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Appendix

A LOWER BOUNDS

A.1 Noise Sensitivity Lower Bound for Some Symmetric Functions

In this section we show that some families of symmetric functions on subsets of half the bits are hard to improperly
learn in an information-theoretic sense, and prove Theorem 1.2.

It can be easily checked that the distribution D has the following properties:

• For every z ∈ {0, 1}n/2 and a random string x ∼ D, xz is distributed as a uniformly random string over
{0, 1}n/2.

• For every pair of strings z, z′ ∈ {0, 1}n/2 and a random string x ∼ D, the random strings xz and xz
′
,

restricted to the coordinates where z and z′ disagree, are ρ-noisy copies of each other.

• To construct the distribution of xz
′

from xz, one can apply ρ-noise to the coordinates of xz in those
coordinates where z and z′ differ (and just read off the coordinates of xz where they are the same).

• In fact, Dz is identical to D for every z ∈ {0, 1}n/2. However, the distribution of labeled examples 〈x, fz(x)〉
where x ∼ Dz depends on z. The distribution of labeled examples after attribute noise 〈Nz

ρ (x), fz(x)〉 is
independent of z; the marginal distribution on Nz

ρ (x) is D = Dz.

A.1.1 Noise Sensitivity

For concreteness, recall that the noise operator at ρ on S is denoted by NS,ρ(x) is a random string such that
NS,ρ(x)i is a uniform random bit ρ-correlated with xi if i ∈ S, and Nm,ρ(x)i = xi with probability 1 for i /∈ S
(cf. O’Donnell (2014)). We now prove Claim 3.1:

Proof of Claim 3.1. Note that, for every x, Nρ/15(x) is distributed as NT ,ρ(x), where T is a set where each
coordinate is included independently with probability 1/15. It follows that

NSρ/15(f) = Pr
y∼Un/2

[f(y) 6= f(Nρ/15(y))]

= Pr
y∼Un/2

[f(y) 6= f(NT ,ρ(y))]

= ET [NST ,ρ(f)].

By a Chernoff bound, Pr[|T | ≤ n/14] ≥ 1− 2−Ω(n). Thus, for a set S such that |S| = n/14, we have

NSρ/15(f) = ET [NST ,ρ(f)]

= ET [NST ,ρ(f) | |T | ≤ n/14] Pr
T

[|T | ≤ n/14]

+ ET [NST ,ρ(f) | |T | > n/14] Pr
T

[|T | > n/14]

≤ NSS,ρ(f) Pr[|T | ≤ n/14] + 2−Ω(n)

≤ NSS,ρ(f)(1 + o(1)),

where we used the fact that NSS,ρ is nondecreasing as |S| increases. (Since we assumed that f is symmetric,
only |S| matters.) Dividing both sides by the (1 + o(1)) factor yields the claim.

Remark A.1. The symmetric assumption can be relaxed by noting that the bound works for any function that is
roughly balanced over the uniform distribution, since the noise sensitivity of such functions is Ω(min{Pr[f(x) =
0],Pr[f(x) = 1]}). Roughly speaking, this result asserts that we cannot learn with error smaller than the noise
sensitivity.
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A.2 Maximum Sensitivity Lower Bound for Conjunctions

In this section we show a lower bound for improper list learning of conjunctions and by proving a more specific
version of Theorem 1.5. We will use the same notation as in Section A.1.

Theorem A.2. Let k > 0 be an integer, ε > 0, and let Ck be the set of all conjunctions over k bits out of n bits
f : {0, 1}n → {0, 1}. If the attribute noise is ρ = 1

k > 8ε, then any net H of functions satisfying

max
z∈{0,1}n/2

min
h∈H

Pr
x∼Dz

[fz(x) 6= h(x)] < ε

must have |H| > 2Ω(k).

Proof. Suppose that the distribution Dz over {0, 1}2k is such that

• The coordinates in xz are drawn independently at random with bias 1/k. That is, xz ∼ µk,1/k, where µn,p
denotes the p-biased distribution over {0, 1}n.

• The coordinates in xz are ρ-noisy copies of xz; specifically, each bit xzii is a ρ-noisy copy of xzii .

We will show that if z is unknown, and we see labeled examples according to fz under Dz with ρ-bounded
attribute noise, then list-learning to small accuracy requires an exponential size list. That is, for every set of
functions H (our proposed net), the quantity

max
z∈{0,1}n/2

min
h∈H

Pr
x∼Dz

[fz(x) 6= h(x)]

is “large” if |H| is sub-exponential in k.

For fz with respect to Dz, given x, the attribute noise Nz
ρ (x) is as follows: we apply ρ-noise to each xzii , and no

noise to xzii . It follows that for every Dz, the resulting distribution over the labeled examples is the same. We
define D to be distribution5 on {0, 1}n such that, for each i, x0

i and x1
i are ρ-correlated random bits with bias

(1 − ρ)(1/k) + ρ(1 − 1/k), and the k pairs (x0
i , x

1
i ) are chosen independently. It can be easily checked that the

distribution D has the following properties:

• For every z ∈ {0, 1}n/2 and a random string x ∼ D, xz is distributed as a uniformly random string over
{0, 1}n/2.

• For every pair of strings z, z′ ∈ {0, 1}n/2 and a random string x ∼ D, the random strings xz and xz
′
,

restricted to the coordinates where z and z′ disagree, are ρ-noisy copies of each other.

• To construct xz
′

from xz, one can apply ρ-noise to the coordinates of xz in those coordinates where z and
z′ differ (and just read off the coordinates of xz where they are the same).

• In fact, Dz is identical to D for every z ∈ {0, 1}n/2. However, the distribution of labeled examples 〈x, fz(x)〉
where x ∼ Dz depends on z. The distribution of labeled examples after attribute noise 〈Nz

ρ (x), fz(x)〉 is
independent of z; the marginal distribution on Nz

ρ (x) is D = Dz.

Unlike the uniform distribution case, when we consider the accuracy of a function in the net on a conjunction,
the distribution under which we calculate the error depends on the conjunction. We compute the following
quantities first:

• The probability of the all-0’s string in the true distribution is (1− 1/k)k(1− ρ)k; the all 0’s string in drawn
in the conjunction bits, and no flips occur in the noisy version.

5Actually, this is the same as Dz.
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• The probability of a string of all-0’s, except for xbi = 1 depends on the conjunction. If zi = b (xbi is in the
conjunction), then the probability mass assigned is (1− 1/k)k−1(1/k)(1− ρ)k−1ρ. If zi = 1− b (xbi is not in
the conjunction), then the probability mass assigned is (1− 1/k)k(1− ρ)k−1ρ.

Consider the values of a function f on these standard basis strings.

• If f(ei,b) = 1 (xbi = 1) and zi = b (xbi is in the conjunction), f incorrectly computes the conjunction. The
contribution to the error is (1− 1/k)k−1(1/k)(1− ρ)k−1ρ.

• If f(ei,1−b) = 0 (xbi = 0) and zi = b (xbi is in the conjunction), f incorrectly computes the conjunction. The
contribution to the error is (1− 1/k)k(1− ρ)k−1ρ.

So for every conjunction, a false 0 is roughly k times as costly as a false 1. To make the error less than
(1− 1/k)k−1(1/k)(1− ρ)k−1ρ · (99k/100), there must be a function in the net that has no false 0’s and at most
99k/100 false 1’s on these strings. A function in the net covers the most conjunctions by taking f to be 1 on
k+99k/100 = 199k/100 of these strings and 0 on the other k/100. A function is covered if its bits are correspond
to those with ones. There are 299k/100 conjunctions covered, but 2k conjunctions in total, so any net must have
2k/100 functions in it to achieve error below (1− 1/k)k−1(1/k)(1− ρ)k−1ρ · (99k/100). Taking ρ = 1/k, this is at
least

(1− 1/k)k−1(1/k)(1− 1/k)k−1(1/k) · (99k/100)

= 99(1− 1/k)2k−2/(100k)

≥ 99/(100e2k)

≥ 1/(8k),

so the error is at least ρ/8. We need ρ < 8ε for a sub-exponential size net.

B PROOF OF THEOREM 1.6

Our main theorem (the formal version of Theorem 1.6) is the following

Theorem B.1. For any positive integer k and any real numbers 0 < ε, δ < 1, 0 < γ ≤ 1/2, there exists a
randomized algorithm which, with probability at least 1 − δ, list-learns k-conjunctions with accuracy 1 − ε, with
sample complexity Õ(k4 log(1/δ)/(ε9γ4)) and time complexity max{Õ(n2k4 log(1/δ)/(ε9γ4)), O((32k2/ε5γ2)k)},
in the attribute-noise model with bit noise rate 0 ≤ νi <

1
2 − γ for every 1 ≤ i ≤ n, under the assumption that

the ground-truth distribution is k′-wise independent for some k′ ≥ 2.

In the rest of this section, we set m := 32k2/(ε5γ2). Also, by a simple application of Chernoff bound, if we
draw M := O(k4 log n log(1/δ)/(ε9γ4)) random examples from the noisy example oracle ẼX(c,D), then with
probability at least 1 − δ, we can estimate quantities such as ED̃1

[xi], ED̃1
[xi · xj ] with additive accuracy

O(1/(εm)) for every 1 ≤ i, j ≤ n. To ease exposition, from now on, we condition our arguments on this event
happening.

Since every k′-wise independent distribution for k′ ≥ 2 is also pairwise independent, it is enough to prove
Theorem B.1 for k′ = 2. The algorithm for the pairwise independence test is given by Algorithm 2.

In the rest of this section, we use the notation Ĥ to denote the estimate of a quantity H using random examples
sampled from the noisy example oracle ẼX(c,D).

First of all, since we include the trivial functions 0 and 1 in the output list, our learning algorithm succeeds
trivially whenever the target concept is ε-close to either 0 or 1. Therefore, from now on, we assume that
ε ≤ PrD[c(x) = 1] ≤ 1− ε.

B.1 Conjunction Bits with Low Label-Sensitivity

The next lemma shows that using bits in S we can get a conjunction which approximates the target concept
well.
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Lemma B.2. Let c = ∧i∈cxi be the target concept, and let c′ be the set of bits obtained by removing from c the
set of bits eliminated in Line 8 of Algorithm 1. Then conjunction c′ is ε/2-close to c, i.e. PrD[c(x) 6= c′(x)] ≤ ε.

Proof. First note that eliminating non-conjunction bits can not worsen the performance of our learning algorithm,
so we can focus on the effect of eliminating a conjunction bit from S in Line 8.

Since c′ is a subset of c,

Pr
D

[c(x) 6= c′(x)] = Pr
D

[c′(x) = 1 and ∃i ∈ c \ c′ such that xi = 0]

≤ Pr
D

[∃i ∈ c \ c′ such that xi = 0]

≤
∑
i∈c\c′

Pr
D

[xi = 0]. (by union bound) (1)

We can upper bound PrD[xi = 0] for any i ∈ c \ c′ as

Pr
D

[xi = 0] = Pr
D

[c(x) = 0] · Pr
D0

[xi = 0] + Pr
D

[c(x) = 1] · Pr
D1

[xi = 0]

= Pr
D

[c(x) = 0] · Pr
D0

[xi = 0] ≤ Pr
D0

[xi = 0].

On the other hand, in terms of quantities over the observed distribution D̃, we have

Pr
D̃0

[xi = 0] = (1− νi) Pr
D0

[xi = 0] + νi Pr
D0

[xi = 1]

= (1− νi) Pr
D0

[xi = 0] + νi(1− Pr
D0

[xi = 0])

= (1− 2νi) Pr
D0

[xi = 0] + νi,

and
Pr
D̃1

[xi = 0] = (1− νi) Pr
D1

[xi = 0] + νi Pr
D1

[xi = 1] = νi Pr
D1

[xi = 1] ≤ νi.

Using O(log n log(1/δ)k2/ε3γ2) = o(M) random examples, we can, with probability at least 1 − δ, obtain
Ω(log n log(1/δ)k2/ε2γ2) random negative examples and Ω(log n log(1/δ)k2/ε2γ2) random positive examples,

and get an estimate of L̂Si with |L̂Si−LSi| ≤ εγ/(2k) for every 1 ≤ i ≤ n. Since bit-i was eliminated from S, we

LSi ≤ L̂Si + εγ/(2k) < 2εγ/k.

Combining this with bounds on PrD̃0
[xi = 0] and PrD̃1

[xi = 0], we have

2εγ/k > LSi = Pr
D̃0

[xi = 0]− Pr
D̃1

[xi = 0] ≥ (1− 2νi) Pr
D0

[xi = 0] > 2γ Pr
D0

[xi = 0],

where the last step follows from the fact that νi <
1
2 − γ. Therefore we have PrD0

[xi = 0] < ε/k.

Finally, plugging the above upper bound on PrD0
[xi = 0] into inequality (1) completes the proof.

B.2 Pairwise Independent Bits

A simple but important observation is that, if the target concept conjunction is c = ∧i∈cxi, then in the observed
distribution D̃1 of positive examples, the bits in c are totally independent. This is because, when restricting to
bits in c, D1 is supported on a single vector 1k. After applying the (bit-wise independent) attribute noise, D̃1 is
a product distribution when restricting to bits in c.

As it is computationally expensive to check total independence among the conjunction bits on D̃1, and pair-
wise independence suffices for our concentration argument, we check pairwise independence in Algorithm 2 by
estimating the covariances between each pair of bits.

Lemma B.3. With probability at least 1− δ, the followings hold: the output S of Algorithm 2 includes every bit
in c; and conversely, every pair of bits Xi and Xj in S are close to being pairwise independent in the sense that
|CovD̃1

(Xi, Xj)| ≤ 1/(4εm).
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Claim B.4. Let D′ : {0, 1}n → R≥0 be a distribution and let X ∈ {0, 1}n be the random variable obtained
from sampling according to D′. Then, for any 0 ≤ ε ≤ 1/2, if Pr[Xi = 1] ≤ ε for some 1 ≤ i ≤ n, then
|Cov(Xi, Xj)| ≤ ε for every i 6= j. The same bound holds when Pr[Xi = 0] ≤ ε.

Proof. Let p0 = Pr[Xi = 0 ∧ Xj = 0], p1 = Pr[Xi = 0 ∧ Xj = 1], p2 = Pr[Xi = 1 ∧ Xj = 0], and p3 =
Pr[Xi = 1 ∧Xj = 1]. Then p2 + p3 = Pr[Xi = 1] ≤ ε and Cov(Xi, Xj) = p3 − (p2 + p3)(p1 + p3). Therefore,
Cov(Xi, Xj) ≥ −(p2 + p3)(p1 + p3) ≥ −(p2 + p3) = −ε. On the other hand, Cov(Xi, Xj) ≤ p3− p2

3 ≤ ε− ε2 ≤ ε,
as x− x2 is increasing for 0 ≤ x ≤ 1/2.

The case of Pr[Xi = 0] ≤ ε follows directly from the identity Cov(1−Xi, 1−Xj) = Cov(Xi, Xj).

Claim B.5. Let distribution D′ and random variable X be the same as in Claim B.4. For any pair of distinct

bits i and j, let ̂Cov(Xi, Xj) := ̂E[Xi ·Xj ]− Ê[Xi] · Ê[Xj ] be the estimated covariance of Xi and Xj. Then the
estimate error can be upper bounded as

| ̂Cov(Xi, Xj)−Cov(Xi, Xj)| ≤ | ̂E[Xi ·Xj ]− E[Xi ·Xj ]|+ 2|Ê[Xi]− E[Xi]|+ 2|Ê[Xj ]− E[Xj ]|.

Proof. Let ∆Xi = Ê[Xi]− E[Xi] and ∆Xj = Ê[Xj ]− E[Xj ]. Then we have

∣∣∣Ê[Xi] · Ê[Xj ]− E[Xi] · E[Xj ]
∣∣∣ = |∆XiE[Xj ] + ∆XjE[Xi] + ∆Xi∆Xj |

≤ |∆Xi|(E[Xj ] + |∆Xj |) + |∆Xj |(E[Xi] + |∆Xi|)
≤ 2|∆Xi|+ 2|∆Xj |,

because both Ê[Xi] and E[Xi] are real numbers between 0 and 1. Now the bound in the claim follows directly
from ∣∣∣ ̂Cov(Xi, Xj)−Cov(Xi, Xj)

∣∣∣ =
∣∣∣ ̂E[Xi ·Xj ]− Ê[Xi] · Ê[Xj ]− E[Xi ·Xj ] + E[Xi] · E[Xj ]

∣∣∣
≤
∣∣∣Ê[Xi] · Ê[Xj ]− E[Xi] · E[Xj ]

∣∣∣+
∣∣∣ ̂E[Xi ·Xj ]− E[Xi ·Xj ]

∣∣∣ .
Proof of Lemma B.3. As mentioned earlier, if we draw enough examples from the noisy example oracle,
we can esitmate quantities such as ED̃1

[Xi] and ED̃1
[Xi · Xj ] accurately enough. More specifically, using

O(log(1/δ) log n(εm)2/ε) = Õ(k4 log(1/δ)/(ε9γ4)) random samples, with probability at least 1 − δ, we have

| ̂ED̃1
[Xi]−ED̃1

[Xi]| ≤ 1/(48εm) for every 1 ≤ i ≤ n and | ̂ED̃1
[Xi ·Xj ]−ED̃1

[Xi ·Xj ]| ≤ 1/(24εm) for every pair
of distinct 1 ≤ i, j ≤ n. Then for every pair of conjunction bits i, j ∈ c or a pair of conjunction bit i ∈ c and and a

non-conjunction bit j ∈ [n] \ c, we always have CovD̃1
(Xi, Xj) = 0. By Claim B.5, | ̂CovD̃1

(Xi, Xj)| ≤ 1/(8εm),
so any conjunction bit can never be removed from S in line 12 of Algorithm 2. On the other hand, by Claim B.4
and Claim B.5 and analogous calculations, for any pair of bits Xi and Xj that are in the output S of Algorithm 2,
it must be the case that |CovD̃1

(Xi, Xj)| ≤ 1/(4εm).

B.3 Bounding the Size of S

Claim B.6. For every surviving bit Xi in S, we have ED̃1
[Xi]− ED̃[Xi] > ε2γ/(2k).

Proof. If xi is in S, then by a similar argument as in the proof of Lemma B.2, LSi ≥ L̂Si − εγ/(2k) ≥ εγ/(2k).



Mahdi Cheraghchi, Elena Grigorescu, Brendan Juba, Karl Wimmer, Ning Xie

Now, by the definitions of ED̃[Xi] and ED̃1
[Xi],

ED̃1
[Xi]− ED̃[Xi] = ED̃1

[Xi]− (Pr
D̃

[c = 0] · ED̃0
[Xi] + Pr

D̃
[c = 1] · ED̃1

[Xi])

= (1− Pr
D̃

[c = 1])(ED̃1
[Xi]− ED̃0

[Xi])

≥ (1− Pr
D̃

[c = 1])
εγ

4k

> ε · εγ
4k

(since Pr
D̃

[c = 1] = Pr
D

[c = 1] ≤ 1− ε)

=
ε2γ

2k
.

Lemma B.7. Suppose the size of S at line 9 in Algorithm 1 is at least m. Then the target concept c is ε-close
to the all-zero function 0.

Proof. Suppose |S| ≥ m. Let S′ ⊆ S be any subset of S of size exactly m. Without loss of generality, assume
that S′ = {1, . . . ,m}.

Let X and X+ be the random variables obtained by sampling from {0, 1}n according to distributions D̃ and D̃1

respectively. Let random variable Z(X) := X1 + · · ·+Xm and Z+(X+) := X+
1 + · · ·+X+

m.

Since D is pairwise independent, then by Claim 3.5, distribution D̃ is pairwise independent as well. Therefore,

Var(Z) = Var(X1) + · · ·+ Var(Xm) =

m∑
i=1

ED̃[Xi](1− ED̃[Xi]) ≤
m

4
.

On the other hand, using the bound on covariances in Lemma B.3, we have

Var(Z+) =

m∑
i=1

Var(X+
i ) +

∑
i 6=j

Cov(X+
i , X

+
j ) <

m

4
+m2 1

4εm
≤ m

2ε
.

Let Z̄ = ED̃[Z] and Z̄+ = ED̃1
[Z+]. Then by Claim B.6,

∆Z := Z̄+ − Z̄ >
ε2γm

2k
.

Now, by setting ∆1 =
√

m
2ε and applying Chebyshev’s inequality to Z, we have

Pr
D̃

[Z ≥ Z̄ + ∆1] ≤ Pr[|Z − Z̄| ≥ ∆1] ≤ Var(Z)

∆2
1

≤ ε/2.

Similarly, letting ∆2 =
√

2m
ε and applying Chebyshev’s inequality to Z+ yields

Pr
D̃1

[Z+ ≤ Z̄+ −∆2] ≤ 1/4.

It is easily checked that ∆1 + ∆2 <
ε2γm

2k < ∆Z. Therefore,

ε/2 ≥ Pr
D̃

[Z(X) ≥ Z̄ + ∆1] ≥ Pr
D̃

[Z(X) ≥ Z̄+ −∆2]

≥ Pr
D̃

[Z(X) ≥ Z̄+ −∆2 and X is a positive example]

= Pr
D̃1

[Z+(X+) ≥ Z̄+ −∆2] Pr
D̃

[c(X) = 1]

≥ (1− 1

4
) Pr
D̃

[c(X) = 1],
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and hence

Pr
D̃

[c(X) = 1] = Pr
D

[c(X) = 1] ≤ ε/2

1− 1/4
=

2

3
ε ≤ ε,

which completes the proof.

B.4 Putting Everything Together

Now we are ready to put everything together and prove the correctness of list-learning algorithm, i.e., Theo-
rem B.1.

Proof of Theorem B.1. First of all, the claimed sample complexity of the learning algorithm follows directly
from Lemma B.3, and the time complexity bound is due to the fact that we need to estimate, using the random

examples, ̂CovD̃1
(Xi, Xj) for every pair 1 ≤ i < j ≤ n, and that at the end we may need to output a list of

(
m
≤k
)

conjunctions.

Next, by Lemma B.3, every conjunction bit passes the Pairwise-Independence-Test and hence in S. Then, by
Lemma B.2, filtering out low label-sensitive bits can cause at most an error of ε. That is, if we output all

(
m
≤k
)

conjunctions of size at most k from bits in S, at least one of these is ε-close to the target concept c(x).

Finally, Lemma B.7 ensures that when the size of S is large, we can simply output the 0 function which is ε-close
to c.

C THE TRIVIAL “BEST AGREEMENT” ALGORITHM
(INFORMATION-THEORETIC-BOUND VERSION)

A naive algorithm for learning k-conjunctions with attribute noise is to try all
∑k
i=0 2i

(
n
i

)
< (2n)k+1 conjunctions

of size at most k and output the one that agrees with examples best.

Theorem C.1. Given 0 < ε < 1/2 and assume the noise rate per coordinate is unknown and satisfies ν ≤ ε
2k ,

the naive algorithm that outputs the k-conjunction with maximum agreement with the observed distribution runs
in time O(nk) and with probability 1 − δ outputs a conjunction that is (1 − ε)-close to the conjunction labeling
the noisy examples.

Proof. Let D be the underlying distribution and let ν = (ν1, . . . , νn) be the attribute noise vector with upper
bound ν, i.e. νi ≤ ν for every 1 ≤ i ≤ n. For ease of exposition, assume that f(x) = x1 ∧ · · · ∧ xk is the target
concept. For every x ∈ {0, 1}n, let x̃ = x ⊕ µ be the vector obtained from x by adding the attribute noise µ
specified by ν. Lastly, let X̂ denote the set of noisy examples output by the oracle {x̃1, x̃2, . . . , x̃m}. Define the
empirical disagreement of a conjunction g on the sample by

disagreement(g)X̂ =
1

m

∑
x̃∈X̂

Ig(x̃) 6=f(x),

where Ig(x̃)6=f(x) is the indicator random variable of the event that g(x̃) 6= f(x).

By a Hoeffding bound, it follows that

Pr[|disagreement(g)X̂ − Ex,ν [disagreement(g)X̂ ]| > t] ≤ e−2mt2 .

Let us calculate Ex,ν [disagreement(g)X̂ ] first when g = f , and then when distD(f, g) > ε. We will upper
bound this quantity when f = g and lower bound it when f and g are ε-far. We will show that the minimum
disagreement among all ε-far functions g is larger than the disagreement of f on the observed set X̂, with high
probability. Therefore we output an ε−close conjunction with high probability 1− δ.

Note that the example oracle generates an example in the following process: first draws a string x according
to D, labels it as f(x), then adds the attribute noise which transforms x into x̃. Therefore the example we
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see is (x̃, f(x)). But f will predict the label as f(x̃). Hence, the probability that f makes a mistake, i.e., the
disagreement between f and the example oracle is

Ex,ν [disagreement(g)X̂ ] = Pr
D,ν

[f(x) 6= f(x̃)] ≤ max
x

Pr
ν

[f(x) 6= f(x̃)]. (2)

Write x|[k] for the k-bit string obtained by projecting x onto index subset [k]. Clearly f(x) = 1 if and only if

x|[k] = 1k. If f(x) = 0, then Prν [f(x) 6= f(x̃)] = Prν [x̃|[k] = 1k] =
∏
i∈[k]:xi=1(1−νi) ·

∏
i∈[k]:xi=0 νi ≤

∏
i∈[k] νi ≤

1−
∏
i∈[k](1− νi), assuming ν < 1/2.

On the other hand, when f(x) = 1, then

Pr
ν

[]f(x) 6= f(x̃)] = Pr
ν

[x̃|[k] 6= 1k] = 1−
∏
i∈[k]

(1− νi) ≤ 1− (1− ν)k ≤ kν.

Therefore, Ex,ν [disagreement(g)X̂ ] ≤ kν.

Note that Prν [g(x) 6= g(x̃)] ≤ kν holds for any conjunction g of size at most k. Now for any k-conjunction g
which is at distance ε from f under D, i.e. distD(f, g) = ε, we have

Ex,ν [disagreement(g)X̂ ] =
∑
x

D(x) Pr
ν

[f(x) 6= g(x̃)]

=
∑

x:f(x)=g(x)

D(x) Pr
ν

[g(x) 6= g(x̃)] +
∑

x:f(x)6=g(x)

D(x) Pr
ν

[g(x) = g(x̃)]

≥
∑

x:f(x)6=g(x)

D(x) Pr
ν

[g(x) = g(x̃)] ≥ (1− kν)distD(f, g) = (1− kν)ε.

By taking a union bound over all the O(nk) conjunctions that are ε-far from g, it follows that with probability

> 1− nke−2mt2 all these conjunctions g are such that

disagreement(g)X̂ ≥ (1− kν)ε− t.

By the above calculations it also follows that f itself satisfies

disagreement(f)X̂ ≤ kν + t.

It follows that if we assume that the maximum attribute noise is small enough, e.g. ν ≤ ε
2k , t = ε/8, ε < 1/2

and nke−2mt2 < δ/2, then with probability 1 − δ we output a conjunction that is ε-close to f , using m =
Θ( 1

ε2 (log 1
δ + k log n)) examples.

D PROOF OF CLAIM 3.5

Proof. First of all, for any 1 ≤ i ≤ n, if we let pi := PrD[Xi = 1] and p̃i := PrD̃[Xi = 1], then(
1− p̃i
p̃i

)
=

(
1− νi νi
νi 1− νi

)(
1− pi
pi

)
.

More generally, for any subset of k indices {i1, . . . , ik} ⊂ [n],PrD̃[Xi1 · · ·Xik = 0k]
...

PrD̃[Xi1 · · ·Xik = 1k]

 =

(
1− νi1 νi1
νi1 1− νi1

)
⊗ · · · ⊗

(
1− νik νik
νik 1− νik

)PrD[Xi1 · · ·Xik = 0k]
...

PrD[Xi1 · · ·Xik = 1k]

 ,
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where ⊗ stands for the Kronecker product of matrices. Now suppose that D is k-wise independent, thenPrD[Xi1 · · ·Xik = 0k]
...

PrD[Xi1 · · ·Xik = 1k]

 =

(
1− pi1
pi1

)
⊗ · · · ⊗

(
1− pik
pik

)
,

and it follows thatPrD̃[Xi1 · · ·Xik = 0k]
...

PrD̃[Xi1 · · ·Xik = 1k]

 =

((
1− νi1 νi1
νi1 1− νi1

)(
1− pi1
pi1

))
⊗ · · · ⊗

((
1− νik νik
νik 1− νik

)(
1− pik
pik

))

=

(
1− p̃i1
p̃i1

)
⊗ · · · ⊗

(
1− p̃ik
p̃ik

)
.

That is, D̃ is also k-wise independent. The other direction follow from an identical argument by noting that

matrix

(
1− νi νi
νi 1− νi

)
is invertible — namely

(
1− νi νi
νi 1− νi

)−1

=

( 1−νi
1−2νi

− νi
1−2νi

− νi
1−2νi

1−νi
1−2νi

)
,

for every 0 ≤ νi < 1/2.
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