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Abstract

In this paper, we consider a novel variant
of the multi-armed bandit (MAB) problem,
MAB with cost subsidy, which models many
real-life applications where the learning agent
has to pay to select an arm and is concerned
about optimizing cumulative costs and re-
wards. We present two applications, intel-
ligent SMS routing problem and ad audi-
ence optimization problem faced by several
businesses (especially online platforms), and
show how our problem uniquely captures key
features of these applications. We show that
naive generalizations of existing MAB al-
gorithms like Upper Confidence Bound and
Thompson Sampling do not perform well for
this problem. We then establish a fundamen-
tal lower bound on the performance of any
online learning algorithm for this problem,
highlighting the hardness of our problem in
comparison to the classical MAB problem.
We also present a simple variant of explore-
then-commit and establish near-optimal re-
gret bounds for this algorithm. Lastly, we
perform extensive numerical simulations to
understand the behavior of a suite of algo-
rithms for various instances and recommend
a practical guide to employ different algo-
rithms.

1 Introduction

In the traditional (stochastic) MAB problem (Rob-
bins (1952)), the learning agent has access to a set
of K actions (arms) with unknown but fixed reward
distributions and has to repeatedly select an arm to
maximize the cumulative reward. Here, the challenge
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is designing a policy that balances the tension between
acquiring information about arms with little historical
observations and exploiting the most rewarding arm
based on existing information. The aforementioned
exploration-exploitation trade-off has been extensively
studied, leading to some simple but extremely effective
algorithms like Upper Confidence Bound (Auer et al.
(2002a)) and Thompson Sampling (Thompson (1933);
Agrawal and Goyal (2017a)), which have been further
generalized and applied in a wide range of application
domains, including online advertising (Langford and
Zhang (2008); Cesa-Bianchi et al. (2014), Oliver and
Li (2011)), recommendation systems (Li et al. (2015,
2011); Agrawal et al. (2016)), social networks and
crowd sourcing (Anandkumar et al. (2011); Sankarara-
man et al. (2019), Slivkins and Vaughan (2014)); see
Bubeck and Cesa-Bianchi (2012) and Slivkins (2019)
for a detailed review. However, most of these ap-
proaches cannot be generalized to settings involving
multiple metrics (for example, reward and cost) when
the underlying trade-offs between these metrics are not
known a priori.

In many real-world applications of MAB, some of
which we will elaborate below, it is common for the
agent to incur costs to play an arm, with high per-
forming arms costing more. Though one can model
this in the traditional MAB framework by consider-
ing cost subtracted from the reward as the modified
objective, such a modification is not always meaning-
ful, particularly in settings where the reward and cost
associated with an arm represent different quantities
(for example, click rate and cost of an ad). In such
problems, it is natural for the learning agent to opti-
mize for both the metrics, typically avoiding incurring
exorbitant costs for a marginal increase in cumulative
reward. Motivated by the aforementioned scenario, in
this paper, we consider a variant of the MAB problem,
where the agent is not only concerned about balancing
the exploration-exploitation trade-offs to maximize the
cumulative reward but also balance the trade-offs as-
sociated with multiple objectives that are intrinsic to
several practical applications. More specifically, in this
work, we study a stylized problem, where to manage
costs, the agent is willing to tolerate a small loss from
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the highest reward, measured as the reward that the
traditional MAB problem could obtain in the absence
of costs. We refer to this problem as MAB problem
with a cost subsidy (see Section 1.1 for exact problem
formulation), where the subsidy refers to the amount
of reward the learning agent is willing to forgo to im-
prove costs. Before explaining our problem and tech-
nical contributions in detail, we will elaborate on the
applications that motivate this problem.

Intelligent SMS Routing. Many businesses such as
banks, delivery services, airlines, hotels, and various
online platforms send SMSes (text messages) to their
users for various reasons, including two-factor authen-
tication, order confirmations, appointment reminders,
transaction alerts, and as a direct marketing line (see
Twilio and Uber (2020)). These text messages, re-
ferred to as Application-to-Person (A2P) messages,
constitute a significant portion of all text messages
sent through cellular networks today. In fact, A2P
messages are forecasted to be a $86.3 billion business
by 2025 (MarketWatch (2020)).

To deliver these messages, businesses typically enlist
the support of telecom aggregators, who have private
agreements with mobile operators. Each aggregator
offers a unique combination of quality, as measured by
the fraction of text messages successfully delivered by
them and price per message. Surprisingly, it is com-
mon for delivery rates of text messages not to be very
high (see Canlas et al. (2010); Meng et al. (2007); Zer-
fos et al. (2006); Osunade and Nurudeen for QoS anal-
ysis in different geographies) and for aggregator’s qual-
ity to fluctuate with time due to various reasons rang-
ing from network outage to traffic congestion. There-
fore, the platform’s problem of balancing the tension
between inferring aggregator’s quality through explo-
ration and exploiting the current best performing ag-
gregator to maximize the number of messages delivered
to users leads to a standard MAB formulation. How-
ever, given the large volume of messages that need to
be dispatched, an MAB based solution that focuses
exclusively on the quality of the aggregator could re-
sult in exorbitant spending for the business. A sur-
vey of businesses shows that the number of text mes-
sages they are willing to send will significantly drop
if the cost per SMS is increased by a few cents per
SMS (Ovum (2017)). Moreover, in many situations,
platforms have backup communication channels such
as email-based authentication or notifications via in-
app/website features. Though not as effective as a text
message in terms of read rate, it can be used if guar-
anteeing the text message delivery proves to be very
costly. Therefore, it is natural for businesses to prefer
an aggregator with lower costs as long as their quality
is comparable to the aggregator with the best quality.

Ad-audience Optimization. We now describe an-
other real-world application in the context of online
advertisements. Many advertisers (especially small-to-
medium scale businesses) have increasingly embraced
the notion of auto-targeting where they let the adver-
tising platform identify a high-quality audience group
(e.g., Koningstein (2006); Amazon (2019); Facebook
(2016); Google (2014)). To enable this, the platform
explores the audience-space to identify cheaper oppor-
tunities that also provide high click-through-rate (ctr)
and conversion rate. Here, different audience groups
can have different yields, i.e., quality (CTR/conversion
rate) for a specific ad. However, it may require vastly
different bids to reach different audiences due to auc-
tion overlap with other ad campaigns with smaller au-
dience targeting. Thus, the algorithm is faced with
a similar trade-off; as long as a particular audience-
group gives a high-yield, the goal is to find the cheap-
est one.

We now present a novel formulation of a multi-armed
bandit problem that captures the key features of these
applications. Our goal is to develop a cost-sensitive
MAB algorithm that balances both the exploration-
exploitation trade-offs as well as the tension between
conflicting metrics in a multi-objective setting.

1.1 Problem Formulation

To formally state our problem, given an instance I, in
every round t ∈ [T ] the agent chooses an arm i ∈ [K]
and realizes a reward rt, sampled independently from
a fixed, but unknown distribution Fi with mean µi
(or µIi ) and incurs a cost ci (or cIi ), which is known
a priori. Here, to manage costs, we allow the agent
to be agnostic between arms, whose expected reward
is greater than 1 − α fraction of the highest expected
reward, for a fixed and known value of α, which we
refer to as the subsidy factor. The agent’s objective is
to learn and pull the cheapest arm among these high-
quality arms as frequently as possible.

More specifically, let m∗ denote the arm with highest
expected mean, i.e., m∗ = argmaxi∈[K] µi, and C∗
be the set of arms whose expected reward is within
1−α factor of the highest expected reward, i.e., C∗ =
{i ∈ [K] | µi ≥ (1− α)µm∗}. We refer to the quantity
(1− α)µm∗ as the smallest tolerated reward. Without
loss of generality, we assume the reward distribution
has support [0, 1]. The agent’s goal is to design a policy
(algorithm) π that will learn the cheapest arm whose
expected reward is at least as large as the smallest
tolerated reward. In other words, the agent needs to
learn the identity and simultaneously maximize the
number of plays of arm i∗ = argmini∈C∗ ci. Since in
the SMS application, the reward is the quality of the
chosen aggregator, we will use the terms reward and
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quality interchangeably.

To measure the performance of any policy π, we pro-
pose two notions of regret - quality and cost regret,
with the agent’s goal being minimizing both of them:

Quality Regπ(T, α,µµµ,ccc)

= E

[
T∑
t=1

max{(1− α)µm∗ − µπt , 0}

]
,

Cost Regπ(T, α,µµµ,ccc)

= E

[
T∑
t=1

max{cπt − ci∗ , 0}

]
,

(1)

where ccc = (c1, · · · cK),µµµ = (µ1, · · ·µK) and the
expectation is over the randomness in policy π.
Equivalently, the cost and quality regret of policy
π on an instance I of the problem is denoted as
Quality Regπ(T, α, I) and Cost Regπ(T, α, I) where the
instance is defined by the distributions of the reward
and cost of each arm. The objective then is to design
a policy that simultaneously minimizes both the cost
and quality regret for all possible choices of µµµ and ccc
(equivalently all instances I).

Choice of Objective Function. Note that a
parametrized linear combination of reward and cost
metrics, i.e., µ − λc for an appropriately chosen λ
is a popular approach to balance cost-reward trade-
off. From an application stand-point, there are two
important considerations that favor using our objec-
tive instead of a linear combination of reward and cost
metrics. First, in a real-world system, we need ex-
plicit control over the parameter α that is not instance-
dependent to understand and defend the trade-off be-
tween the various objectives. From a product man-
ager’s perspective, the indifference among the arms
within (1 − α) of the arm with the highest mean re-
ward is a transparent and interpretable compromise
to lower costs. Second, for the intelligent SMS routing
application discussed earlier, different sets of aggre-
gators operate in different regions. Thus, separate λ
values would need to be configured for each region,
making the process cumbersome.

Further note that, the setting considered in this pa-
per is not equivalent to taking a parametrized linear
combination of reward and cost metrics. In partic-
ular, for any specified subsidy factor α, the value λ
required in the linear objective function, for i∗ to be
the optimal arm would depend on the cost and reward
distributions of the arms. Therefore, using a single
value of λ and relying on standard MAB algorithms
would not lead to the desired outcome for our prob-
lem. Moreover, in our setting, the cost and quality
regret measures are defined with respect to different
benchmark arms (i∗ and m∗ respectively). The re-

ward of the played arm is compared to (1 − α) times
the reward of the highest mean reward arm and not
directly the mean reward of the arm m∗ as would be
the case in a single objective based formulation.

1.2 Related Work

Our problem is closely related to the MAB with multi-
ple objectives line of work, which has attracted consid-
erable attention in recent times. The existing litera-
ture on multi-objective MAB can be broadly classified
into the following categories.

Bandits with Knapsacks (BwK). Bandits with
knapsacks (BwK), introduced in the seminal work of
Badanidiyuru et al. (2018) is a general framework that
considers the standard MAB problem under the pres-
ence of additional budget/resource constraints. The
BwK problem encapsulates a large number of con-
strained bandit problems that naturally arise in many
application domains, including dynamic pricing, auc-
tion bidding, routing, and scheduling (see Tran-Thanh
et al. (2012); Agrawal and Devanur (2014); Immorlica
et al. (2019)). In this formulation, the agent has access
to a set of d finite resources and K arms, each asso-
ciated with a reward distribution. Upon playing arm
a at time t, the agent realizes a reward of rt and in-

curs a penalty of c
(i)
t for resource i, all drawn from

a fixed, but unknown distribution corresponding to
the arm. The objective of the agent is to maximize
the cumulative reward before one of the resources is
completely depleted. Although appealing in many ap-
plications, BwK formulation requires hard constraint
on resources (cost in our setting) and hence, cannot be
easily generalized to our problem. In particular, in the
cost subsidized MAB problem, the equivalent budget
limits depend on the problem instance and therefore
cannot be determined a priori.

Pareto Optimality and Composite Objective.
The second formulation focuses on identifying Pareto
optimal alternatives and uniformly choosing among
these options (see Drugan and Nowe (2013); Yahyaa
et al. (2014); Paria et al. (2018); Yahyaa and Mand-
erick (2015)). These approaches do not apply to our
problem. Some of the Pareto alternatives could have
extreme values for one of the metrics, for example, hav-
ing a meager cost and low quality or extremely high
cost and quality, making them undesirable for the ap-
plications discussed earlier. Closely related to this line
of work is the set of works that focus on a composite
objective by appropriately weighting the different met-
rics (see Paria et al. (2018); Yahyaa and Manderick
(2015)). Such formulations also do not immediately
apply to our problem. In the SMS and ad applications
discussed earlier, it is not acceptable to drop the qual-
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ity beyond the allowed level irrespective of the cost
savings we could obtain. Furthermore, in the SMS
application, the trade-offs between quality and costs
could vary from region to region, making it hard to
identify a good set of weights for the composite objec-
tive (see Section 1.1).

Conservative Bandits and Bandits with Safety
Constraints. Two other lines of work that are re-
cently receiving increased attention, particularly from
practitioners, are bandits with safety constraints (see
Daulton et al. (2019); Amani et al. (2020); Galichet
et al. (2013)) and conservative bandits (see Wu et al.
(2016); Kazerouni et al. (2017)). In both these for-
mulation, the algorithm chooses one of the arms and
receives a reward and a cost associated with it. The
goal of the algorithms is to maximize the total reward
obtained while ensuring that either the chosen arm is
within a pre-specified threshold (when costs of arms
are unknown a priori) or the reward of the arm is at
least a specified fraction of a known benchmark arm.
Neither of these models exactly captures the require-
ments of our applications: a) we do not have a hard
constraint on the acceptable cost of a pulled arm. In
particular, choosing low-quality aggregators to avoid
high costs (even for a few rounds) could be disastrous
since it leads to bad user experience on the platform
and eventual churn, and b) the equivalent benchmark
arm in our case, i.e., the arm with the highest mean
reward is not known a priori.

Best Arm Identification. Apart from the closely re-
lated works mentioned above, our problem of identify-
ing the cheapest arm whose expected reward is within
an acceptable margin from the highest reward can be
formulated as a stylized version of the best-arm iden-
tification problem (Katz-Samuels and Scott (2019);
Jamieson and Nowak (2014); Chen et al. (2014); Cao
et al. (2015); Chen et al. (2016)). However, in many
settings and particularly applications discussed earlier,
the agent’s objective is optimizing cumulative reward
and not just identifying the best arm.

1.3 Our Contributions

Novel Problem Formulation. In this work, we
propose a stylized model, MAB with a cost subsidy,
and introduce new performance metrics that uniquely
capture the salient features of many real-world online
learning problems involving multiple objectives. For
this problem, we first show that naive generalization
of popular algorithms like Upper Confidence Bound
(UCB) and Thompson Sampling (TS) could lead to
poor performance on the metrics. In particular, we
show that the naive generalization of TS for this prob-
lem would lead to a linear cost regret for some problem
instances.

Lower Bound. We establish a fundamental limit on
the performance of any online algorithm for our prob-
lem. More specifically, we show that any online learn-
ing algorithm will incur a regret of Ω(K1/3T 2/3) on
either the cost or the quality metric (refer to (1)), fur-
ther establishing the hardness of our problem relative
to the standard MAB problem, for which it is possi-
ble to design algorithms that achieve worst-case regret
bound of Õ(

√
KT ). We introduce a novel reduction

technique to derive the above lower bound, which is of
independent interest.

Cost Subsidized Explore-Then-Commit. We
present a simple algorithm based on the explore-then-
commit (ETC) principle and show that it achieves
near-optimal performance guarantees. In particular,
we establish that our algorithm achieves a worst-case
bound ofO(K1/3T 2/3

√
log T ) for both cost and quality

regret. A key challenge in generalizing the ETC algo-
rithm for this problem arises from having to balance
between two asymmetric objectives. We also discuss
generalizations of the algorithm for settings where the
cost of the arms is not known a priori. Furthermore,
we consider a special scenario of bounded costs, where
naive generalizations of TS and UCB work reasonably
well and establish worst-case regret bounds.

Numerical Simulation. Lastly, we perform ex-
tensive simulations to understand various regimes of
the problem parameters and compare different algo-
rithms. More specifically, we consider scenarios where
naive generalizations of UCB and TS, which have been
adapted in real-life implementations (see Daulton et al.
(2019)) perform well and settings where they perform
poorly, which should be of interest to practitioners.

1.4 Outline

The rest of this paper is structured as follows. In Sec-
tion 2, we show that the naive generalization to TS or
UCB algorithms performs poorly, and in Section 3,
we establish lower bounds on the performance of any
algorithm for MAB with cost subsidy problem. In Sec-
tion 4, we present a variation of the ETC algorithm
and show that it achieves a near-optimal regret bound
of Õ(K1/3T 2/3) for both the metrics. In section 5, we
show that with additional assumptions, it is possible
to show improved performance bounds for naive gener-
alization of existing algorithms. Finally, in section 6,
we perform numerical simulations to explore various
regimes of the instance-space.
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2 Performance of Existing MAB
Algorithms

In this section, we consider a natural extension of two
popular MAB algorithms, TS and UCB, for our prob-
lem and show that such adaptations perform poorly.
This highlights the challenges involved in developing
good algorithms for the MAB problem with cost sub-
sidy. In particular, we establish theoretically that for
some problem instances, the TS variant incurs a lin-
ear cost regret and observe similar performance for the
UCB variant empirically. Our key focus on TS in this
section is primarily motivated by the superior perfor-
mance observed over a stream of recent papers in the
context of TS versus more traditional approaches such
as UCB (see Scott (2010); Oliver and Li (2011); May
et al. (2012); Agrawal et al. (2017)).

We present the details of TS and UCB adaptations
in Algorithm 1, which we will refer to as Cost-
Subsidized TS(CS-TS) and Cost-Subsidized UCB(CS-
UCB) respectively. These extensions are inspired by
Daulton et al. (2019), which demonstrates empirical
efficacy on a related (but different) problem. Briefly,
in the CS-TS(CS-UCB) variation, we follow the stan-
dard TS (UCB) algorithm and obtain a quality score
which is a sample from the posterior distribution (up-
per confidence bound) for each arm. We then con-
struct a feasible set of arms whose quality scores are
greater than 1−α fraction of the highest quality score.
Finally, we pull the cheapest arm among the feasible
set of arms.

We will now show that CS-TS with Gaussian priors
and posteriors (i.e., Gaussian distribution with mean
µ̂i(t) and variance 1/Ti(t)) described in Algorithm 1
incurs a linear cost regret in the worst case. More
precisely, we prove the following result.

Theorem 1. For any given K,α, T there
exists an instance φ of problem such that
Quality RegCS−TS(T, α, φ) + Cost RegCS−TS(T, α, φ) is
Ω (T ).

Proof Sketch. The proof closely follows the lower
bound argument in Agrawal and Goyal (2017b). We
briefly describe the intuition behind the result. Con-
sider a scenario where the highest reward arm is an
expensive arm while all other arms are cheap and
have rewards marginally above the smallest tolerated
reward. In the traditional MAB problem, the anti-
concentration property of the Gaussian distribution
(see Agrawal and Goyal (2017b)) ensures samples from
the good arm would be large enough with sufficient
frequency, ensuring appropriate exploration and good
performance. However, in our problem, the anti-
concentration property would result in playing the ex-

pensive arm too often since the difference in the mean
qualities is small, incurring a linear cost regret while
achieving zero quality regret. A complete proof of the
theorem is provided in Appendix C.

The algorithm’s poor performance is not limited only
to the above instance and usage of Gaussian prior.
More generally, the CS-TS and CS-UCB algorithms
seem to perform poorly whenever the mean reward of
the optimal arm is very close to the smallest tolerated
reward. We illustrate this through another empiri-
cal example. Consider the following instance with two
arms, each having Bernoulli rewards and T = 10, 000.
The costs of the two arms are c1 = 0 and c2 = 1. The
expected qualities are µ1 = 0.5(1−α)+1/

√
T , µ2 = 0.5

with α = 0.1. The prior of the mean reward of both
the arms is a Beta(1,1) distribution. Here, the quality
regret will be zero irrespective of which arm is played.
But both CS-TS and CS-UCB incur significant cost re-
gret as shown in Figure 1. (In the figure, we also plot
the performance of the key algorithm we propose in
the paper (Algorithm 2) and note that it has much su-
perior performance compared to CS-TS and CS-UCB.)

Algorithm 1: Cost Subsidized TS and UCB Algo-
rithms
Result: Arm It to be pulled in each round t ∈ [T ]
Input : T,K, prior distribution for mean

rewards of all arms {νi}Ki=1, reward
likelihood function {Li}Ki=1

Ti(1) = 0 ∀i ∈ [K];
for t ∈ [K] do

It = t;
Play arm It and observe reward rt;
Ti(t+ 1) = Ti(t) + 1{It = i} ∀i ∈ [K];

end
for t ∈ [K + 1, T ] do

for i ∈ [K] do

µ̂i(t)←
(∑t−1

τ=1 rτ I{Iτ = i}
)
/Ti(t);

βi(t)←
√

(2 log T ) /Ti(t);
UCB: µscorei (t)← min{µ̂i(t) + βi(t), 1};
TS: Sample µscorei (t) from the posterior
distribution of arm i,
νi
(
· |{rs}s∈{1,2,···t−1} s.t. Is=i, Li

)
;

end
mt = arg maxi µ

score
i (t);

Feas(t) = {i : µscorei (t)− (1− α)µscoremt ≥ 0};
It = arg mini∈Feas(t) ci;
Play arm It and observe reward rt;
Ti(t+ 1) = Ti(t) + 1{It = i} ∀i ∈ [K];

end
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Figure 1: Cost regret of various algorithms for an in-
stance where the mean reward of the optimal arm is
very close to the smallest tolerated reward. CS-TS and
CS-UCB incur significant regret. But CS-ETC attains
low cost regret. The width of the error bands is two
standard deviations based on 50 runs of the simula-
tion.

3 Lower Bound

In this section, we establish that any policy must incur
a regret of Ω(K1/3T 2/3) on at least one of the regret
metrics. More precisely, we prove the following result.

Theorem 2. For any given α,K, T and (pos-
sibly randomized) policy π, there exists an in-
stance φ of problem (1) with K + 1 arms such
that Quality Regπ(T, α, φ) + Cost Regπ(T, α, φ) is

Ω
(

(1− α)2K
1
3T

2
3

)
when 0 ≤ α ≤ 1 and 1 ≤ K ≤ T .

3.1 Proof Overview

We consider the following families of instances to es-
tablish the lower bound. We first prove the result for
α = 0 and then establish a reduction for α = θ for
0 ≤ θ < 1, to the special case of α = 0.

Definition 1 (Family of instances Φθ,p,ε). Define
a family of instances Φθ,p,ε consisting of instances
Φ0
θ,p,ε,Φ

1
θ,p,ε, · · ·ΦKθ,p,ε each with K+ 1 Bernoulli arms

indexed by 0, 1, · · · ,K. For the instance Φ0
θ,p,ε, the

costs and mean reward of the j-th arm are

c
Φ0
θ,p,ε

j =

{
0 j = 0

1 j 6= 0
, µ

Φ0
θ,p,ε

j =

{
p j = 0
p

1−θ j 6= 0
.

for 0 ≤ j ≤ K. For the instance Φaθ,p,ε with 1 ≤ a ≤
K, the costs and mean rewards of the j-th arm are

c
Φaθ,p,ε
j =

{
0 j = 0

1 j 6= 0
, µ

Φaθ,p,ε
j =


p j = 0
p+ε
1−θ j = a
p

1−θ otherwise

.

for 0 ≤ j ≤ K, where 0 ≤ θ < 1, 0 < p ≤ 1/2, ε > 0
and (p+ ε)/(1− θ) < 1.

Lemma 1. For any given p,K, T and any (possibly
randomized) policy π, there exists an instance φ (from

the family Φ0,p,ε) such that Quality Regπ(T, 0, φ) +

Cost Regπ(T, 0, φ) is Ω
(
pK

1
3T

2
3

)
when 0 < p ≤ 1/2

and 1 ≤ K ≤ T .

Lemma 1 establishes that when α = 0, any policy must
incur a regret of Ω(K1/3T 2/3) on an instance from the
family Φ0,p,ε. To prove Lemma 1, we argue that any
online learning algorithm will not be able to differen-
tiate the instance Φ0

0,p,ε from the instance Φa0,p,ε for
1 ≤ a ≤ K and therefore, must either incur a high
cost regret if the algorithm does not select 0th arm
frequently or high quality regret if the algorithm se-
lects 0th arm frequently. More specifically, any online
algorithm would require O(1/ε2) samples or rounds
to distinguish instance Φ0

0,p,ε from instance Φa0,p,ε for
1 ≤ a ≤ K. Hence, any policy π can avoid high qual-
ity regret by exploring sufficiently for O(1/ε2) rounds,
incurring a cost regret of O(1/ε2) or incur zero cost
regret at the expense of O(Tε) regret on the reward
metric. This suggests a trade-off between 1/ε2 and Tε,
which are of the same magnitude at ε = T−1/3 result-
ing in the aforementioned lower bound. The complete
proof generalizes techniques from the standard MAB
lower bound proof and is provided in Appendix B.

Now, we generalize the above result for α = 0 to
any α for 0 ≤ α ≤ 1. The main idea in our
reduction is to show that if there exists an algo-
rithm πα for α > 0 such that Quality Regπ(T, α, φ) +
Cost Regπ(T, α, φ) is o(K1/3T 2/3) on every instance
in the family Φα,p,ε, then we can use πα as a sub-
routine to construct an algorithm π for problem (1)
such that Quality Regπ(T, 0, φ) + Cost Regπ(T, 0, φ) is
o(K1/3T 2/3) on every instance in Φ0,p,ε, thus contra-
dicting the lower bound of Lemma 1. This will prove
Theorem 2 by contradiction. To construct the afore-
mentioned sub-routine, we leverage techniques from
Bernoulli factory (Keane and O’Brien (1994); Huber
(2013)) to generate a sample from a Bernoulli random
variable with parameter µ/(1−α) using samples from
a Bernoulli random variable with parameter µ, for any
0 < µ < 1 − α < 1. We provide the exact sub-routine
and complete proof in Appendix B.

4 Explore-Then-Commit based
algorithm

We propose an explore-then-commit algorithm, named
Cost-Subsidized Explore-Then-Commit (CS-ETC), to
have better worst-case performance guarantees as com-
pared to the extensions of the TS and UCB algorithms.
As the name suggests, first, this algorithm plays each
arm for a specified number of rounds. After suffi-
cient exploration, the algorithm continues in a UCB-
like fashion. In every round, based on the upper and



Deeksha Sinha, Karthik Abinav Sankararaman, Abbas Kazerouni, Vashist Avadhanula

lower confidence bounds on the reward of each arm,
a feasible set of arms is constructed as an estimate of
all arms having mean reward greater than the smallest
tolerated reward. The lowest cost arm in this feasible
set is then pulled. This is detailed in Algorithm 2. The
key question that arises in this algorithm is how many
exploration rounds are needed before exploitation can
begin. We establish that O

(
(T/K)2/3

)
rounds are suf-

ficient for exploration in the following result (proof in
Appendix C).

Algorithm 2: Cost-Subsidized Explore-Then-
Commit
Result: Arm It to be pulled in each round t ∈ [T ]
Input : K,T , no. of exploration pulls per arm τ
Ti(1) = 0 ∀i ∈ [K]
Pure exploration phase:
for t ∈ [1,Kτ ] do

It = t mod K;
Pull arm It to obtain reward rt;
Ti(t+ 1) = Ti(t) + 1{It = i} ∀i ∈ [K];

end
UCB phase:
for t ∈ [Kτ + 1, T ] do

µ̂i(t)←
(∑t−1

τ=1 rτ I{Iτ = i}
)
/Ti(t) ∀i ∈ [K];

βi(t)←
√

(2 log T ) /Ti(t) ∀i ∈ [K];

µUCB
i (t)← min{µ̂i(t) + βi(t), 1} ∀i ∈ [K];

µLCB
i (t)← max{µ̂i(t)− βi(t), 0} ∀i ∈ [K];

mt = arg maxi µ
LCB
i (t);

Feas(t) = {i : µUCB
i (t) ≥ (1− α)µLCB

mt (t)};
It = arg mini∈Feas(t) ci;
Pull arm It to obtain reward rt;
Ti(t+ 1) = Ti(t) + 1{It = i} ∀i ∈ [K];

end

Theorem 3. For an instance φ with K arms,
when the number of exploration pulls of each arm
τ = (T/K)2/3, then the sum of cost and qual-
ity regret incurred by CS-ETC (Algorithm 2) on
any instance φ i.e. Quality RegCS−ETC(T, α, φ) +

Cost RegCS−ETC(T, α, φ) is O(K1/3T 2/3
√

log T ).

The key reason that sufficient exploration is needed
for our problem is that there can be arms with mean
rewards very close to each other but significantly dif-
ferent costs. If cost regret were not of concern, then
playing either arm would have led to satisfactory per-
formance by giving low quality regret. The need to
perform well on both cost and quality regrets necessi-
tates differentiating between the two arms and finding
the one with the cheapest cost among the arms with
mean reward above the smallest tolerated reward.

The regret guarantee mainly stems from the explo-
ration phase of the algorithm. In fact, an algorithm

that estimates the optimal arm only once after the
exploration phase and pulls that arm for the remain-
ing time will have the same regret upper bound as
CS-ETC. But we empirically observed that the non-
asymptotic performance of this algorithm is worse as
compared to Algorithm 2.

5 Performance with Constraints on
Costs and Rewards

In this section, we present some extensions of the pre-
vious results.

5.1 Consistent Cost and Quality

The lower bound result in Theorem 2 is motivated
by an extreme instance where arms with very similar
mean rewards have very different costs. This raises the
following question - can better-performing algorithms
be obtained if the rewards and costs are consistent
with each other? We show that this is indeed the case.
Motivated by the instance which led to the worst-case
performance, we consider a constraint that gives an
upper bound on the difference in costs of every pair of
arms by a multiple of the difference in the qualities of
these arms. Under this constraint, CS-UCB has good
performance as per the following result with the proof
in Appendix C.

Theorem 4. If for an instance φ with K arms,
|ci − cj | ≤ δ|µi − µj | ∀i, j ∈ [K] and any (possibly
unknown) δ > 0, then Quality RegCS−UCB(T, α, φ) +
Cost RegCS−UCB(T, α, φ) is O((1 + δ)

√
KT log T ).

Note that, in general, δ can be unknown. Hence, even
with the above assumption on the consistency of cost
and quality, a priori any algorithm cannot get a bound
on the quality difference between arms, only by virtue
of knowing their costs.

5.2 Unknown Costs

In some applications, the costs of the arms may also
be unknown and random. Hence, in addition to the
mean reward, the mean costs also need to be esti-
mated. Without loss of generality, we assume that
the distribution of the random cost of each arm has
support [0,1]. Not knowing the arm’s cost does not
fundamentally change the regret minimization prob-
lem we have discussed in the above sections. Clearly,
the lower bound result is still valid. Algorithm 2 can be
generalized to the unknown costs setting with a minor
modification in the UCB phase of the algorithm. The
modified UCB phase is described in Algorithm 3. In
this algorithm, we maintain confidence bounds on the
costs of each arm. Instead of picking the arm with the
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lowest cost among all feasible arms, the algorithm now
picks the arm with the lowest lower confidence bound
on cost. Theorem 3 holds for this modified algorithm
also.

Similarly, when costs and quality are consistent as de-
scribed in Section 5.1, the CS-UCB algorithm can be
modified to pick the arm with the lowest lower confi-
dence bound on cost and Theorem 4 holds.

Algorithm 3: CS-ETC with Unknown Costs

Result: Arm It to be pulled in each round t ∈ [T ]
input : K,T, Number of exploration pulls τ
Ti(1) = 0 ∀i ∈ [K]
Pure exploration phase:
for t ∈ [1,Kf(K,T )] do

It = t mod K;
Pull arm It to obtain reward rt and cost χt;
Ti(t+ 1) = Ti(t) + 1{It = i} ∀i ∈ [K];

end
UCB phase:
for t ∈ [Kf(K,T ) + 1, T ] do

µ̂i(t)←
∑t−1
τ=1 rτ I{Iτ=i}

Ti(t)
∀i ∈ [K];

ĉi(t)←
∑t−1
τ=1 χτ I{Iτ=i}

Ti(t)
∀i ∈ [K];

βi(t)←
√

2 log T
Ti(t)

∀i ∈ [K];

µUCB
i (t)← min{µ̂i(t) + βi(t), 1} ∀i ∈ [K];

µLCB
i (t)← max{µ̂i(t)− βi(t), 0} ∀i ∈ [K];

cLCBi (t)← max{ĉi(t)− βi(t), 0} ∀i ∈ [K];

mt = arg maxi µ
LCB
i (t);

Feas(t) = {i : µUCB
i (t) > (1− α)µLCB

mt (t)};
It = arg mini∈Feas(t) c

LCB
i ;

Pull arm It to obtain reward rt and cost χt;
Ti(t+ 1) = Ti(t) + 1{It = i} ∀i ∈ [K];

end

6 Numerical Experiments

In the previous sections, we have shown theoretical
results on the worst-case performance of different al-
gorithms for (1). Now, we illustrate the empirical per-
formance of these algorithms. We shed light on which
algorithm performs better in what regime of param-
eter values. The key quantity that differentiates the
performance of different algorithms is how close the
mean rewards of different arms are. We consider a
setting with two Bernoulli arms and vary the mean
reward of one arm (the cheaper arm) while keeping
the other quantities (reward distribution of the other
arm and costs of both arms) fixed. The values of these
parameters are described in Table 1. The reward in
each round follows a Bernoulli distribution, whereas
the cost is a known fixed value. The cost and quality

Parameter Value
Mean reward of arm 1 (µ1) 0.5
Mean reward of arm 2 (µ2) 0.3-0.6

Cost of arm 1 (c1) 1
Cost of arm 2 (c2) 0
Subsidy factor (α) 0.1
Time horizon (T ) 5000

Table 1: Parameter values

regret at time T of the different algorithms are plotted
in Figure 2.

We observe that the performance of CS-TS and CS-
UCB are close to each other for the entire range of
mean reward values. To compare these algorithms’
performance with CS-ETC, we focus on how close the
mean reward of the lower mean reward arm is to the
smallest tolerated reward. When µ2 ≤ 0.5 (µ2 > 0.5),
the lowest tolerated reward is 0.45 (0.9µ2). In terms of
quality regret, when µ2 is much smaller than 0.45, CS-
TS and CS-UCB perform much better than CS-ETC.
This is because the number of exploration rounds in
the CS-ETC algorithm is fixed (independent of the dif-
ference in mean rewards of the two arms), leading to
higher quality regret when µ2 is much smaller than
0.45. On the other hand, because of the large differ-
ence in µ2 and 0.45, CS-TS and CS-UCB algorithms
can easily find the optimal arm and incur low quality
regret. The cost regret of all algorithms is 0 because
the optimal arm is the expensive arm.

When µ2 is close to (and less than) 0.45, CS-TS and
CS-UCB incur much higher cost regret as compared to
CS-ETC. This is in line with the intuition established
in Section 2. Here, CS-TS and CS-UCB are unable
to effectively conclude that the second (cheaper) arm
is optimal. Thus, they pull the first (expensive) arm
many times, leading to high cost regret. On the other
hand, CS-ETC, after the exploration rounds, can cor-
rectly identify the second arm as the optimal arm.

Thus, we recommend using the CS-TS/CS-UCB al-
gorithm when the mean rewards of arms are well-
differentiated and CS-ETC when the mean rewards
are close to one another (as is often the case in the
SMS application). This is in line with the notion that
algorithms that perform well in the worst case might
not have good performance for an average case.

6.1 Conclusion and Future Work

In this paper, we have proposed a new variant of
the MAB problem, which factors costs associated
with playing an arm and introduces new metrics that
uniquely capture the features of multiple real-world
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Figure 2: Performance of algorithms with varying
mean reward of the cheaper arm. The length of the
error bars correspond to two standard deviations in
regret obtained by running the experiment 50 times.

applications. We argue about the hardness of this
problem by establishing fundamental limits on the per-
formance of any online algorithm and also demonstrat-
ing that traditional MAB algorithms perform poorly
from both a theoretical and empirical standpoint. We
present a simple near-optimal algorithm, and through
numerical simulations, we prescribe an ideal algorith-
mic choice for different problem regimes.

An interesting direction for future work is defining a
notion of instance-wise optimality and devising algo-
rithms that achieve this. Insights from this can also
help improve the CS-ETC algorithm to obtain better
empirical performance. Another important question
that naturally arises from this work is developing an
algorithm for the adversarial variant of the MAB with
cost subsidy problem. In particular, it is not imme-
diately clear if EXP3 (Auer et al. (2002b)) family of
algorithms, which are popular for non-stochastic MAB
problem, can be generalized to settings where the re-
ward distribution is not stationary.
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