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Abstract

Tractable contextual bandit algorithms of-
ten rely on the realizability assumption —
i.e., that the true expected reward model
belongs to a known class, such as linear
functions. In this work, we present a
tractable bandit algorithm that is not sen-
sitive to the realizability assumption and
computationally reduces to solving a con-
strained regression problem in every epoch.
When realizability does not hold, our algo-
rithm ensures the same guarantees on re-
gret achieved by realizability-based algo-
rithms under realizability, up to an additive
term that accounts for the misspecification
error. This extra term is proportional to
T times a function of the mean squared er-
ror between the best model in the class and
the true model, where T is the total num-
ber of time-steps. Our work sheds light
on the bias-variance trade-off for tractable
contextual bandits. This trade-off is not
captured by algorithms that assume real-
izability, since under this assumption there
exists an estimator in the class that attains
zero bias.

1 Introduction

Contextual bandit algorithms serve as a fundamen-
tal tool for online decision making and have been
used in a wide range of settings from recommenda-
tion systems [Agarwal et al., 2016] to mobile health
[Tewari and Murphy, 2017], and due to their appli-
cability over the past couple of decades there has
been an increasing amount of research in contextual

Proceedings of the 24'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by

the author(s).

Vitor Hadad
Stanford University

Susan Athey
Stanford University

bandits [Lattimore and Szepesvari, 2020]. However,
the performance of many common algorithms relies
on an assumption called “realizability”, which re-
quires the analyst to possess some knowledge about
the underlying data generating process — and often
also relies on some luck that the process be rela-
tively simple. When this assumption is satisfied,
there exist algorithms that are statistically optimal
and computationally tractable (in a sense we’ll dis-
cuss more below). However, when it is violated, the
performance of these algorithms can degrade in un-
expected ways. The search for tractable algorithms
that do not rely on this assumption an ongoing open
problem [Foster et al., 2019]. In this work, we pro-
pose an algorithm that is optimal when the “realiz-
ability” assumption is satisfied and whose behavior
is accurately characterized in its absence. We will
also point to directions of research that may help do
away with this assumption entirely.

Our underlying setup is the general stochastic con-
textual bandit setting. Using potential outcome no-
tation, observations are represented as a sequence of
iid random variables (zy,7:), where x; € X stands
for a context in arbitrary set X and r, € [0,1]
is a vector of rewards, where K := |A| is the (fi-
nite) number of actions. Upon selecting one of action
a; € A, the algorithm observes r;(a;). Therefore, the
sequence of observed data points is (zy, at, 7(ay)).
Here t denotes the time-step which and is also
the index for the sequence of observations. This
sequence has length 7', which may be known or
unknown. A “policy” is a deterministic mapping
from contexts to actions, representing a particu-
lar action selection strategy. Relative to the set
of all policies A%, we define the optimal policy as
T = argmax, ¢ ax Eq, r, [re(7(2z¢))], where the ex-
pectation is taken over contexts and rewards.! A “re-
ward model” or “outcome model” is a function that
(potentially inaccurately) represents the conditional
expectation of potential outcomes given action and

1Uniqueness of the optimal policy is not important
for our results.
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context. Reward models will often be represented
as f(z,a). We say that a reward model “induces a
policy 7" if w(z) € argmax, f(x,a) for every x.

The goal of bandit algorithms is to find a sequence of
actions that maximizes the sum of rewards observed
during the experiment or, equivalently, to minimize
cumulative regret, defined as the difference between
the reward that was observed and that that would
have been observed under the optimal policy,

Rr= Y @) —nl@). ()

The statistical performance of different algorithms
is characterized by the rate at which (1) grows with
the length of the experiment T

Contextual bandit algorithms can often be catego-
rized into three groups, depending on what is as-
sumed about the underlying data-generating pro-
cess. The first group of algorithms are the “ag-
nostic” algorithms. These algorithms make no as-
sumptions about the reward model, and they learn
the best policy in some fixed class II C A¥ while
balancing the exploration-exploitation trade-off. To
do this, these algorithms [Beygelzimer et al., 2011,
Dudik et al., 2011, Agarwal et al., 2014] need to
construct a distribution over the policies II in
every epoch.  Constructing this distribution is
computationally challenging, and hence this ap-
proach is colloquially referred to as the “Mon-
ster” |[Langford, 2014]. We now focus on the re-
sults in [Agarwal et al., 2014] because computation-
ally and statistically, they provide the state of the
art agnostic algorithms. When II is a finite class,
[Agarwal et al., 2014] present an algorithm called
ILTCB that constructs a distribution with support
size of O(log|II|) and the regret ? against the best
policy in II scales at the rate O(KT log|II|). Each
policy in the support of this distribution can be com-
puted by solving the following cost-sensitive classifi-
cation problem:

arg Elgﬁ(glfs(ﬂ(xsna (2)

where (z5,75) is some sequence in X' x [0, 1]%. When
1T is large, the support of the distribution needed to
be computed in every epoch of ILTCB may be large
and hence would still be impractical to implement.
To overcome this limitation, [Agarwal et al., 2014]

2Note that while this notion of regret compares
against the best policy in I, the notion of regret used in
this paper compares against the true optimal policy 7.

propose a heuristic called Online Cover (with param-
eter [) that computes a distribution over polices us-
ing the same approach as ILTCB but stops increas-
ing the support of this distribution after computing
some fixed number of policies [ for the support. To
the best of our knowledge there aren’t any theoret-
ical guarantees for Online Cover. Further, finding
an exact solutions to (2) is generally intractable, so
implementations of Online Cover use heuristics to
solve this optimization problem.

The second group of algorithms requires knowledge
about some set of functions F that is assumed to in-
clude the true reward model. That is, that there
exists a function f* € F such that f*(z,a) =
Ex,.r [7¢(a)|xe = 2] for all contexts and actions. This
assumption is called “realizability”, and it often al-
lows for algorithms that computationally tractable
and typically easier to implement. Computation-
ally, algorithms in this category rely on being able
to solve the regression problem

t—1

fi vy (o) = rif, O

or a weighted version of it, either online or
offline. A routine that solves (3) is called ‘“re-
gression oracle”. This class includes algorithms
built on upper confidence bounds [Li et al., 2010,
Abbasi-Yadkori et al., 2011, Foster et al., 2018] or
Thompson sampling [Agrawal and Goyal, 2013,
Russo et al., 2018], and algorithms built
on simple probabilistic selection strategies
[Abe and Long, 1999, Foster and Rakhlin, 2020,
Simchi-Levi and Xu, 2020]. Regret rates for
this class of algorithms are related to the com-
plexity class of the outcome model F, and
under realizability optimal algorithms attain
a rate of O(\/TKlog|F|) for finite classes F
(similar results are available for more general
classes). In particular, the FALCON algorithm of
[Simchi-Levi and Xu, 2020] will serve as the basis of
our method attains this statistically optimal rate (so
long as realizability holds) and is computationally
tractable, in that the algorithm only needs to solve
the problem (3) a small (at most logarithmic)
number of times during the experiment.

A third set of bandit algorithms that does not fall
neatly into any of the two categories above are
algorithms that allow for a non-parametric model
class. For example, in [Rigollet and Zeevi, 2010],
[Perchet et al., 2013] the reward model is assumed
to be Hélder continuous but non-differentiable, and
in [Hu et al., 2020], [Gur et al., 2019] it satisfies a
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Figure 1: Example. Data-generating process (left) and its best approximation in the class of linear functions

(right). The induced policies are the same.
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Figure 2: Evolution of model estimates for the UCB example. Although the model is initially correct,
the distribution shift caused by the assignment mechanism ends up biasing reward estimates over time. Best
linear approximation in black, dotted line. In our proposed algorithm, the blue and black lines are kept

appropriately close, preventing this phenomenon.

Hélder smoothness assumption. The main charac-
teristic of this class of algorithms is that they par-
tition the covariate space into hypercubes of appro-
priate size and run multi-armed bandit algorithms
within each cube. Depending on the smoothness of
the reward model, there can be some information
sharing across cubes that induces correlation across
assignments in adjacent hypercubes and decreases
regret. Although this is a very interesting direc-
tion of research, the structure of these algorithms
forces the running time to exponentially depend on
the context dimension, making them computation-
ally intractable and hard to implement for most real
life problems. Hence, for the rest of the paper, we
will focus on the first two classes of algorithms.

1.1 The problem with realizability

As we have mentioned before, realizability is an
extremely convenient and pervasive assumption in
many tractable contextual bandit algorithms, but it

is nevertheless very strong. In this section, we at-
tempt to shed light on some issues that may arise in
its absence.

To fix ideas, start from the following illustration.
There are two actions and a single context is dis-
tributed uniformly on the unit interval. However,
unbeknownst to the researcher, the conditional av-
erage rewards for each arm are a step function
fi(xy) == {zy > 0.5} and a constant f5(x;) =
0.5 (Figure 1). Rewards are observed with error
e ~ N(0,.01). The researcher erroneously as-
sumes that both can be realized in the class F of
linear functions. Fortunately, in this example the
best linear approximation ( fl*, fQ*) induces a good
policy. In fact, it coincides with the one the re-
searcher would obtain if they had knowledge about
the true function class — i.e., the policy induced by
the best linear approximation #* defined by 7 (z) = 1
if z > 0.5 and 7(x) 2 otherwise actually co-
incides with the policy induces by the true model
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m*(z) = argmax, f*(z,a). Therefore, if the se-
quence of fitted models ( fu, fzvt) converges to the
best linear approximation ( fft, f;t), regret should
decay to zero asymptotically. However, as we will
see next, this convergence may not happen.

Let us assume that the researcher collects data
via LinUCB [Li et al., 2010], with model updates in
batches of 100 observations. Figure 2 shows the evo-
lution of the estimated models ( th, fg’t> over time
for a single simulation. After about a few hundred
observations, the estimated model approximates the
best linear approximation well and regret is small
since the induced policy is nearly optimal. How-
ever, by continuing to assign treatments following
this policy (plus some negligible exploration), the
distribution of observations changes, which pushes
the model away from the best linear approximation.
In turn, this causes per-period regret to increase over
time, as we show on Figure 3.
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Figure 3: Evolution of per-period regret for the
UCB example described in the text. Regret initially
decreases because the estimated models ( fu, f27t)
are close to the best linear approximations ( ff, fQ*),
which in this example induces a good policy. How-
ever, as we gather more data that was collected
with an exploitation objective, the estimated model
diverges and the performance of the algorithm de-
grades. (Average across 100 simulations.)

The previous example demonstrates that in the ab-
sence of realizability the dynamics of adaptive data
collection can lead the algorithm to learn a policy
that is suboptimal relative to the one that it would
have learned under non-adaptive data collection. As
an extreme thought example, one may also consider
a situation in which actions are assigned via the op-
timal policy 7*. If we were to fit a linear model
using exclusively this data, we would estimate that
fl =1and fg = 0.5, which would in turn induce the
policy 7(z) = 1 — a policy that always assigns arm
1 everywhere and therefore clearly suboptimal. In

fact, more can be said. We can construct examples
where even when the approximation error b is arbi-
trarily small, given data from the optimal policy, the
confidence intervals used by LinUCB would tightly
concentrate around a high regret policy, showing
that the confidence intervals used by LinUCB are
extremely sensitive to the realizability assumption
(See Appendix E).

To prevent this phenomenon, in the next section we
consider an algorithm that constraints the estimate
of the outcome model f to be close to f* This
also allows us to derive upper bounds on regret in
terms of the deviation of the best in-class model f*
from the true model f*. This characterization is
important as it allows us to take into account regret
incurred due to model misspecification — a cost that
often assumed away under realizability.

1.2 Related work on misspecification

As we have discussed above, bandit algorithms
relying on regression oracles are computationally
tractable, and when their model is well-specified
they often exhibit attractive statistical properties.
More recently, there has been interest in develop-
ing algorithms that are robust to misspecification.
These works differ in how they define and mea-
sure misspecification, and how their regret bound
degrade as the level of misspecification increases.

[Neu and Olkhovskaya, 2020, Zanette et al., 2020]
assume that the absolute deviation between the
true reward function and its best linear approx-
imation is at most € uniformly across contexts
and actions. Under this assumption, they develop
bandit algorithms whose regret overhead due to
misspecification is bounded in terms of this measure
of misspecification e. Under the same measure of
misspecification, [Foster and Rakhlin, 2020] provide
similar results that hold for any class of models that
have an online regression oracle.

This type of uniform bound on model misspecifica-
tion can be arbitrarily large even in relatively be-
nign examples (see Appendix E). Concurrent work
of [Foster et al., 2020] use a different measure of mis-
specification that allows them to derive tighter re-
gret bounds while relying on online regression ora-
cles. Their measure of misspecification turns out to
be very similar to the one we use in this work, how-
ever we rely on constrained offline regression oracles
instead. Moreover, [Foster et al., 2020] also adapt
to unknown misspecification by relying on master
algorithms (see Section 3).
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[Lattimore et al., 2020] and [Ghosh et al., 2017] also
study the related problem of misspecified non-
contextual linear bandits.

2 Main results

We propose an algorithm that we call
Epsilon-FALCON, which is a modification of
the “FAst Least-squares-regression-oracle CONtex-
tual bandits”, or FALCON algorithm described in
[Simchi-Levi and Xu, 2020]. The main departure
from FALCON is that although we do posit some
“tentative” set F that could contain the true out-
come model, our regret guarantees do not depend
on this assumption being satisfied. For simplicity
of exposition we will initially assume that F is a
convex subset of a d-dimensional linear space 2, but
our results can be extended to more complex classes
as we show later.

We will need some additional notation. Let f*
represent the true outcome model, ie., f*(z,a) =
Ez,r [re(a)|zy = 2] for all  and a. Moreover, let
f* denote the best in-class approximation to the
true outcome model when data is collected non-
adaptively, or

f* .= argmin E E
f & fEF z~Dx a~Unif(A)

[(f(z,a) = f*(z,a))],
(4)
where Dy is the distribution of contexts, and
Unif(.A) is a probability distribution that assigns
equal probability to every arm. The approximation
error between these two functions is denoted as

b= E E [(f*(x,a)— f(z,0)%. (5

z~Dx a~Unif(.A)

Naturally, the approximation error (5) will be zero
when realizability holds. And when it doesn’t hold,
we will show that the algorithm will incur some re-
gret whose upper bound increases with the approx-
imation error. This is what allows us to accurately
characterize the cost that we pay when we F is mis-
specified (i.e., f* & F).

Algorithm: Epsilon-FALCON is implemented in
increasing epochs (batches) that are indexed by m.
Each epoch m begins at period 7,,_1, we set epoch
schedule so that 9 = 0, 7, > 4, and Ty;,41 = 27, for

3Consider the class of estimators F where linear func-
tions estimate rewards for each arm using a total of d
parameters. Note that this is a special case of requiring
F to be a convex subset of a d-dimensional linear space.
Hence, the guarantees in Theorem 1 hold for stochastic
linear bandits.

any epoch m > 1. Every epoch m starts out with an
estimated reward model fm obtained at the end of
the last batch, with fl = 0. For a fraction € of each
epoch, called the “passive” phase, Epsilon-FALCON
draws actions uniformly at random. For the remain-
ing 1 — e fraction of the epoch, in what we call the
“active” phase, it acts as a modified version of FAL-
CON.4

Our action selection mechanism is the same as FAL-
CON’s, so let’s briefly review it. At each epoch m,
given the current reward model estimate fm and a
scaling parameter 7,, > 0, actions are drawn from
the probability distribution described by the follow-
ing “action selection kernel”,

1 ~
Pmlalz) i= { KFrm (Fn @)= Fn(e,0)) for a # a
1= Za’#dp(a/|x) for a = a.

(6)

where @ = max, fm(a, x) is the best predicted ac-
tion. The assignment rule (6) ensures that ac-
tions that are predicted to be good according to
the current model estimate f,, are given higher
probability. The scaling parameter, set to v, ~
VE(Tm-1— Tm—2)/(dIn(m/§)) with initial values
v1 = 1, control the degree of exploration during the
active phase, with higher values of ~,,, indicating less
exploration. We may sometimes refer to -, and e
as the active and passive exploration parameters re-
spectively.

The main difference between our method and FAL-
CON is in how we estimate the outcome model fm+1
from data collected in the previous epoch m. The
original algorithm simply uses the estimator that
minimizes empirical risk on data collected in the
previous time-steps, but as we saw in the example
in Section 1.1, when realizability fails the sequence
of estimators fm may not converge to f*. This is
due to the fact that the empirical risk minimizer
when data is collected adaptively may be very dif-
ferent from the one attained when data is collected
non-adaptively, and its performance may not be well
understood (See Figure 4). In order to ensure that
our estimates converge to f*, our algorithm uses a
“constrained regression oracle” that ensures that the
estimated model is always close to the best approx-
imation f* Let’s see how this is done.

Denote the data collected using the passive and ac-
tive phases of the epoch m by S/, and S,, respec-

“More precisely, it acts as a modified version of the
FALCON+ algorithm in the same paper, but the dis-
tinction is minor enough that we will ignore it for the
purposes of naming our method.
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tively. Moreover, let F,, denote the subset of func-
tions f € F for which the following constraint in
satisfied,

Z (f(z,a)—7(a))? < apm+CidIn(12m?/6)
(z,a,r(a))eS?],
(7)

where o, := minge r Z(La’r(a))es% (g(x,a) —r(a))?
is the sum of squared residuals in the model fitted
on the data collected in the “passive” phase, and C}
is a constant chosen appropriately to ensure that f *
also lies in 7/ with probability at least 1—§/(12m?).

9

The estimated model fer] will be constrained to lie
in this set. More specifically, it is the output of the
following constrained regression problem:

min (f(z,a) —r(a))?
fer (z,a,r%)GSm (8)

s.t. fer,.

The intuition, again, is that since fm+1 € F!. by
construction, and since f* € F/, with high proba-
bility, the two will likely remain close. And since F,,
shrinks over time, fer] must ultimately converge to
f *. Therefore, the convergence issues we saw in our
example in Section 1.1 cannot happen. This is what
allows us to derive regret guarantees even when re-
alizability fails (see Figure 4 for an intuitive illustra-
tion). The full description and the pseudocode for
the general algorithm can be found in the Appendix
(Algorithm 1). 6

Computational tractability of the con-
strained regression problem: Note that
Epsilon-FALCON is very easy to implement given
a constrained regression oracle. Hence, for the
computational tractability of Epsilon-FALCON, it
is sufficient to argue that the constrained regression
problem is computationally tractable. When F
is the class of linear reward models, then clearly
the constrained regression problem is a convex and
can be solved efficiently. In general, when F is
any convex class, we show that the constrained
regression problem can be solved efficiently with a
weighted regression oracle (see Appendix D). Hence
we can use any of the many existing algorithms
for weighted regression as a subroutine to solve
the constrained regression problem. While this is

SWe pin down the value of this constant in the Ap-
pendix

6Except for the choice of v,, and the RHS of the con-
straint Equation (7), the algorithm for general F is the
same as the description in this section.

one approach to solve the constrained regression
problem, in practice directly solving the constrained
regression problem may be faster.

Theorem 1 provides a high probability regret guar-
antee for Epsilon-FALCON when F is a convex sub-
set of some d-dimensional linear space.

Theorem 1 (Linear case). Suppose F is a convex
subset of a d-dimensional linear space. With proba-
bility at least 1 — §, Epsilon-FALCON with passive
exploration parameter € > 0 attains the following re-
gret guarantee:

Rp <O ( KTdn (IHEST)) ¥ KT\/EwL eT>

The guarantees in (9) consist of three terms. The
first term is the regret due to the complexity of the
class F, and is the bound guaranteed by realizability
based algorithms like FALCON under realizability.
The second term can be interpreted as the “cost of
misspecification”, this term depends on the approx-
imation error b and the passive exploration param-
eter e. Finally, the third term is the regret incurred
in the passive phase and depends only on the passive
exploration parameter e.

9)

At first glance, the result in (9) may look rather
weak due to the linear dependence in the horizon T
However, we contend that any algorithm that that
works with a restricted class of policies or reward
models, including agnostic algorithms like ILTCB
[Agarwal et al., 2014|, will incur some linear regret
if these restrictions are violated. In Theorem 1 we
simply make this issue explicit, as one of our goals is
to accurately characterize the bias-variance trade-off
in our problem. Our results show that, if the prac-
titioner is willing to spend €T regret in the passive
phase, then in the active phase excess regret due
to misspecification will be O(KTy/b/+/€). On the
other hand, realizability based approaches do not
have any guarantees under general misspecification.

As a thought experiment, suppose we knew the ap-
proximation error b or could make an educated guess
about it. In that case we could choose € as a func-
tion of b so as to optimize (9) and obtain the next
result.

Corollary 1 (Linear case with known b). In the
setting of Theorem 1, if the passive exploration pa-
rameter is set to € = cK*°b2/> for some constant
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Figure 4: Intuition for our method. Left: the function f * is the best in-class approximation to f* under non-
adaptive data collection. Middle: under a different distribution, the best in-class approximation (starred)
may lie very far away from f*, and there are no guarantees on its performance. Right: in our method, we

construct a shrinking sequence of sets F,
estimates lie in this set.

¢ > 0, we have the following bound:

Rr <O ( KTdn (@) + K4/5b2/5:r> . (10)

This result is interesting because it tells us that if we
were able to tune the passive exploration parameter
optimally, we get improved regret rates that only
depend on the complexity of F and the approxima-
tion error b, thus achieving a bias-variance trade-off
over the entire horizon T. This suggests that tun-
ing € by estimating b may be a promising direction
for future work to get algorithms with better regret
guarantees.

Understanding the constrained regression
problem: Having explained the overall algorithm,
let’s now understand the constrained regression
problem in a bit more detail, so the reader will be
able to follow the proof steps in the Appendix.

At the end of epoch m, we have the two kinds of
data, that is the data from the passive phase of
the epoch and the data from the active phase of
the epoch. The data from the passive phase is used
to construct F),,, and contains the best in-class ap-
proximation of the true outcome model f * with high
probability (see Lemma 7). The data from the active
phase is used to select a “good” estimate within F/,
which in turn induces a “good” action selection ker-
nel. A good action selection kernel has low regret,
and ensures that the data generated by this kernel
can be used to construct “good” estimates in the next
epoch. In terms of exploration, there is a trade-off
between these two properties as more exploration
helps you generate “good” data but incurs higher re-
gret. In terms of estimates, both these properties

that contain f * with high probability, and ensure that our model

are related because good estimates come from good
data. For simplicity let us focus on arguing that the
action selections kernels we estimate generate “good”
data and believe that the active exploration param-
eter v, is set optimally. In particular, we say the
action selection kernel generates “good” data if the
reward of the policy induced by f * can be estimated
using the data generated by this kernel. Note that
this is trivially ensured when actions are selected
uniformly at random, as we did in the first epoch.
In later epochs, as the kernel gets less explorative
(vm increases), to ensure this we need the estima-
tor (fm41) that induces this action selection kernel
to be close to the best in-class model (f*). More
mathematically, as shown in Lemma 9, we need the
root mean squared difference between ferl and f *
to shrink at the same rate as =, increases. This
property is guaranteed by the fact that both fm+1
and f* lie in F], with high probability, and by the
fact that F/, is sufficiently small as we have collected
enough data in the passive phase to ensure this (see
Lemma 7). Additionally, this property helps us en-
sure that our action selection kernels p,, are stable
over time, in the sense that if the reward of a pol-
icy could be estimated from the data generated by
Pm+1 (in expectation) then the reward of this pol-
icy could also be estimated by the data generated
by pm (in expectation), see Lemma 10 for a more
formal statement. In other words, the set of policies
that we implicitly consider do not erratically change
over time and only decrease.

General classes of outcome models: Although
for concreteness we have explained our results when
F is a convex subset of a d-dimensional linear space,
Theorem 1 readily extends to more general classes
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of functions. In particular we can extend Theorem 1
whenever F is a convex and satisfies Assumption 1.
In terms of the algorithm, except for the choice of
vm and the RHS of the constraint Equation (7),
Epsilon-FALCON for general F is the same as the
description in this section. See Algorithm 1 in the
Appendix for more details. Stating Assumption 1
can get cumbersome quickly, here we state an infor-
mal version of this assumption, followed by Theo-
rem 2, and applications of this Theorem to various
convex classes F. In what follows comp(F) will de-
note an appropriate measure of complexity, like VC
subgraph dimension or entropy.

Main Assumption: We now state an informal
version of Assumption 1. Let n denote the num-
ber of data points collected from some distribu-
tion. Suppose we have p € (0,1], p' € [0,00), and
C > 0. Further suppose for any convex subset F’
of F and ¢ € (0,1/2), with probability 1 — ¢, for
any n > Cln” (n)In(1/¢)comp(F)/n”, the empiri-
cal and true risks of any estimators in F’ are “close”
in the following sense:

e If the population risk of any estimator in F’
is smaller than 7, then its empirical risk is not
larger than 3n/2.

e If the empirical risk of any estimator in F’ is
smaller than 7, then its population risk is not
larger than 27.

Theorem 2 (Main result). Suppose F is a con-
ver set and suppose Assumption 1 holds. Then with
probability at least 1 — 90, Epsilon-FALCON with pas-
sive exploration parameter € > 0 attains the follow-
ing regret guarantee:

Rp <O <\/ KT In” (T) 1n(1nEST)

[ b

In Appendix C, we provide convenient Lemmas
to prove Assumption 1 for various convex classes
F. These Lemmas directly follow from results in
[Koltchinskii, 2011]. In fact, Theorem 1 is implied
by Theorem 2 and results stated in Appendix C. We
now go over similar results that follow from Theo-
rem 2 and Appendix C.

) comp(F)

(11)

Example 1: Suppose F is convex and has VC-
subgraph dimension V. Then with probability 1 —4,

Epsilon-FALCON guarantees the following bound on
the regret Ryp:

(’)<\/KTV In (g) In (1]“5;[)) +KT\/E+6T>.

Example 2: Suppose F is a convex hull of class with
VC-subgraph dimension V. Then with probability
1 — 4, Epsilon-FALCON guarantees the following
bound on the regret Ryp:

243V 24V In(T) b
KT 2+2v | KTy —+€T].
(’)<\/ +2v 2527 n( 5 )—i— ”ﬁ—f—e)

Example 3: Suppose for some p € (0,1), the em-
pirical entropy is bounded by O(e=?¢) for all em-
pirical distributions. Then with probability 1 — §,
Epsilon-FALCON guarantees the following bound on
the regret Ryp:

ol KT <1H(T))+KT LHT .
5 c1/(1+p)

3 Discussion

This paper’s contribution is twofold. First, to illus-
trate how algorithms that rely on realizability may
incur unexpected regret when this assumption is vi-
olated. We saw in Section 1.1 that one can construct
examples where regret is large even in relatively be-
nign settings. Second, to propose a flexible family
of computationally tractable algorithm that are less
sensitive to realizability. Our analysis in Section 2
characterizes the behavior of regret under misspec-
ification and gives us insight into the bias-variance
trade-off in contextual bandits.

In terms of algorithm design, our proposed algo-
rithm Epsilon-FALCON inherits the computational
elegance of realizability based approaches like FAL-
CON. In particular, a single estimator gives you an
implicit distribution over policies via the action se-
lection kernel and bypasses the need to explicitly
construct a distribution over policies. Our key in-
sight is that by using a constrained regression es-
timator, we can make this approach robust to mis-
specification at the expense of some additional regret
in the passive phase.

We believe this work represents an important step
towards the development of contextual bandit algo-
rithms that are robust to misspecification. Natural
extensions include the following.
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Adapting to misspecification The performance
of Epsilon-FALCON depends on the input parame-
ter (€). One natural way to address this deficiency
may be to initialize multiple base algorithms with
different choices of ¢ and use a master algorithm
[Agarwal et al., 2017] to choose the best perform-
ing base algorithm. In fact, the recent work of
[Foster et al., 2020] take this approach to adapt to
unknown misspecification. The idea of using a mas-
ter algorithm to adapt to unknown misspecification
also appears in [Pacchiano et al., 2020], they use the
algorithm in [Zanette et al., 2020] as a base algo-
rithm to adapt to an unknown uniform misspecifi-
cation error for linear contextual bandits. The final
drawback is that we use naive uniform sampling for
the passive phase. One may be able to achieve a
tighter regret bound by using a more sophisticated
exploration scheme for the passive phase.

More general classes Epsilon-FALCON requires
the model class F to be convex. We use the convex-
ity of F in several ways. When F is convex and
has finite VC-dimension we get that p = 1 in As-
sumption 1. Convexity of F also allows us to solve
the constrained regression oracle using only an of-
fline weighted regression oracle (Section D). More
importantly, convexity of F helps ensure that there
is a unique best in-class estimator ( f *) up to evalu-
ation on a non-zero measure set, which in turn helps
ensure that the active policy (7 fm) converges to our
target policy (ﬂf*); see Lemmas 7, 9, and 10. As
many online regression algorithms rely on convexity,
one may expect this drawback to implicitly hold for
algorithms that rely on online regression oracles such

as [Foster and Rakhlin, 2020, Foster et al., 2020].

To close, we note that these results hint at the pos-
sibility of exploiting the bias-variance trade-off in
tractable contextual bandits to perform good model
selection. This would be an interesting direction for
future work.
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