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Abstract

Summaries generated from medical conversations can improve recall and understanding
of care plans for patients and reduce documentation burden for doctors. Recent advance-
ments in automatic speech recognition (ASR) and natural language understanding (NLU)
offer potential solutions to generate these summaries automatically, but rigorous quanti-
tative baselines for benchmarking research in this domain are lacking. In this paper, we
bridge this gap for two tasks: classifying utterances from medical conversations according
to (i) the SOAP section and (ii) the speaker role. Both are fundamental building blocks
along the path towards an end-to-end, automated SOAP note for medical conversations.
We provide details on a dataset that contains human and ASR transcriptions of medical
conversations and corresponding machine learning optimized SOAP notes. We then present
a systematic analysis in which we adapt an existing deep learning architecture to the two
aforementioned tasks. The results suggest that modelling context in a hierarchical manner,
which captures both word and utterance level context, yields substantial improvements
on both classification tasks. Additionally, we develop and analyze a modular method for
adapting our model to ASR output.

1. Introduction

Automatically generated summaries of medical conversations between patients and doctors
can be useful for both parties. These summaries could help patients improve recall and
understanding of their care plan. It is well documented that patients forget 40-80% of
the medical information provided by healthcare practitioners immediately (Mcguire, 1996).
Also, patients misconstrue 48% of what they think they remembered (Anderson et al.,
1979). Increased knowledge and understanding of the details of their care plans may be
associated with improved health outcomes (Adams, 2010). In addition, these summaries
could help doctors create clinically useful documentation. The clerical burden of entering
and maintaining electronic health records (EHRs) is a costly endeavour. By some estimates,
doctors may spend as much as two additional hours of administrative work to every one
hour spent with patients (Sinsky et al., 2016). Increased clerical burden on doctors has been
cited as a cause of increasing rates of burnout in the United States in particular (Kumar,
2016).
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Our approach to this problem is to capture medical conversations as an audio record-
ing, use automatic speech recognition (ASR) to transcribe the conversations, and, then,
extract or summarize clinically relevant information with natural language understanding
(NLU). Perhaps the most widely used format for clinical notes in the United States is the
SOAP note. SOAP stands for Subjective, Objective, Assessment, and Plan, referring to the
four major sections of the problem-oriented medical note in which: the patient’s reports
of symptoms, behaviors, and previous medical conditions are documented (Subjective), the
doctor’s observations from physical examinations and previously ordered tests are docu-
mented (Objective), identification of the potential problem(s), as well as related synthesis
of the Subjective and Objective are documented (Assessment), and, finally, the way the
problem will be addressed or further investigated is documented (Plan). These sections
can be further broken down into subsections. For example, the subjective is often broken
into subsections such as the Chief Complaint (the primary reason for the patient’s visit),
the Review of Systems (a questionnaire of symptoms organized around biological systems),
Past Medical History (any past medical problems the patient has had).

In this paper, we detail the creation of a dataset that contains audio recordings of 8,130
medical conversations between doctors and patients, human and ASR transcriptions of these
conversations, and machine learning optimized SOAP notes based on the human generated
transcripts. We present a rigorous analysis of a hierarchical encoder decoder architecture
(Jeblee et al., 2019; Finley et al., 2018a; Liu and Chen, 2019), which we adapted to two basic
tasks: classifying utterances from medical conversations (i) according to the SOAP section
and (ii) the speaker role (e.g. clinician or patient). Because ASR transcripts are known
to have relatively high numbers of errors compared to human transcripts (Kodish-Wachs
et al., 2018), we introduce and analyze a modular technique for testing and training our
NLU architecture on ASR generated text. Our results demonstrate that the deep learning
architecture examined in this paper outperforms a number of non-deep learning baselines.
Furthermore, using bi-LSTMs to contextualize utterance embeddings results in an absolute
6-7% improvement in F1 for SOAP section classification, which reaches near human level
performance, an absolute 7-11% improvement in F1 for speaker role classification. Finally,
our results also show that our modular approach to ASR adaptation may improve robustness
for speaker label but not SOAP section classification.

Generalizable Insights about Machine Learning in the Context of Healthcare

The ability to identify information in a conversation which is relevant to different parts of
the SOAP note and knowing whether a particular utterance was stated by the patient or
doctor could be informative to any downstream summarization or information extraction
tasks. Thus, we see the two tasks analyzed in this paper as fundamental building blocks in
a modular approach to achieving a fully automated SOAP note. Though it is not surprising
that dialogues themselves are highly contextual, the relatively large improvement on SOAP
section classification from using bi-LSTMs to capture inter-utterance context suggests that
a considerable amount of clinically relevant information depends on relatively distant con-
textual information to be understood. Consequently, simpler extraction methods like string
matching, the use of ontologies, sentence parsing, or even using context independent word
embedding models will likely result in suboptimal performance because these methods do
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not capture intersentential context. Additionally, this is the only study to date to provide
a rigorous quantitative benchmark for future research on automated SOAP notes for med-
ical conversations, though several research groups have proposed similar architectures and
even evaluated similar approaches on limited datasets (Jeblee et al., 2019; Finley et al.,
2018a; Klann and Szolovits, 2009). Finally, our approach to adapting our model to ASR
output provides a generalizable technique for training and evaluating models on ASR data
for classification tasks focusing on medical conversations. Compared to other techniques
which have primarily focused on joint training and end-to-end solutions (Serdyuk et al.,
2018; Lakomkin et al., 2019; Morbini et al., 2012), our solution maintains a relatively high
degree of modularity which allows it to be used with many open source ASR tools.

2. Related Work

Previous research has shown it is feasible to generate inferences from structured clinical
notes like those found in EHRs (Li et al., 2017; Guo et al., 2019; Lipton et al., 2016;
Johnson et al., 2016). For example, clinical diagnoses have been inferred both from highly
structured data, like specific symptoms from a medical ontology (Datla et al., 2017), as well
as from unstructured prose written by a medical professional (Li et al., 2017). Even more
recently, less structured data such as prose has also been automated using summarization
techniques (Alsentzer and Kim, 2018; Liang et al., 2019).

Improvements have also been made on state-of-the-art ASR models for automatic tran-
scription of clinical dictations and medical conversations between doctors and patients. As
of two years ago, word error rates for publicly available ASR systems were somewhere right
below 30% for clinical conversations (Kodish-Wachs et al., 2018). There has also been
recent work on improving the performance of publicly available, pretrained ASR systems
on medical conversations (Mani et al., 2020b,a). Models specially trained for the medical
domain have been able to achieve around 18% for medical conversations (Chiu et al., 2018)
and 16% for dictations (Edwards et al., 2017). More recently, Zhou et al. (2018) found
error rates as low as 7% for dictated notes. Outside the medical domain, a number of ap-
proaches have also been implemented in end-to-end NLU systems which specifically address
the problem of ASR errors in NLU tasks. Some learn acoustic embeddings from speech
directly (Serdyuk et al., 2018; Palaskar et al., 2019), skipping the transcription step, while
others use multimodal representations of text and speech (Lakomkin et al., 2019). Still,
others have trained ASR and the NLU parts of an end-to-end network jointly instead of
separately (Morbini et al., 2012).

These studies suggest that current machine learning techniques are capable of transcrib-
ing medical conversations, extracting clinically relevant information, and making clinical
inferences of the type that would be necessary to assist both doctors and patients with
organizing medical information. However, only a few studies have focused on generating
structured summaries of unstructured medical conversations between doctors and patients.
One study demonstrated the possibility of extracting symptoms and whether patients con-
firmed having them or denied having them from human transcribed medical conversations
between doctors and patients (Rajkomar et al., 2019). Another study provided a system-
atic analysis of an end-to-end medical scribe, including entity extraction and SOAP clas-
sification, but its results are difficult to generalize due to the small dataset and moderate
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inter-rater reliability (Jeblee et al., 2019). Finally, one study has examined classification
of medically utterances from a sizeable dataset of medical conversations, but there was no
analysis of classification performance on individual SOAP sections (Krishna et al., 2020).

Though previous work has focused on extracting clinically relevant information from
clinical narratives (Xu et al., 2010) and biomedical text in general (Aronson, 2001; Savova
et al., 2010), conversational language used in face-to-face dialogues can differ substantially
from that found in writing. Only one study to date has incorporated ASR output in the
analysis of NLU techniques on medical conversations (Selvaraj and Konam, 2019). Other
papers have written about end-to-end medical scribes which are in development (Finley
et al., 2018a; Klann and Szolovits, 2009), outlined future research which will include ASR
adaptation (Jeblee et al., 2019), and improved clinical ASR output through post-processing
mechanisms (Finley et al., 2018b), but the overall lack of meaningful quantitative data in
adapting NLU pipelines to ASR transcriptions of medical conversations leaves the possibility
of fully automated SOAP annotation an open question.

Table 1: Data Examples

SOAP Speaker
Section Label Utterance

None DR You are so cool.
None PT Hello.
Subjective DR Yeah, the flecainide, you’re on 50 twice a day, which obvi-

ously a, you know, it’s a newer medicine.
Subjective PT Because she told me I had a lot of polyps the last time.
Objective DR Well, yeah, you did have, according to the last event mon-

itor that I saw you had three episodes of clear AFib.
Objective PT1 Can we talk about my MRI results?
Assessment DR So, I don’t know, uh, for the moment I’m assuming that it’s

related to Parkinson’s but in the back of my mind I know
it’s possible that it’s just, uh, its own thing.

Assessment PT1 So you think my symptoms are being caused by anxiety,
not heart problems?

Plan DR I want to see you though in four weeks, because I got to do
an EKG in four weeks, because there’s an area of the heart
that we monitor on the EKG when someone is on flecainide
to make sure it’s not prolonging.

Plan PT1 Okay, so I should come back in 6 weeks?

Notes. DR = Doctor; PT = Patient; 1Patient does not typically make objective
statements, assessments, or plans, but may solicit relevant information or reiterate
what the doctor says.

3. Dataset

The data used in this study come from a proprietary dataset consisting of human tran-
scriptions of medical conversations between doctors and patients with speaker labels, the
corresponding audio, and human generated SOAP notes based on the transcripts. The
entire dataset of human transcripts contains 10,000 hours of transcribed speech (approx-
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imately 245,000 unique words and 95,000,000 tokens) and was used to fine-tune a word
embedding model and to generate a 5-gram language model. However, we focus on a sub-
set of 1,300 hours of speech for classifying utterances according to the SOAP section and
speaker role. This subset of the data consisted of 8,130 doctor patient encounters, including
human transcripts, audio, and human generated SOAP notes. For each encounter, we also
generate an ASR transcript using the video model from Google’s Speech API with auto-
matic diarization and punctuation enabled. Previous work on a related dataset showed that
Google’s out-of-the-box Speech API achieves around 40 % WER (Mani et al., 2020b).

A single SOAP note consisted of a set of observations which were organized into different
SOAP note sections. Each observation contained three parts: a short summary of a clinically
relevant piece of information (e.g. “Patient is currently on Plavix”), a set of tags which
were specific to each subsection (e.g. “Plavix”, “current”), and a set of utterances from the
doctor patient transcript which were used as evidence for the short summary and tags. The
human generated transcripts were broken into utterances by the original transcriptionists.
The annotators for this dataset were all highly familiar with medical language and worked in
administrative roles in the healthcare system such as transcription of medical conversations
and medical billing. In addition, every annotator underwent task-specific training and were
subject to both automated and human quality control during actual annotation. One part
of this quality control process included having two annotators complete a SOAP note for
the same medical conversation and measuring the inter-rater reliability between the two
notes. Results from this quality control analysis can be found in Appendix A.

In this study, any utterance which was used as evidence for a note in one of the sub-
sections of the Subjective was classified as Subjective, and similarly for the other SOAP
sections. Any utterance which was not used as evidence at any point in the SOAP note
was classified as None. Thus, every utterance in our dataset was associated with a unique
speaker label and a SOAP section. Speaker labels were either Doctor, Patient, Caregiver or
Other. Examples of utterances classified into different SOAP sections can be seen in Table
1, and the distributions of utterances classified into each SOAP section and the distributions
of speaker roles can be found in tables 2 and 3, respectively.

In order to mimic the structure of the human annotations labeled at the utterance level,
we restructured the ASR output into utterances, and developed a probabilistic mapping of
both the speaker label and the SOAP section from each human transcribed and annotated
utterance to utterances reconstructed from the ASR data. This permitted the ASR data
to be used during training and testing. The distribution of SOAP sections was highly
similar between the original data and the mapped data, but the distribution of speaker
labels differed more substantially (see Tables 2 and 3). A qualitative analysis revealed that
systematic diarization related sentence segmentation errors by the ASR system may be the
source of this problem.

3.1. Mapping Human Annotations to ASR Output

The current approach attempted to map utterance level classifications of SOAP note sec-
tions and speaker labels from human transcribed and annotated utterances to utterances
that were reconstructed from ASR output. This was achieved by first aligning the human
transcript and the ASR output at the character level through a constrained dynamic pro-
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Table 2: SOAP Section Distributions
SOAP HT HT ASR ASR
Section Training Test Training Test

None 0.63 0.64 0.61 0.63
Subjective 0.19 0.17 0.18 0.16
Objective 0.02 0.02 0.03 0.02
Assessment 0.12 0.12 0.13 0.13
Plan 0.04 0.04 0.05 0.05

Notes. HT = Human Transcript.

gramming (DP) algorithm. Instead of using DP to align the entire transcripts in a single
run, we first searched for sections of the transcript which could be confidently aligned by
recursively searching for longest common substrings and partitioning the remaining parts of
the transcripts around these substrings. The condition for determining whether to continue
partitioning the transcript or to stop depended on the expected n-gram frequency of the
longest common substring. If the expected frequency of the n-gram in a given string was
less than 0.001, then we considered that n-gram to be unlikely to have occurred purely by
chance and continued partitioning. Otherwise, partitioning was stopped and the partition
was considered a leaf node. After confidently aligning as many pieces of the two transcripts
as possible, we then used DP to align the portions of the transcripts which were in the leaf
nodes.

3.1.1. Word Level Alignment Statistics

Once the transcripts were aligned at the character level, we split the aligned ASR output
into words and calculated probabilities that a particular word belonged to a certain speaker
or SOAP section based on the word(s) to which it was aligned in the human annotated
transcript. The probability that a word in the ASR output belonged to a certain class
was equal to the percentage of non-space characters in the aligned portion of the human
transcript belonging to that class multiplied by confidence in the mapping, which was equal
to the number of correctly aligned characters between the ASR word and the aligned portion
of the human transcript, divided by the length of the longer of the two segments. This form
of label smoothing provides a natural way to capture ASR noise in a continuous fashion
and incorporate these effects into the calculation of the loss.

3.1.2. Sentence Segmentation of ASR Output

The ASR output used the video model from Google’s speech API with automatic diarization
and punctuation enabled. First, we broke the transcript into speaker turns based on the
diarization results. Then, we used python’s NLTK library (Loper and Bird, 2002) to sen-
tence tokenize the speaker turns based on punctuation from the Google API. This resulted
in the final set of utterances from the ASR output which were then fed into the model as
input for training/testing.
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Figure 1: Probabilistic Alignment of Human Annotations to ASR Output
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Table 3: Speaker Label Distributions

Speaker HT HT ASR ASR
Label Training Test Training Test

Doctor 0.566 0.547 0.710 0.691
Patient 0.383 0.391 0.264 0.277
Caregiver 0.045 0.055 0.023 0.030
Other 0.006 0.006 0.003 0.002

Notes. HT = Human Transcript.

3.1.3. Sentence Level Alignment Statistics

After breaking the ASR output into utterances, each sentence was assigned two probability
distributions, one for the five SOAP note classes (including a none class) and another
for each of the four speaker classes (Doctor, Patient, Caregiver, or Other) by averaging
the probabilities of all the individual words in that utterance (see Section 3.1.1). Finally,
the distributions were normalized to sum to one. Normalization was different for SOAP
note sections and speaker labels. For the SOAP note sections, the probability vectors
describing each utterance were normalized by adding the difference of one minus the sum of
the probabilities of the four SOAP sections to the None section. This normalization method
was motivated by the fact that, if the ASR mapping is poor, then it is likely that the content
of the ASR transcript in a particular utterance does not closely match the human annotated
transcript. Since the SOAP note section classification is primarily based on the content of
the utterance, changing the content should also change the classification. For example, if
the original utterance was “We’re going to start you on baby aspirin” and was classified as
Plan, and the corresponding ASR output was “We’re going to start you baby as per him,”
we may want to hedge our confidence in classifying the latter utterance as part of the Plan
because, depending on the degradation of the ASR output, the content might not actually
have any useful information pertaining to the Plan. On the other hand, for the speaker, we
did not allow for an Unknown option during classification, and, although the content may
have differed between the ASR and human transcript, this would not fundamentally change
who is speaking at a certain time. For this reason, the probability vectors for the speaker
class labels were normalized by simply dividing by the L2 norm of the vector.

3.1.4. Data Preprocessing

Each non-empty utterance which contained at least one word (was not just laughter or
some other non-linguistic sound) was extracted from the transcript. Sentences were split
using Python’s NLTK library and non-word annotations (primarily non-linguistic sounds
or redacted content for deidentification of protected health information) were standardized
to a single unique word in capital letters (e.g. [physician name]→PHYSICIAN NAME).
Dashes at the end of utterances were removed. Finally, for utterances which were greater
than 32 tokens after splitting, we removed all stop words, and, if there were still more than
32 tokens after removing stop words, we took only the first 32 tokens of the utterance.
Utterances shorter than 32 tokens were padded with empty strings.
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4. Methods

We assess NLU for medical conversations using both bag-of-words (BoW) and deep learning
models in this paper. For the BoW baselines, we use majority-class (MC), Multinomial
Naive Bayes (MNB), logistic regression (LR), and random forest (RF) classifiers with a BoW
encoding of each utterance. Building off of Jeblee et al. (2019), Finley et al. (2018a), and
Liu and Chen (2019), we explore four gradually more complex deep learning models. The
most basic model, which we refer to as the deep learning baseline (DLB), learns a weighted
average of the three ELMo layers and averages all of the word embeddings to generate a
sentence embedding (Peters et al., 2018). ELMo is a contextualized word embedding model,
meaning it integrates sentence context into representations of word meaning. Then, each
model after that adds one specific layer. First, we add word attention to generate a word
weighted utterance embedding. Second, we add a bi-LSTM to generate contextualized
utterance embeddings, and, lastly, we add an LSTM decoder to generate contextualized
outputs. All models ended with a dense layer followed by a softmax activation function
used for classification.

The full encoder produces a contextualized utterance, ci; i ∈ N by first generating ELMo
representations from all tokens tij using a pretrained ELMo model with 512 hidden units,
eikj with 3 layers (k ∈ {1, 2, 3}) each containing 1024 units per layer after concatenating
both directions (resulting in a 3x1024 matrix). ELMo had been pretrained by fine-tuning
the out-of-the-box, large ELMo model for three epochs on all of the human transcribed
utterances from our proprietary dataset. An attention layer, aLi

, was used to combine the
three ELMo layers, resulting in a single 1x1024 dimensional embedding for each token, lij,
in an utterance. Utterances were zero padded to 32 tokens each or truncated to 32 tokens,
j ∈ {1...32} (see Section 3.1.4 for more details). Then, a word attention layer, awi

, was used
to create a weighted average of the word embeddings in an utterance, resulting in a final
1x1024 dimensional utterance embedding, ui. Attention weights for both ELMo layer level
and word level attention were scaled using softmax before combining representations. These
utterance embeddings were then passed to a two layer stacked bi-LSTM in which layers one
and two had 512 and 256 dimensions (1024 and 512 after concatenation), respectively. The
output of the final layer resulted in a 512 dimensional, contextualized encoding of each
utterance, ci. A dropout layer was added for the input of the bi-LSTM layers and for the
recurrent layers.

Eij = ELMo(tij); j ∈ {1...32}, i ∈ N
aLij

= softmax([dot(wL, ei1j) ... dot(wL, ei3j)]); j ∈ {1...32}, i ∈ N

lij =

3∑
k

aLikj
eikj; j ∈ {1...32}, i ∈ N

awi
= softmax([dot(ww, li1) ... dot(ww, li32)]); i ∈ N

ui =

32∑
j

awij lij; i ∈ N

ci = StackedBiLSTM(ui) i ∈ N
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A multi-decoder consisted of two separate unidirectional LSTMs which decoded the
speaker labels and the SOAP note sections separately. The reason for designing a multi-
decoder and framing the problem as a multitask problem, which decodes the speaker and the
SOAP section, is that some of the SOAP note sections are defined differently with respect
to the doctor and the patient (see Table 1 and Section 3 for more details). Namely, the
Subjective is supposed to capture the patient’s reports and experience–but may be directed
by the doctor’s questions–while the Objective, Assessment, and Plan are typically driven
by the doctor’s own measurements, observations, and reasoning. Therefore, we weighted
the loss function by its ability to solve both problems simultaneously. A dropout layer
was added for the input of the decoder LSTMs and for the recurrent layers. At each step,
the contextualized encoding, ci, for the corresponding utterance was the input. For the
first utterance in each transcript, the initial states of the first decoding steps were set to all
zeros. The speaker decoder had 64 hidden units and 4 projection units (one for each speaker
class), and the SOAP section decoder had 64 hidden units and 5 projection units (one for
each section class). The projection layer representations were then passed to a softmax
layer to generate the final sequence of speaker and section probabilities, {spkri}i∈N and
{secti}i∈N , given a contextualized encoding of an input token sequence ci and all preceding
contextualized encodings, {c1, ...ci−1}.

P (spkri |ci, c1, ...ci−1) = softmax(wspkrLSTMspkr(ci) + bspkr)

P (secti |ci, c1, ..., ci−1) = softmax(wsectLSTMsect(ci) + bsect)

4.1. Model Training

The deep learning models were trained using a weighted cross entropy loss function with an
ADAM optimizer; the learning rate was set to 0.001. Each model was trained in batches of 4
transcripts at a time, the order of which was randomized during each epoch. The truncated
back propagation length was set to 64 for all LSTMs. During training, the dropout rate
decreased over a period of 5 epochs, taking the following values for each epoch: 0.45, 0.30,
0.25, 0.22, and 0.21. During test, the dropout rate was set to 0. No other regularization
was used. Gradients were clipped using a scale factor of 5 of the global norm. The loss
for each batch was the sum of the loss for the speaker classification and the SOAP section
classification. The loss was weighted by inverse class-frequency per batch. Hyperparameters
were based on results from Bayesian hyperparameter optimization. ELMo weights were
frozen during training.

The MNB classifier was trained using a uniform prior for the classes, and the LR and
RF classifiers were trained by weighting the loss function based on class frequency (LR
and RF). Thus, the training for the traditional machine learning baselines was comparable
to the class frequency weighting of the loss function during training of the deep learning
models. Hyperparameters for the BoW models were not based on Bayesian hyperparameter
optimization.

All models were trained once using only utterances from the human transcripts (labeled
as “ASR” in subsequent tables) and once using both utterances from the ASR output and
the human transcripts (labeled as “w/ ASR” in subsequent tables). In turn, both training
methods were evaluated at test on both ASR and human transcribed (HT) utterances
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separately so that the effect of including ASR in training could be evaluated on both ASR
and human transcribed data and compared to training without ASR data. In addition, we
explored the effect of calibrating models using Platt scaling and a 10% validation set.

The losses for the ASR utterances and the utterances for the human transcripts were
slightly different. The expected labels for the human transcripts were one-hot encoded;
however, the expected labels for the ASR utterances reflected the noise in the mapping,
and were probability distributions of each class inferred by the mapping. This is effectively
a form of label smoothing for the noise introduced by the ASR transcript. See Section 3.1.3
for more details.

5. Results

5.1. Model Evaluation

For this analysis, we use accuracy, F1 (macro for multiclass, standard F1 otherwise), the
area under the curve of the receiver operating characteristic (AUROC) curve, and area
under the precision-recall curve (AUPRC) to evaluate the classification performance of
our models. We also assess how including or excluding ASR data in training using the
mapping described in 3.1 affects model performance by training all of our models with and
without ASR data and evaluating on human transcribed and ASR data separately. Finally,
we assess how calibrating our models using a 10% validation set and Platt scaling affects
model performance across different metrics.

5.2. SOAP and Speaker Classification Results

Tables 4 and 5 show the accuracy, macro F1 scores, multiclass AUROC, and macro average
AUPRC values for both tasks and for all of the classifiers, trained with and without ASR
data and evaluated on human and ASR transcripts separately. They also show whether
calibrated or uncalibrated models performed the best across all metrics. Tables 6 and 7
break down the contributions of the different layers in the deep learning architecture for
each SOAP section and speaker label. For all metrics across both tasks, the deep learning
models which had at least ELMo, layer attention, word level attention, and a bi-LSTM
at the utterance embedding level performed the best. These models with contextualized
utterances improved SOAP section classification accuracy by 1% compared to the best per-
forming deep learning models without contextualized utterances and 1-2% compared to the
best performing BoW based models. Similarly, they improved macro F1 scores by 6-7%
compared to simpler deep learning models, and 12% compared to BoW models. AUROC
increased by 9-10% compared to simpler deep learning models by 13-15% compared to BoW
models. Finally, AUPRC increased by 7-9% compared to simpler deep learning models and
9-13% compared to BoW models. A similar pattern of gains was observed for the speaker
label classification task. When breaking down the multiclass problems by SOAP section
and speaker label, again models with contextualized utterances often resulted in improve-
ments to the F1 score of 10% or more, with the exception of the majority class–in which
case contextualizing utterances had very little effect on classification F1 scores. On average
across all SOAP sections, our models performed better than previously reported results
for SOAP classification (Jeblee et al., 2019), with particularly large improvements to the
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Table 4: SOAP Classification as a Function of Model Type and Training Data

Acc Acc F1 F1 AUROC AUROC AUPRC AUPRC
(train (train (train (train (train (train (train (train

Test w/o w/ w/o w/ w/o w/ w/o w/
Set Model ASR) ASR) ASR) ASR) ASR) ASR) ASR) ASR)

HT MC 0.64 0.64 0.16 0.16 0.50 0.50 0.20 0.20
HT BoW+NB 0.66 0.66 0.36* 0.36* 0.71 0.71* 0.37 0.37
HT BoW+LR 0.66 0.66 0.27* 0.35* 0.70 0.70 0.35 0.35
HT BoW+RF 0.64 0.64 0.29* 0.29* 0.65* 0.65* 0.30 0.30
HT DLB 0.67 0.66 0.40* 0.40* 0.76* 0.75* 0.39 0.38
HT DLB+WA 0.67 0.67 0.41* 0.40* 0.76* 0.76* 0.41 0.40
HT DLB+WA+BiL 0.68 0.68 0.47 0.48 0.86* 0.86* 0.50 0.50
HT DLB+WA+BiL+LD 0.68 0.68 0.47 0.48 0.86* 0.86* 0.50 0.50

ASR MC 0.63 0.63 0.15 0.15 0.50 0.50 0.20 0.20
ASR BoW+NB 0.64 0.64 0.32* 0.33* 0.70 0.70 0.35 0.35
ASR BoW+LR 0.63 0.64 0.27* 0.31* 0.69* 0.70* 0.33 0.34
ASR BoW+RF 0.63 0.63 0.28* 0.28* 0.65* 0.65* 0.29 0.29
ASR DLB 0.64 0.64 0.38* 0.38* 0.74* 0.73* 0.36 0.35
ASR DLB+WA 0.64 0.64 0.38* 0.39* 0.74* 0.74* 0.37 0.36
ASR DLB+WA+BiL 0.64 0.64 0.42* 0.45* 0.82* 0.83* 0.43 0.44
ASR DLB+WA+BiL+LD 0.65 0.64 0.42* 0.44* 0.83* 0.83* 0.44 0.44

Notes. HT = Human Transcript; BoW = Bag of Words; DLB = Deep Learning Baseline (ELMo + Layer
Attention + Average Word Embedding); WA = Word Attention; LD = LSTM Decoder; All models ended
with a dense layer followed by a softmax activation function. Cases in which the uncalibrated model
outperformed the calibrated model are marked with an asterisk (*).

Table 5: Speaker Classification as a Function of Model Type and Training Data

Acc Acc F1 F1 AUROC AUROC AUPRC AUPRC
(train (train (train (train (train (train (train (train

Test w/o w/ w/o w/ w/o w/ w/o w/
Set Model ASR) ASR) ASR) ASR) ASR) ASR) ASR) ASR)

HT MC 0.55 0.55 0.18 0.18 0.50 0.50 0.25 0.25
HT BoW+NB 0.65 0.65 0.38* 0.38* 0.72* 0.71 0.40 0.40
HT BoW+LR 0.61 0.60 0.34* 0.29* 0.68* 0.70* 0.37 0.36
HT BoW+RF 0.60 0.58 0.32* 0.29* 0.69* 0.68* 0.37 0.36
HT DLB 0.70 0.70 0.42* 0.42* 0.75* 0.75* 0.37 0.36
HT DLB+WA 0.70 0.69 0.42* 0.42* 0.76* 0.75* 0.37 0.37
HT DLB+WA+BiL 0.82 0.82 0.59* 0.58 0.92* 0.91* 0.51* 0.51
HT DLB+WA+BiL+LD 0.81 0.81 0.59* 0.56* 0.91* 0.91* 0.5 0.49

ASR MC 0.69 0.69 0.20 0.20 0.50 0.50 0.25 0.25
ASR BoW+NB 0.71 0.71 0.33 0.33* 0.70 0.70 0.36 0.37
ASR BoW+LR 0.67 0.71 0.31 0.30 0.66 0.66 0.35 0.35
ASR BoW+RF 0.69 0.71 0.29* 0.29* 0.67* 0.67* 0.34* 0.34
ASR DLB 0.73 0.75 0.37 0.39* 0.72* 0.73* 0.33 0.33
ASR DLB+WA 0.73 0.76 0.37 0.39* 0.73* 0.73* 0.34 0.33
ASR DLB+WA+BiL 0.70 0.79 0.42 0.50* 0.82* 0.85* 0.35 0.42
ASR DLB+WA+BiL+LD 0.71 0.80 0.42 0.49* 0.82* 0.86* 0.36 0.41

Notes. HT = Human Transcript; BoW = Bag of Words; DLB = Deep Learning Baseline (ELMo + Layer
Attention + Average Word Embedding); WA = Word Attention; LD = LSTM Decoder; All models ended
with a dense layer followed by a softmax activation function. Cases in which the uncalibrated model
outperformed the calibrated model are marked with an asterisk (*).
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Table 6: SOAP Classification for Deep Learning Models by SOAP Section

SOAP Test
Section Set Training DLB + WA + Bi-LSTM + LD

None HT w/o ASR 0.79 [0.71] 0.80 [0.71] 0.79 [0.67] 0.79 [0.66]
None HT w/ ASR 0.79 [0.73] 0.79 [0.72] 0.79 [0.66] 0.79 [0.66]
None ASR w/o ASR 0.78 [0.67] 0.78 [0.67] 0.77 [0.61] 0.77 [0.62]
None ASR w/ ASR 0.78 [0.74] 0.78 [0.72] 0.78 [0.70] 0.78 [0.69]
Subjective HT w/o ASR 0.32 [0.42] 0.34 [0.42] 0.49 [0.52] 0.49 [0.52]
Subjective HT w/ ASR 0.30 [0.41] 0.33 [0.42] 0.50 [0.52] 0.50 [0.52]
Subjective ASR w/o ASR 0.25 [0.36] 0.25 [0.36] 0.38 [0.44] 0.36 [0.45]
Subjective ASR w/ ASR 0.19 [0.34] 0.20 [0.35] 0.25 [0.44] 0.19 [0.45]
Objective HT w/o ASR 0.33 [0.28] 0.34 [0.30] 0.49 [0.38] 0.49 [0.40]
Objective HT w/ ASR 0.31 [0.28] 0.33 [0.29] 0.48 [0.39] 0.50 [0.38]
Objective ASR w/o ASR 0.27 [0.25] 0.28 [0.26] 0.40 [0.36] 0.39 [0.37]
Objective ASR w/ ASR 0.22 [0.26] 0.25 [0.27] 0.14 [0.38] 0.04 [0.36]
Assessment HT w/o ASR 0.13 [0.28] 0.15 [0.30] 0.24 [0.37] 0.25 [0.37]
Assessment HT w/ ASR 0.13 [0.26] 0.14 [0.28] 0.29 [0.37] 0.28 [0.37]
Assessment ASR w/o ASR 0.17 [0.31] 0.17 [0.32] 0.22 [0.36] 0.28 [0.36]
Assessment ASR w/ ASR 0.08 [0.26] 0.09 [0.29] 0.06 [0.36] 0.04 [0.36]
Plan HT w/o ASR 0.24 [0.31] 0.25 [0.31] 0.34 [0.36] 0.32 [0.35]
Plan HT w/ ASR 0.22 [0.30] 0.24 [0.30] 0.34 [0.37] 0.35 [0.36]
Plan ASR w/o ASR 0.21 [0.29] 0.21 [0.29] 0.28 [0.32] 0.25 [0.33]
Plan ASR w/ ASR 0.16 [0.29] 0.18 [0.29] 0.15 [0.34] 0.13 [0.35]

Notes. HT = Human Transcript; DLB = Deep Learning Baseline (ELMo + Layer Attention + Average
Word Embedding); WA = Word Attention; LD = LSTM Decoder; All models ended with a dense layer
followed by Softmax. All scores are single class F1 scores. Uncalibrated model results are presented in
brackets.

Table 7: Speaker Classification for Deep Learning Models by Speaker Label

Speaker Test
Label Set Training DLB + WA + Bi-LSTM + LD

Doctor HT w/o ASR 0.76 [0.72] 0.75 [0.70] 0.86 [0.85] 0.86 [0.84]
Doctor HT w/ ASR 0.76 [0.72] 0.76 [0.72] 0.86 [0.83] 0.85 [0.82]
Doctor ASR w/o ASR 0.82 [0.73] 0.81 [0.72] 0.79 [0.74] 0.79 [0.74]
Doctor ASR w/ ASR 0.84 [0.79] 0.84 [0.78] 0.86 [0.83] 0.86 [0.83]
Patient HT w/o ASR 0.67 [0.67] 0.67 [0.67] 0.81 [0.81] 0.80 [0.80]
Patient HT w/ ASR 0.65 [0.68] 0.62 [0.67] 0.81 [0.79] 0.80 [0.79]
Patient ASR w/o ASR 0.58 [0.56] 0.58 [0.56] 0.58 [0.59] 0.59 [0.59]
Patient ASR w/ ASR 0.55 [0.58] 0.55 [0.57] 0.65 [0.66] 0.65 [0.67]
Caregiver HT w/o ASR 0.08 [0.23] 0.09 [0.23] 0.40 [0.46] 0.42 [0.44]
Caregiver HT w/ ASR 0.06 [0.21] 0.07 [0.24] 0.25 [0.42] 0.30 [0.46]
Caregiver ASR w/o ASR 0.08 [0.14] 0.07 [0.14] 0.25 [0.23] 0.30 [0.24]
Caregiver ASR w/ ASR 0.05 [0.17] 0.04 [0.17] 0.28 [0.33] 0.18 [0.36]
Other HT w/o ASR 0.00 [0.07] 0.00 [0.08] 0.23 [0.26] 0.05 [0.29]
Other HT w/ ASR 0.00 [0.07] 0.00 [0.07] 0.20 [0.24] 0.00 [0.18]
Other ASR w/o ASR 0.00 [0.01] 0.00 [0.02] 0.05 [0.06] 0.00 [0.08]
Other ASR w/ ASR 0.00 [0.02] 0.00 [0.03] 0.01 [0.16] 0.00 [0.11]

Notes. HT = Human Transcript; DLB = Deep Learning Baseline (ELMo + Layer Attention + Average
Word Embedding); WA = Word Attention; LD = LSTM Decoder; All models ended with a dense layer
followed by Softmax. All scores are single class F1 scores. Uncalibrated model results are presented in
brackets.
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lower frequency classes. We achieve 5-18% improvements in F1 scores for the Objective,
Assessment, and Plan classes, while our model achieves a 2% lower F1 score on the Subjec-
tive. Finally, the macro F1 score achieved by our best performing model was similar to the
F1 score achieved by using two independent human annotations as ground truth and test
examples (see Table 9 in Appendix A.

As for the effect of calibration, calibrated models generally performed as well as or better
than uncalibrated models on measures of accuracy and AUPRC. For AUROC, uncalibrated
models typically outperformed calibrated models. F1 scores, on the other hand, show a more
complex interaction with model calibration. In Tables 6 and 7, it appears that uncalibrated
models outperformed calibrated models for classes which were relatively infrequent, but
calibrated models outperformed uncalibrated models for classes which were more frequent.
Given that calibrated models performed as well as or better than uncalibrated models on
AUPRC, it may also be the case that, with optimal thresholds, calibrated models could
achieve similar F1 scores to uncalibrated models. It should also be kept in mind that the
models’ loss functions were not designed to optimize F1. Still, the possibility that calibration
may have adverse effects on a model’s ability to detect rare events should be investigated
more thoroughly in future research.

Finally, we found mixed evidence for the use of ASR in training. When evaluating
on the ASR test set, the best performing models trained on ASR data as opposed to the
best performing models trained only on human transcripts often had similar or improved
accuracy, F1, AUROC, and AUPRC scores. By task, the effect of including ASR in training
was more noticeable for speaker classification than for SOAP section classification. For
SOAP classification, there was little to no systematic effect, while including ASR in training
improved all measures for speaker classification. Overall, these improvements were smaller
than the effect of contextualizing utterances.

6. Discussion

6.1. Natural Language Understanding for Medical Conversations

The deep learning architecture we proposed achieved the best performance on speaker la-
bel and SOAP section classification of utterances from medical conversations. Because of
the novelty of the SOAP section classification task, it is somewhat difficult to know what
constitutes objectively good or poor performance on SOAP section classification. On the
one hand, this can be seen as a strength as the current analysis fills an important gap in
research on medical conversations. On the other hand, it precludes our ability to assert
that the performance reported in the results is state-of-the-art.

Fortunately, we do have a reference for human performance on this task as part of the
Quality Control analysis presented in Appendix A. This should be taken with a grain of
salt since the quality control dataset was different from the test set used to evaluate model
performance. Nevertheless, when we use one set of human annotations for a given medical
conversation to predict which utterances would be assigned to which SOAP sections by
another independent annotator we achieve a macro F1 of 0.47, which is 1% lower than our
best performing model. Again, this can be seen as both good and bad. Our best models
achieve near human performance. However, the way we have formulated the problem in the
current paper means that we there is little room for further improvement.
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The relatively low agreement between annotators is difficult to interpret because it
does not necessarily mean that the annotators wrote substantially different SOAP notes,
only that they cited different evidence. Citing evidence is an inherently subjective task;
two humans are unlikely to agree 100% on what constitutes the best set of evidence for a
specific claim. Aside from that, clinical conversations can be highly repetitive. For example,
an individual with diabetes may make numerous references to their diabetes throughout a
medical conversation with their healthcare provider. Thus, there may be numerous pieces
of non-overlapping but essentially equivalent pieces of evidence for a single clinical note.
This means that downstream tasks may benefit from multi-evidence question answering
architectures (Zhao et al., 2020).

Perhaps even more interesting were the results showing which layers in our deep learning
architecture contributed the largest gains to overall performance. All of the deep learning
models outperformed the BoW models on all metrics. This, unsurprisingly, shows that mod-
els which capture linguistic structure generally outperform those that do not. Furthermore,
the inclusion of a bi-LSTM at the utterance level led to substantial improvements across
multiple measures regardless of task or training and test conditions. This suggests that for
medical conversations, understanding who is speaking and what is or is not clinically signif-
icant are highly contextual tasks. This has important implications for the use of machine
learning for understanding medical conversations because many approaches currently rely
on ontology based tools such as those provided as part of the Unified Medical Language
System (UMLS), string matching techniques, or may use context independent word em-
beddings (Finley et al., 2018a; Aronson and Lang, 2010; Bodenreider, 2004; Mikolov et al.,
2013a,b). These models, like our deep learning models which included word level attention,
may be good at capturing important vocabulary or even intrasentential context if parsing
is used, but they would not be able to capture intersentential context like our models which
use a bi-LSTM at the utterance evel. Though intrasentential context techniques may work
well for highly structured EHR data or well formulated prose, our results suggest that they
are suboptimal for medical conversations between doctors and patients.

6.2. Mapping Human Clinical Annotations to ASR Output

In this paper we explore a modular method for noisy label mapping of clinical annotations
to ASR data. The method relies on a combination of string alignment algorithms and la-
bel smoothing to account for the additional noise. Using this mapping to include data in
training improved classifier performance on ASR transcripts only for the speaker classifica-
tion task, but not the SOAP section classification task. Thus, the effects of including ASR
data in training may be more task dependent and overall more modest than the effects of
including contextualized utterances. In particular, the null finding for SOAP classification
may be due to the fact that the model trained only on human transcribed data was already
at ceiling–or near human performance–meaning that there was no room for improvement
by adapting the model to ASR output. Thus, human tasks which have relatively moderate
or low inter-rater reliability may not benefit as much from adaptations to ASR noise due
to the large amount of noise already present in the data.

The primary factor which differentiates our method from others is modularity. Most
other methods use multimodal representations and joint, end-to-end training to achieve
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robustness to ASR output (Serdyuk et al., 2018; Lakomkin et al., 2019; Morbini et al.,
2012). In practice, this means that these models must train ASR and NLU architectures
at the same time to realize the benefits. This increases the complexity of training in terms
of time, total number of parameters in the model, and computer memory. It can also make
it more difficult to troubleshoot poor model performance since there are more variables
and interactions that could be causing problems. Another appealing aspect of our modular
method is that it can be applied to publicly available state-of-the-art ASR systems like the
Google model used in this paper. Of course, we fully acknowledge the contributions and
potential of these less modular approaches, and the choice of which method is best will
depend on the goals of and resources available to a specific research group. Our argument
is more about the benefits of modularity in general than any specific aspects of the previous
research.

6.3. Limitations

Ultimately, we are concerned with whether the evidence that our model finds is “complete”
or not, in the sense that it is sufficient to generate an acceptable quality SOAP note.
We are not explicitly concerned with whether it cites exactly the same evidence as one
human would. Thus, the problem formulation in the current study does not provide directly
interpretable quantitative data on how an end-to-end SOAP note solution would perform
in practice. Still we believe that the results are promising and provide a foundation for
future research. Future work should focus on information extraction and summarization of
the various SOAP sections and subsections, which would have more interpretable results
for practical applications of end-to-end systems.

Also, there are several aspects of the current research which could not be rigorously an-
alyzed in the scope of this paper. These include the mapping technique which we presented
and the multitask architecture. As for the former, we know that there are areas where
the mapping needs to be improved. For example, the diarization, and consequently sen-
tence segmentation, was particularly prone to problems during periods of dense turn taking
with short sentences (e.g. the patient and doctor going back and forth saying things like
“Ok.”, “Good.”, “Mhm.”) and when one speaker would briefly interject extended speech
by the other speaker (e.g. when the patient periodically says “Ok.” to indicate that they
are listening when the doctor talks for an extended period of time). A detailed discussion
of this mapping can be found in section 3.1. We believe that this is one primary source of
inconsistencies between the utterance segmentation of the ASR data and the human seg-
mented utterances in the human transcripts. Segmentation related problems would likely
benefit from multimodal models which can use both acoustic and prosodic evidence from
audio data as well as linguistic evidence from text. As for the multitask architecture and
the choice of task in general, there are many possible relevant tasks which could be used
to measure basic understanding of medical conversations. Future research should explore
a larger array of tasks and examine whether solving them independently or simultaneously
in a multitask framework has any benefits for model performance.
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Appendix A. Quality Control

A.1. Quality Control Dataset

We also collected a dataset of 599 medical conversations which were SOAP annotated by two in-
dependent annotators. We used these pairs of independent SOAP notes to evaluate inter-rater
reliability of the data used in this study. The dataset contained notes from over 100 different an-
notators. It should be noted that this dataset was different from the test set used for evaluation
in the results (section 5) of the main text. Though it is a subsample of the same larger dataset, it
differs primarily in that it is not a true random sample of the data. Due to resource constraints,
the files used in this quality control dataset were all between 4.5 and 5.5 minutes in length, which
only spans a small portion of the actual variation in encounter length. The test set used in the main
text, however, does sample from all possible encounter lengths.

A.2. Evaluation Metrics

Because there is no standardized way to measure inter-rater reliability for a SOAP note, we created
our own metrics as well as target numbers which the annotators were expected to meet. The concept
for the metrics was borrowed from the analysis of ASR systems (and DNA sequencing), in which
every note was categorized as identical, a deletion, an insertion, or a substitution. Given two SOAP
notes, a reference SOAP note and a source SOAP note, every note from the source SOAP note was
mapped to the reference SOAP note as follows: a given note in the source was mapped to that note
in the reference which was placed in the same SOAP subsection and which had the highest overlap
in cited evidence and tags. If a note in the source note could not be mapped to any note in the
reference (due to lack of overlap in tags or evidence), it was categorized as an insertion. Conversely,
if a note in the reference could not be mapped to any note in the source, it was considered a deletion.
Notes which were successfully mapped but were not identical were categorized as substitutions, and
notes which were perfect matches were categorized as identical. Because an identical note had to
have the exact same tags, short summary, and cited evidence, it was exceedingly rare for notes to
be categorized as identical.

We set targets for the annotators to have no more than 30% deletions and no more than 30%
insertions for all notes in the SOAP note except for two sections, a miscellaneous subsection and the
assessment. These two sections were highly unstructured and, consequently, had the lowest inter-
rater reliability. In addition, we set criteria for the degree of overlap for notes which were categorized
as substitutions, to ensure that notes which were being mapped were actually highly similar. These
targets were 70% overlap in cited evidence, and 70% overlap in tags for all substitutions in a SOAP
note.

In addition to the alignment metrics, we report metrics which are more easily compared to
traditional machine learning and clinical analyses. These metrics include, accuracy and f1 (the
harmonic mean of precision and recall, also known as sensitivity) over all classes (macro f1) and for
individual classes. For these metrics, we use one set of human annotations as the “ground truth”
and one as the “predicted label.” These metrics provide a human baseline for measuring classifier
performance, although, again, we note that the test set is based on different SOAP notes than the
test set used for evaluating classifier performance. We also present the prevalence (prior probability)
of different SOAP note classes across both sets of annotations, the conditional probability that one
human annotator will mark a particular utterance as relevant to one of the four SOAP note sections
given that the other human annotator also did, and the conditional probability that one human
annotator will mark a particular utterance as relevant to one of the four SOAP note sections given
that the other human annotator did not.
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Table 8: Using Alignment Statistics to Evaluate Inter-Rater Reliability

Evidence Tag
Identical Del Ins Sub Overlap Overlap

Mean 0.008 0.304 0.256 0.687 0.694 0.83
Variance 0.001 0.034 0.026 0.034 0.014 0.013

Notes. Del = Deletions; Ins = Insertions, Sub = Substitutions. Evidence and
tag overlap were only measured for substitutions.

Table 9: Using Accuracy, F1, Prevalence, and Odds to Evaluate Inter-Rater Reliability

Domain Accuracy F1 Prevalence P (Y1 = 1|Y2 = 1) P (Y1 = 1|Y2 = 0)

All Sections 0.54 0.47* – – –
None 0.63 0.65 0.54 0.66 0.41
Subjective 0.77 0.51 0.24 0.51 0.15
Objective 0.97 0.51 0.03 0.51 0.02
Assessment 0.72 0.30 0.20 0.31 0.17
Plan 0.92 0.38 0.06 0.38 0.04

Notes. *F1 for all sections is the macro f1 score. Y1 and Y2 refer to the two independent
annotations of the same medical conversation.

A.3. Results

Table 8 displays the results for note level alignment statistics: deletions, insertions, identical, sub-
stitutions, tag overlap, and evidence overlap. The averages and variance from 599 files are shown.
The annotators met the target metrics that we set for them in all cases, meaning that the rates of
deletions and insertions were not significantly higher than 30% on average, and evidence and tag
overlap for substitutions were not significantly less than 70%. Table 9 provides a human baseline
for accuracy and f1, and also reports the prevalence and odds of multiple annotators classifying ut-
terances into different SOAP sections. When assess all the sections combined, accuracy was around
54%, while macro ff1 was around 0.47. Individual section accuracies were mostly driven by the class
prevalence, indicating the accuracy may not be a good metric for understanding classifier perfor-
mance on the individual SOAP sections. F1 scores were 0.51 for the Subjective and Objective, 0.38
for the Plan, and 0.30 for the Assessment. This suggests that the annotators were mostly likely
to disagree about cited evidence for the Plan and Assessment. Still, a human annotator citing an
utterance as evidence to support a note written in one of the for SOAP sections was a reasonably
strong indicator that another annotator would also do so. For sections with low prevalence like
the Plan and Objective, an annotator citing an utterance as evidence for a particular SOAP meant
it was anywhere from around 10-30 times more likely that the other annotator also would cite it
as evidence for the same SOAP section, compared to when one annotator did not use a particular
utterance as evidence.
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