal”
(SAO) algorithm [BS12] (although the details of the
phases of the algorithm and the statistical test are very
different). In that framework, instances that are not
stochastic (and could be thought of as “adversarial”)
are not always detected as such by the test. The test is
designed in an elegant manner such that the regret is
optimally bounded on instances that are not detected
as adversarial, even if an algorithm meant for stochas-
tic rewards is used. Our test to distinguish between
simple and complex instances shares this flavor – in
fact, all theoretically complex instances (θ∗ 6= 0) are
not detected as such.

Also related are results on contextual bandits with
similarity information on the contexts, which auto-
matically encodes a potentially easier learning prob-
lem [Sli14]. The main novelty in these results involves
adapting to such similarity online.

Technically, our proofs leverage the most recent set
of theoretical results on regret bounds for linear ban-
dits [APS11], which can easily be applied to the lin-
ear contextual bandit model, and sophisticated self-
normalized concentration bounds for our estimates of
both the bias terms µi and the parameter vector θ∗.
For the latter, we find that the Matrix Freedman in-
equality [Oli09; Tro11] is particularly useful.
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1.3 Problem statement

At the beginning of each round t ∈ [n], the learner is
required to choose one of K arms and gets a reward
associated with that arm. To help make this choice
the learner is handed a context vector at every round
αt = [α1,t, . . . , αK,t] ∈ Rd×K (this is essentially a con-
catenation of K vectors, each of dimension equal to d).
Let gi,t denote the reward of arm i and let At ∈ [K]
denote the choice of the learner in round t. The re-
wards could be arriving from one of two models that is
described below:

Simple Model: Under the simple multi-armed ban-
dit model, the mean rewards of K arms are fixed and
are not a function of the contexts. That is, at each
round

gi,t = µi + ηi,t, ∀i ∈ [K]

where µi ∈ [−1, 1], {ηi,t}Ki=1 are identical, independent,
zero mean, σ-sub-Gaussian noise (defined below). Let
the arm with the highest reward have mean µ∗ and be
indexed by i∗. The benchmark that the algorithm hopes
to compete against is the pseudo-regret (henceforth
regret for brevity),

Rsn := nµ∗ −
n∑
s=1

µAs .

Define the gap as the difference in the mean rewards
of the best arm compared to the mean reward of the
ith arm, that is, ∆i := µ∗ − µi. Previous literature
on multi-armed bandits [LR85] tells us that the best
one can hope to do in this setting in the worst case
is E [Rsn] = Ω(

∑
i log(n)/∆i). Several algorithms like

UCB [ACF02] and MOSS [AB10; DP16] achieve this
lower bound up to logarithmic (and constant) factors.

Complex Model: In this model the mean reward
of each arm is a linear function of the contexts (lin-
ear contextual bandits). We work with the following
stochastic assumptions on the context vectors. Each of
these contexts vectors αi,t ∈ Bd2(1) and are drawn inde-
pendent of the past from a distribution such that αi,t
is independent of {αj,t}j 6=i and, ∀i ∈ [K] and ∀t ∈ [n],

Et−1 [αi,t] := E
[
αi,t

∣∣∣{ηj,s, αj,s}j∈[K],s∈[t−1]

]
= 0,

Et−1

[
αi,tα

>
i,t

]
:= E

[
αi,tα

>
i,t

∣∣∣{ηj,s, αj,s}j∈[K],s∈[t−1]

]
= Σc � ρmin · I. (1)

The conditional mean of the context vectors are 0 and
the co-variance matrix has its minimum eigenvalue
bounded below by ρmin. Assumptions similar to the

one above have also been made in past work on linear
contextual bandits [BBK17; Kan+18; Rag+18].

It is important to note here that algorithms designed
solely for the linear contextual bandit problem, like
OFUL, work for stochastic conditional rewards regard-
less of the sequence of contexts, which can be chosen
adversarially. However, our goal here is to optimally
adapt to simpler model structure while retaining the
contextual bandit regret guarantee. Currently designed
algorithms tailored to the linear contextual bandits
problem, like OFUL, will fail at this objective even
under the stochastic assumption. Our stochastic as-
sumption essentially constitutes a sufficient condition
for optimal model selection in linear contextual ban-
dits. Whether it is necessary, that is, whether model
selection is possible for the case of adversarial contexts,
is an intriguing question left to future work.

In this complex model, we assume there exists
an underlying linear predictor θ∗ ∈ Rd and biases
[µ1, . . . , µK ] ∈ RK of the K arms, such that the mean
rewards of the arms are affine functions of the contexts,
that is,

gi,t = µi + 〈θ∗, αi,t〉+ ηi,t.

We impose compactness constraints on the parame-
ters: in particular, we have µi ∈ [−1, 1], θ∗ ∈ Bd2(1).
Further, the noise {ηi,t}nt=1 are identical, independent,
zero mean, and σ-sub-Gaussian. Clearly, simple model
instances (which are parameterized only by the biases
[µ1, . . . , µK ] ∈ RK) can be expressed as complex model
instances by setting θ∗ = 0.

At each round define κt =
argmaxκ∈{1,...,K}Ki=1

{µκ + 〈θ∗, ακ,t〉} to be the
best arm at round t. Here, we define pseudo-regret
with respect to the optimal policy under the generative
linear model:

Rcn :=

n∑
s=1

[µκs + 〈θ∗, ακs,s〉 − µAs − 〈θ∗, αAs,s〉] .

As noted above, past literature on this problem yielded
algorithms like LinUCB [Chu+11] and OFUL [APS11]
that only suffer from the minimax regret of Õ((

√
d+√

K)
√
n). As we will see in the simulations, these algo-

rithms actually incur the dependence on the dimension
in the regret, even for simple instances.

Notation and definitions. Given a vector v, let vi
denote its ith component. For a vector we let ‖v‖p for
p ∈ [1,∞] denote the `p-norm. Given a matrix M we
denote it’s operator norm by ‖M‖op, and use ‖M‖F to
denote its Frobenius norm. Given a symmetric matrix S
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let γmax(S) and γmin(S) denote its largest and smallest
eigenvalues. Given a positive definite matrix V we
define the norm of a vector w with respect to matrix
V as ‖w‖2V = w>V w. Let {Ft}∞t=1 be a filtration. A
stochastic process {ξt}∞t=1 where ξt is measurable with
respect to Ft−1 is defined to be conditionally σ-sub-
Gaussian for some σ > 0 if, for all λ ∈ R, we have,
E
[
eλξt

∣∣Ft−1

]
≤ exp(λ2σ2/2).

2 Construction of Confidence Sets

In our algorithm, which is presented subsequently at
the end of round t, we build an upper confidence es-
timate for each arm. Let Ti(t) :=

∑t
s=1 I [As = i] be

the number of times arm i was pulled and ḡi,t :=∑t
s=1 gi,sI [As = i] /Ti(t) be the average reward of that

arm at the end of round t. For each arm we define the
upper confidence estimate as follows,

µ̃i,t := ḡi,t (2)

+ σ

[
1 + Ti(t)

T 2
i (t)

(
1 + 2 log

(
K(1 + Ti(t))

1
2

δ

))] 1
2

.

Lemma 6 in [APS11] (restated below as Lemma 1 here)
uses a refined self-normalized martingale concentration
inequality to bound |µi − ḡi,t| across all arms and all
rounds.
Lemma 1. Under the simple model, with probability
at least 1− δ we have, ∀i ∈ {1, . . . ,K},∀t ≥ 0,

|µi − ḡi,t|

≤ σ

[
1 + Ti(t)

T 2
i (t)

(
1 + 2 log

(
K(1 + Ti(t))

1
2

δ

))] 1
2

.

For any round t > K, let θ̂t be the `2-regularized
least-squares estimate of θ∗ defined below.

θ̂t =
(
α>K+1:tαK+1:t + I

)−1
α>K+1:tGK+1:t, (3)

where αK+1:t is the matrix whose rows are the con-
text vectors selected from round K + 1 up until round
t: α>AK+1,K+1, . . . , α

>
At,t

and GK+1:t = [gAK+1,K+1 −
µ̃AK+1,K , . . . , gAt,t − µ̃At,t−1]>. Here we are regressing
on the rewards seen to estimate θ∗, while using the
bias estimates µ̃i,t−1 obtained by our upper confidence
estimates defined in Eq. (2).
Lemma 2. Let θ̂t be defined as in Eq. (3). Then, with
probability at least 1− 3δ we have that for all t > K,
θ∗ lies in the set

Cct :=
{
θ ∈ Rd : ‖θ − θ̂t‖2 ≤ Kδ(t, n)

}
, (4)

where Kδ(t, n) = Õ(σ
√
d · n) is defined in Eq. (8d).

We prove this lemma in Appendix B.

Algorithm 1: OSOM (Optimistic Selection Of
Models)

1 for t = 1, . . . ,K do
2 Play arm t and receive reward gt,t,

(Play each arm at least once.)
3 for t = K + 1, . . . , n do
4 Current Model← ‘Simple’
5 Simple Model Estimate:

it ∈ argmax
i∈{1,...,K}

{µ̃i,t−1} (5)

6 Complex Model Estimate:

jt, θ̃t ∈ argmax
i∈{1,...,K},θ∈Cct−1

{µ̃i,t−1 + 〈αi,t, θ〉} ,

(6)

7 where Cct−1 defined in Eq. (4).
8 if Current Model = ‘Simple’ and t > K + 1

then
9 Check the condition:

t−1∑
s=K+1

{
µ̃js,s−1 + 〈αjs,s, θ̃s〉 − gis,s

}
≤ Wδ(t, n), (7)

10 where Wδ(t, n) defined in Eq. (8e).
11 If violated then:

Current Model← ‘Complex’.
12 If Current Model = ‘Simple’: Play arm it and

receive reward git,t.
13 Else if Current Model = ‘Complex’: Play arm

jt and receive gjt,t.
14 Update {µ̃i,t}Ki=1 and Cct .

3 Algorithm and main result

The intuition behind Algorithm 1 is straightforward.
The algorithm starts off by using the simple model
estimate of the recommended action, that is, it; until
it has reason to believe that there is a benefit from
switching to the complex model estimates. If the re-
wards are truly coming from the simple model, or from
a complex model that is well approximated by a sim-
ple multi-armed bandit model, then Condition 7 will
not be violated and the regret shall continue to be
bounded under either model. However, if Condition 7
is violated then algorithm switches to the complex es-
timates – jt for the remaining rounds. The condition
is designed using the function Wδ(t, n) which is of the
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order Õ(σ(
√
d+
√
K)
√
t). This corresponds to the ad-

ditional regret incurred when we attempt to estimate
the extra parameter – θ̃t ∈ Rd.

At each round Condition 7 compares the algorithm’s
estimate for the cumulative reward that could be ob-
tained by playing according to the complex estimates
–
∑t−1
s=K+1 µ̃js,s−1 + 〈αjs,s, θ̃s〉 – with the actual cumu-

lative rewards seen so far
∑t−1
s=K+1 gis,s by sticking to

the simple estimates.

Under the simple model, given our construction of
the confidence sets the term

∑t−1
s=K+1〈αjs,s, θ̃s〉 will

be bounded by Õ((
√
d +

√
K)
√
t) as the true un-

derlying vector θ∗ = 0. While the remaining terms∑t−1
s=K+1 µ̃js,s−1 − gis,s shall be at most Õ(

√
Kt); as

the simple estimates (is) shall be picking out the best
arm quite often under the simple model. In fact under
this model we show in Lemma 4 that Condition 7 is
not violated with high probability and the algorithm
shall continue using simple estimates throughout its
entire run.

On the other hand, under the complex model, we
switch to the complex estimates only if the difference
between the algorithm’s estimate for the cumulative
reward that could be obtained by playing according to
the complex estimates –

∑t−1
s=K+1 µ̃js,s−1 + 〈αjs,s, θ̃s〉

– exceeds the rewards seen so far
∑t−1
s=K+1 gis,s by

Õ((
√
d +
√
K)
√
t). That is, only when the algorithm

starts to suffer a regret that is equal to the minimax
rate of regret. While instead if this condition is not vi-
olated under the complex model, that is, our estimated
cumulative reward for switching to the complex model
is close to the rewards seen far. Then we show that the
regret under the complex model is small even by using
simple estimates. We do this in Lemma 5.

By combining the arguments outlined above our main
theorem optimally bounds the regret of OSOM under
either of the two reward-generating models.

Theorem 3. With probability at least 1−9δ, we obtain
the following upper bounds on regret for the algorithm
OSOM (Algorithm 1):

(a) Under the Simple Model:

Rsn ≤ σ ·
∑

i:∆i>0

[
3∆i +

16

∆i
log

(
2K

∆iδ

)]
.

(b) Under the Complex Model:

Rcn ≤ 4(K + 1) + 4Wδ(n, n) = Õ
{
σ(
√
d+
√
K)
√
n
}
,

where Wδ(n, n) is defined in Eq. (8e).

Notice that Theorem 3 establishes regret bounds
on the algorithm OSOM which are minimax optimal
under both simple model and the complex model up to
logarithmic factors. In fact, under the simple model we
are able to obtain problem-dependent regret rates.

In the complex model we match the minimax rates
obtained by OFUL (which holds for adversarial contexts
as well). A natural question is if it is also possible to
obtain problem dependent rates in the complex model
simultaneously. For example under the complex model
by using OFUL it is possible to show that regret grows
poly-logarithmically with n: Rcn ≤ Õ

(
(d+K)2/∆`

)
,

where ∆` is an appropriately defined gap in the linear
model.

Proof and key lemmas. We present the key lem-
mas below (see a proof of these lemmas in Appendix
A) and use them to prove our main theorem. To prove
Theorem 3, we need to show that the regret of OSOM
is bounded under either underlying model. In Lemma
4 we demonstrate that whenever the rewards are gener-
ated under the simple model, Condition 7 is not violated
with high probability.

Lemma 4. Assume that rewards are generated under
the simple model. Then, with probability at least 1− 5δ,
we have for all t ∈ {K + 2, . . . , n}:

t−1∑
s=K+1

[
µ̃js,s−1 + 〈αjs,s, θ̃s〉

]
−

t−1∑
s=K+1

gis,s

<Wδ(t− 1, n).

This ensures that when the data is generated from
the simple model, we have that the Boolean variable
Current Model = ‘Simple’ throughout the run of the
algorithm. Thus, the regret is equal to the regret in-
curred by the UCB algorithm, which is meant for simple
model instances.

On the other hand, when the data is generated ac-
cording to the complex model, we first demonstrate
in Lemma 5 that the regret remains appropriately
bounded if Condition 7 is not violated.

Lemma 5. For all t ∈ {K + 1, . . . , n}. Let Condition
7 not be violated up until round t+ 1, that is,

t∑
s=K+1

{
µ̃js,s−1 + 〈αjs,s, θ̃s〉 − gis,s

}
≤ Wδ(t, n).

Then, we have Rct ≤ 4K + 2Wδ(t, n), with probability
at least 1− 5δ.

While when the data is generated according to the
complex model and if the condition does get violated
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at a certain round, we switch to the estimates of the
complex model, that is, jt. This corresponds to a variant
of the algorithm OFUL, which is meant for complex
instances. Thus, the regret remains bounded in the
subsequent rounds under this event as well (formally
proved in Lemma 6 in Appendix A). Combining the
results of these three lemmas yields the regret bound.

Proof [of Theorem 3] Part (a): We have established
in Lemma 4 that Condition 7 is not violated with
probability at least 1 − 5δ under the simple model.
Conditioned on this event, OSOM plays according to
the simple model estimate, it, for all rounds. Invoking
Theorem 7 in [APS11] gives us that with probability at
least 1− δ, Rsn ≤

∑
i:∆i>0 3∆i + (16/∆i) log(2K/∆iδ).

Applying the union bound over these two events gives
this regret bound with probability at least 1− 6δ.

Part (b): One out the two disjoint events are possi-
ble under the complex model.

Case 1: In this event Condition 7 is never violated
throughout the run of the algorithm. Then by Lemma 5
we have

Rcn ≤ 4K + 2Wδ(n, n)

with probability at least 1− 5δ.

Case 2: The other event is when Condition 7 is
violated in round τ∗ < n. We know by Lemma 5:

Rcτ∗−2 ≤ 4K + 2Wδ(n, n)

with probability at least 1− 5δ. Also, by Lemma 6:

Rcτ∗:n :=

t∑
s=τ∗

[µκs + 〈θ∗, ακs,s〉 − µAs − 〈θ∗, αAs,s〉]

≤ 2Wδ(n, n)

with probability at least 1− 4δ. We can decompose the
cumulative regret up to round n as follows:

Rcn ≤ Rcτ∗−1 +Rcτ∗:n + 4,

where Rcτ∗:n denotes the regret of the algorithm
starting from round τ∗ up to round n and the 4
appears as it is the maximum regret that could
be incurred in round τ∗ by the algorithm under
the complex model. By taking a union bound and
using the decomposition of the regret above, we get
Rcn ≤ 4(K + 1) + 4Wδ(n, n), with probability at least
1− 9δ.

4 Experiments

To experimentally corroborate our claims, we ran our
model-selecting algorithm, OSOM, on both simple and

Figure 1. Experiments on synthetic data with K =
5, d = 50 and n = 300. The three algorithms that we
ran were OSOM, UCB and OFUL.

complex instances. We compared its performance to
that of UCB (which is optimal up to logarithmic factors
under the simple model) and OFUL (which is minimax
optimal under the complex model). Complete experi-
mental details are provided in Appendix D.

When data is generated according to the simple
model (θ∗ = 0), we see that OSOM and UCB suffer
regret that is sub-linear, and is significantly lower than
the regret suffered by OFUL whose regret is also sub-
linear but pays for the additional variance of estimating
a more complex model. While when the data is gener-
ated from the complex model (‖θ∗‖2 = 1) the regret
suffered by UCB is linear as it does not identify and
estimate the linear structure of the mean rewards. Here,
the regret suffered by both OFUL and OSOM is sub-
linear and almost identical.

5 Discussion

We were able to successfully obtain minimax-optimal
rates in both regimes under suitable stochastic condi-
tions on the contextual information. This is a natural
step to understanding data-dependent model selection
for contextual bandits. A number of exciting directions
remain open.
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• We relied on the linear structure of the rewards to
obtain our regret bounds. It is conceivable that this
linearity is not essential, and that these algorithmic
ideas could be generalized to arbitrary nested models.

• Our guarantees here are under a stochastic as-
sumption on both the rewards and the distribution
of the contexts. It would be interesting to under-
stand whether these assumptions can be loosened,
or if there exist fundamental limitations to model-

selecting under bandit feedback in adversarial set-
tings.

Useful functions

These functions arise by applying the concen-
tration inequalities on terms that appear while
controlling the regret. It is straightforward to
verify that Wδ(t, n) = Õ

(
σ(
√
d+
√
K)
√
t
)
.

τmin(δ, n) :=

(
16

ρ2
min

+
8

3ρmin

)
log

(
2dn

δ

)
. (8a)

Υδ(t, n) :=

(
20

3
+

10σ

3

[
1 + 2 log

(
2Kn

δ

)] 1
2

)[
log

(
2dn

δ

)
+

√
t log

(
2dn

δ

)
+ log2

(
2dn

δ

)]
. (8b)

Mδ(t) :=

√
2σ2

(
d

2
log

(
1 +

t

d

)
+ log

(
1

δ

))
+ 1. (8c)

Kδ(t, n) :=

Mδ(t) + Υδ(t, n), if K < t ≤ K + τmin(δ, n),
Mδ(t)√

1+ρmin·(t−K)/2
+ Υδ(t,n)

1+ρmin·(t−K)/2 , if K + τmin(δ, n) < t.
(8d)

Wδ(t, n) := 2

t∑
s=K+1

Kδ(s− 1, n) + σ

√
1 + t

2
log

(
1

δ

)
+

[
2σ

√(
1 + 2 log

(
Kt1/2

δ

))]√
Kt. (8e)

Acknowledgements

The authors would like to thank Kush Bhatia, Akshay
Krishnamurthy and Anant Sahai for helpful discus-
sions. We gratefully acknowledge the support of the
NSF through grants AST-1444078, IIS-1619362 and
ECCS-1343398, and to ML4Wireless center member
companies. This work was done in part while the au-
thors were visiting the Simons Institute for the Theory
of Computing.

References

[AB10] Jean-Yves Audibert and Sébastien Bubeck.
“Regret bounds and minimax policies under
partial monitoring”. In: Journal of Machine
Learning Research 11.Oct (2010), pp. 2785–
2836 (Cited on page 4).

[ACF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul
Fischer. “Finite-time analysis of the multi-
armed bandit problem”. In: Machine Learn-
ing 47.2-3 (2002), pp. 235–256 (Cited on
pages 2, 4).

[Aga+14] Alekh Agarwal, Daniel Hsu, Satyen Kale,
John Langford, Lihong Li, and Robert
Schapire. “Taming the monster: A fast and
simple algorithm for contextual bandits”.

In: Proceedings of the International Con-
ference on Machine Learning. 2014 (Cited
on pages 1, 2).

[Aga+16] Alekh Agarwal, Sarah Bird, Markus Cozow-
icz, Luong Hoang, John Langford, Stephen
Lee, Jiaji Li, Dan Melamed, Gal Oshri,
Oswaldo Ribas, Siddhartha Sen, and Alex
Slivkins. “Making contextual decisions with
low technical debt”. In: arXiv preprint
arXiv:1606.03966 (2016) (Cited on page 1).

[Aga+17] Alekh Agarwal, Haipeng Luo, Behnam
Neyshabur, and Robert Schapire. “Cor-
ralling a Band of Bandit Algorithms”. In:
Proceedings of the Conference on Learning
Theory. 2017 (Cited on page 3).

[APS11] Yasin Abbasi-Yadkori, Dávid Pál, and
Csaba Szepesvári. “Improved algorithms
for linear stochastic bandits”. In: Proceed-
ings of the Advances in Neural Information
Processing Systems. 2011 (Cited on pages 2–
5, 7, 19).

[Aue+02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Fre-
und, and Robert E Schapire. “The non-
stochastic multi-armed bandit problem”. In:
SIAM Journal on Computing 32.1 (2002),
pp. 48–77 (Cited on pages 1, 2).



Niladri S. Chatterji, Vidya Muthukumar, Peter L. Bartlett

[BBK17] Hamsa Bastani, Mohsen Bayati, and
Khashayar Khosravi. “Mostly exploration-
free algorithms for contextual bandits”. In:
arXiv preprint arXiv:1704.09011 (2017)
(Cited on page 4).

[Bey+11] Alina Beygelzimer, John Langford, Lihong
Li, Lev Reyzin, and Robert E Schapire.
“Contextual bandit algorithms with super-
vised learning guarantees”. In: Proceedings
of the International Conference on Artifi-
cial Intelligence and Statistics. 2011 (Cited
on page 1).

[BS12] Sébastien Bubeck and Aleksandrs Slivkins.
“The best of both worlds: Stochastic and
adversarial bandits”. In: Proceedings of
the Conference on Learning Theory. 2012
(Cited on page 3).

[Chu+11] Wei Chu, Lihong Li, Lev Reyzin, and
Robert Schapire. “Contextual bandits with
linear payoff functions”. In: Proceedings of
the International Conference on Artificial
Intelligence and Statistics. 2011 (Cited on
pages 2, 4).

[DP16] Rémy Degenne and Vianney Perchet. “Any-
time optimal algorithms in stochastic multi-
armed bandits”. In: Proceedings of the In-
ternational Conference on Machine Learn-
ing. 2016 (Cited on page 4).

[FK18] Dylan Foster and Akshay Krishnamurthy.
“Contextual bandits with surrogate losses:
Margin bounds and efficient algorithms”.
In: Proceedings of the Advances in Neu-
ral Information Processing Systems. 2018
(Cited on pages 1, 2).

[FKL19] Dylan Foster, Akshay Krishnamurthy, and
Haipeng Luo. “Model selection for contex-
tual bandits”. In: Proceedings of the Ad-
vances in Neural Information Processing
Systems (2019) (Cited on page 3).

[Fos+16] Dylan Foster, Zhiyuan Li, Thodoris Lyk-
ouris, Karthik Sridharan, and Eva Tardos.
“Learning in games: Robustness of fast con-
vergence”. In: Proceedings of the Advances
in Neural Information Processing Systems.
2016 (Cited on page 3).

[Kan+18] Sampath Kannan, Jamie Morgenstern,
Aaron Roth, Bo Waggoner, and Zhiwei
Steven Wu. “A smoothed analysis of the
greedy algorithm for the linear contextual
bandit problem”. In: Proceedings of the Ad-
vances in Neural Information Processing
Systems. 2018 (Cited on page 4).

[Li+10] Lihong Li, Wei Chu, John Langford, and
Robert E Schapire. “A contextual-bandit
approach to personalized news article rec-
ommendation”. In: Proceedings of the In-
ternational conference on World Wide Web.
ACM. 2010 (Cited on pages 1, 2).

[LR85] T.L Lai and Herbert Robbins. “Asymptoti-
cally Efficient Adaptive Allocation Rules”.
In: Advances in Applied Mathematics 6.1
(1985), pp. 4–22 (Cited on page 4).

[LS19] Tor Lattimore and Csaba Szepesvári. Ban-
dit Algorithms. Cambridge University Press
(preprint), 2019 (Cited on page 19).

[LZ08] John Langford and Tong Zhang. “The
epoch-greedy algorithm for multi-armed
bandits with side information”. In: Proceed-
ings of the Advances in Neural Information
Processing Systems. 2008 (Cited on pages 1,
2).

[MS09] H Brendan McMahan and Matthew
Streeter. “Tighter bounds for multi-armed
bandits with expert advice”. In: (2009)
(Cited on page 1).

[Oli09] Roberto Imbuzeiro Oliveira. “Concentra-
tion of the adjacency matrix and of
the Laplacian in random graphs with
independent edges”. In: arXiv preprint
arXiv:0911.0600 (2009) (Cited on page 3).

[Rag+18] Manish Raghavan, Aleksandrs Slivkins,
Jennifer Vaughan Wortman, and Zhiwei
Steven Wu. “The Externalities of Explo-
ration and How Data Diversity Helps Ex-
ploitation”. In: Proceedings of the Confer-
ence On Learning Theory. 2018 (Cited on
page 4).

[RS16] Alexander Rakhlin and Karthik Sridharan.
“BISTRO: An efficient relaxation-based
method for contextual bandits”. In: Pro-
ceedings of the International Conference on
Machine Learning. 2016 (Cited on pages 1,
2).

[SKS16] Vasilis Syrgkanis, Akshay Krishnamurthy,
and Robert Schapire. “Efficient algorithms
for adversarial contextual learning”. In:
Proceedings of the International Confer-
ence on Machine Learning. 2016 (Cited on
pages 1, 2).

[Sli14] Aleksandrs Slivkins. “Contextual bandits
with similarity information”. In: Journal
of Machine Learning Research 15.1 (2014),
pp. 2533–2568 (Cited on page 3).



Osom: A simultaneously optimal algorithm for multi-armed and linear contextual bandits

[Syr+16] Vasilis Syrgkanis, Haipeng Luo, Akshay Kr-
ishnamurthy, and Robert Schapire. “Im-
proved regret bounds for oracle-based ad-
versarial contextual bandits”. In: Proceed-
ings of the Advances in Neural Information
Processing Systems. 2016 (Cited on pages 1,
2).

[TM17] Ambuj Tewari and Susan A Murphy. “From
ads to interventions: Contextual bandits in
mobile health”. In: Mobile Health. Springer,
2017, pp. 495–517 (Cited on pages 1, 2).

[Tro11] Joel Tropp. “Freedman’s inequality for ma-
trix martingales”. In: Electronic Communi-
cations in Probability 16 (2011), pp. 262–
270 (Cited on pages 3, 19).

[Woo79] Michael Woodroofe. “A one-armed bandit
problem with a concomitant variable”. In:
Journal of the American Statistical Asso-
ciation 74.368 (1979), pp. 799–806 (Cited
on pages 1, 2).


