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Relative Deviation Margin Bounds

A. Symmetrization

We use the following lemmas from (Cortes et al., 2019) in our proofs.

Lemma 8 ((Cortes et al., 2019)). Fixn>0and awith1 < a < 2. Let f:(0,+00) x (0, +00) — R be the function defined by

fi(z,y) ~ ?/% Then, f is a strictly increasing function of x and a strictly decreasing function of y.

Lemma 9 ((Greenberg and Mohri, 2013)). Let X be a random variable distributed according to the binomial distribution
B(m,p) with m a positive integer (the number of trials) and p > % (the probability of success of each trial). Then, the
following inequality holds:

1
}P’[XZIE[X]]>Z, (6)
and, if instead of requiring p > # we require p < 1 — % then
1
P[X <E[X]]> . )

where in both cases E[ X ] = mp.

The following symmetrization lemma in terms of empirical margin loss is proven using the previous lemmas.

Lemma 1. Fix p>0and 1 < a < 2 and assume that me=—1 > 1. Then, for any €, T > 0, the following inequality holds:

R(h) - R%(h Rg (k) - R%(h
IE’ [sup( ) S( )>e]<4 ,IP’ sup AS( ) AS( )
S~D™ | hete  §/R(h)+T 8,8'~Dm | pegq i/%[RS,(h)JFRg(h)WL%]

Proof. We will use the function F' defined over (0, +o0) x (0,+00) by F: (z,y) » ——L—

S %[m+y+%]

Fix S, 5" € Z". We first show that the following implication holds for any h € K:

(R(h) -5

YR(h)+T1
The first condition can be equivalently rewritten as Eg(h) < R(h) - e/(R(h) + 7), which implies
R%(h) <R(h)-ey/R(h) A €51 <R(h), )

since Eg( h) > 0. Assume that the antecedent of the implication (8) holds for & € H. Then, in view of the monotonicity
properties of function ' (Lemma 8), we can write:

e) A (Rg/(h) > R(h)) = F(Rs/(h), RE(h)) > e. (8)

F(Rg/(h),R%(h)) > F(R(h),R(h) - e/ R(h)) (Rs/(h) > R(h) and lst ineq. of (9))
__R(h) - (R(h) - eR(h)=
V/AR2R(R) - eR(h)> + 1]

> cR(h)= (second ineq. of (9))
VA[2R(h) - w1+ L]
k(W _. (Me==T > 1)

{/3[2R(h)]
which proves (8).
Now, by definition of the supremum, for any 7 > 0, there exists hg € H such that

R(h) - R(h) _ R(hs) - Rg(hs)

fSLIEljB: Y/R(h) +T Y/R(hg) +7

(10)
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Using the definition of hg and the implication (8), we can write

P |sup o () 5
S,8'~Dm | pegc v% [Eg(h) + ESI(h) + %]

. Ry (hs) = R (hs)
550" | {1 RG (hs) + R (hs) + &1

[ ( R(hs) - B (hs) - o
. S,S'I?'Dm ( E\Y/R(T)SH_ > 6) A (Rg:(hs) > R(hs))] (implication (8))

> € (def. of sup)

= s'H::Dm 1 R(hs)ﬁg(h5)>61§51(hs)>R(hs)] (def. of expectation)
’ Q/R(hg)+T

Lrng)-mtng) [Rsl(hs) > R(hs)] . (linearity of expectation)

Y/ R(hg)+7

P
S~Dm >e §/~Dm

Now, observe that, if R(hg) < ea-1, then the following inequalities hold:

R(hs) - Rg(hs) __R(hs)

{/R(hs)+71  §/R(hs)

= R(hs)“* <e. (11)

In light of that, we can write

P sup o) Rg(h)
S0 | nede S ITRG(h) + Rer(h) + %]

2 B lrug-romg 1 o P [Rg(hs)> R(hs)]
s | M), s g
1 (o3

2= E [1rug-rome (a1 > % and Lemma 9)
4 S~Dm %>
. -

2 1s I%m 1 ROD-REM) (def. of hg)

~ | SUPhet “a/Rmyar

1 [ R(h) - Ri(h) ]

=— P |sup————=—=—>¢c+17 def. of expectation
4 8~D™ | hesc {/R(h) +T ( )

Now, since this inequality holds for all > 0, we can take the limit n — 0 and use the right-continuity of the cumulative
distribution to obtain
Ry (h) - R§(h)

P s
FEDT hHC S SLRE(R) + Rsr(h) + =]

m

els R<’1>—R§<h)>e]

>— P |sup
4 s~Dm I:hef}f YR(h) +T
which completes the proof. O

Lemma 2. Fix p > 0and 1 < o < 2. Then, the following inequality holds:

I S
P |sn ljs (h) st(h) sels P fsup ifs (9) fs(g) -
ST RIS R () + Re () + 5] | ST 099 (/3[R (9) + Rs(g) + ]
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Further for g(2) = 1yp(a)<pj2, using the shorthand X = C(3(,, 5,5 u S"), the following holds:

Re(h)-Rg(h) |, Rg(h) - R (h)

,IP’msup — — e_,]P’msup = = >el.
S,8"~D™ | phegg i/%[RS'(h)+Rg(h)+%] S,8"'~D™ | pegc C{/%[Rg,(h)+Rg(h)+%]

Proof. For the first part of the lemma, note that for any given h and the corresponding g, and sample z € S U S’, using
inequalities
1yh(a:)<0 <g(z) < 1yh(:c)<p~
and taking expectations yields for any sample S:
Rs(h) < Rs(g) < R&(h).
The result then follows by Lemma 8.
For the second part of the lemma, observe that restricting the output of h € I to be in [—p, p] does not change its binary or

margin-10ss: 1,p(2)<p = Ly, (2)<p a0d Lyp(z)<o = 1yn, (x)<o- Thus, we can write

Rs/(h) - R%(h) . Rs/(h) - RE(h)

,IP’, sup — — €l = ,IP’ su — —
8,5'~D™ | pedq V%[RS,(/I)JFR/;(}L)JF%] S,81~D | het,, i/%[RSr(h)+R§(h)+i]

Now, by definition of C(H £ S u.S’) such that for any z € SuU .S,

£,8uS"), for any h € J{, there exists g € C(H,, £,

P2

l9(2) = h()] < £.
Thus, for any y € {~1,+1} and z € S U S’, we have |yg(x) - yh(z)| < §, which implies:
Lyn()<o € Lygey<s < Lyn(a)sp:

Hence, we have Rg/(h) < Rg,(g) and R%(h) > Eg (g) and, by the monotonicity properties of Lemma 8:

Ro(h) -Ry(h)  _ Rilo)-Ri()
VAR () + Re(h) + 51 {/4[RA(9) + Ri(9) + 4]

Taking the supremum over both sides yields the result. O
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B. Relative Deviation Margin Bounds — Covering Numbers

Theorem 1 (General relative deviation margin bound). Fix p > 0 and 1 < « < 2. Then, for any hypothesis set J of functions
mapping from X to R and any 7 > 0, the following inequality holds:

R(h) - R(h)

P |sup
S~Dm I:heﬂ-f Y/R(h) +7

Proof. Consider first the case where mea-1 < 1. The bound then holds trivially since we have:

—mz(m_ne2 1
4exp(2a;2) > 4vaxp(2cx+2 ) > 1.

On the other hand, when mea-t > 1, by Lemmas 1 and 2 we can write:

a

2(a-1) 4
om -m o« €
:| —4 m%m,EEDzm[Nw(Hp’g’xl )] Cxpl 2a+2 ]

R(h) - R%(h) Rg,(h) (h)
IPm sup ————"" >¢|<4 P . sup >el.
S~D™ | hest R/R(h)+T 8,5/ ~D™ | he@(H,,2,5087) & §[R§,(h)+R§(h)+%]

To upper bound the probability that the symmetrized expression is larger than e, we begin by introducing a vector of
Rademacher random variables o = (o1, 09, .., 0 ), Where o;s are independent identically distributed random variables
each equally likely to take the value +1 or —1. Let 1, 2, . . . T,, be samples in S and x,,, 41, Tyni2, - - - T2, be samples in S”.

Using the shorthands z = (z,y), 9(2) = L p,(2)<2, and G(xi™) = C(H,, 5,5uS"), we can then write the above quantity as

)

h: [T

. RS () - RE(n)
’ m Sup
8,8 ~D™ | hee(H,,L,50S") \/ Ré,(h) + Rz 2(h)+ 7]

P sup E Z;Zl(g(zm-#i) - g(zl))
2ZmaD2m | oG (g2m) f{/ﬁ[zzl(g(zmﬂ) +9(2z)) +1]

P % ?zlai(g(zmﬂ)_g(zi))
sup

m . D2m o geg(m2m) @ Qm[ i 1(g(zm+l)+g(zz))+1]

L Y1 0i(9(2msi) — 9(2:))

= E P sup 2C >e|Z2m
Zl7n~DQW o geG(x2m) (</21n m (g(zm+z)+g(zz))+1]

> €

L 37 0i(g(2mei)—g(21))
2 (271 (9(zmei) +o(2:))+1]

o SeXp(—[m(g(zmﬂ-)+g<zi>>+1Jim“i”8)

2m

Now, for a fixed z{"", we have E,

] = 0, thus, by Hoeffding’s inequality, we can write

P %2?101‘(9(2',,1”)_9(%))
7 (</2m[ ’L 1(9(Zm+z)+g(zz))+1]

>€lz

a+2

2% Yt (9(2mei) —9(2:))?

<eXp(_[ Tl(g(zmﬂ')+g<zi>>]zm2<zve2).
< 20‘;2 ?__ﬁ(g(zmﬁ) —g(z,-))2

Since the variables ¢(z;), i € [1, 2m], take values in {0, 1}, we can write

NUCHOEVIERIEES WCHORVICHREVCHIEY

30

<Y g(omi) + 9(=0)

S
Il
—

2
o

Mz

< 2. [9(zm+i) + 9(zi)]

.
I
—_
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where the last inequality holds since o < 2 and since the sum is either zero or greater than or equal to one. In view of this

identity, we can write
2(a-1) 2
2m -mo> €
21 < exp (2 =13 ) .

b Ly 0i(9(zmai) - 9(2i))
> €

| om0 s

The number of such hypotheses is Noo (H,,, 5, 27™), thus, by the union bound, the following holds:

o

@ €

. _ 2(a-1) 9
21 09Cme) Z9CD)_, | o | < N (96, 8. 1m)exp( el )

sup >e€

a' g€G(x2m) \/ ,L 1(9 zm+z)+g(zl))]

The result follows by taking expectations with respect to 3™ and applying the previous lemmas. O
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C. Relative Deviation Margin Bounds — Rademacher Complexity

The following lemma relates the symmetrized expression of Lemma 2 to a Rademacher average quantity.

Lemma 3. Fix 1< « < 2. Then, the following inequality holds:

R ) 1Lsm o,
up Rs/(g) - Rs(g) el <o —Yic10i9(z:) €

,IP’, — — <2 P sup > .
S| 05 {fH R () + Rs)+ 5] | 08 {/RITE g() + 1] 2V2

Proof. To upper bound the probability that the symmetrized expression is larger than €, we begin by introducing a vector of
Rademacher random variables o = (01, 03,..., 0., ), where o;s are independent identically distributed random variables
each equally likely to take the value +1 or —1. Let 21, 22, . . . 2,, be samples in S and 2,41, Zm+2, - - - 22, be samples in S’
We can then write the above quantity as

wp_ Bs@)-Rste) |

P
S 95 /L[ Rsi(g) + Rs(g) + 4]
b s i1 (9(zmei) = 9(2:)
2m 2m Sup m
AP 065 (/o [E (9 () + 9(20) + 1]
Ly 0i(g(zmei) — 9(21))
= P sup >e€l.

samprm o | et a\v/ﬁ[zggl(g(zmﬂ) +9(z)) +1]

If a + b > ¢, then either a > ¢/2 or b > €/2, hence

P sup % Y1 0i(9(2mei) — 9(2:))
AP | e (\l/ﬁ [z?; (g(zmﬂ‘) + g(z,)) + 1]

< P sup % Yit10i(g(zmei)) S

Gm2e | e c\x/ﬁ[zggl(g(zmn) +g(z)) +1]
%Zglai(_g(zi))

+ 2m Ezm Sup 1 2

AP | 025 (LIS (g(zma) + 9(20)) + 1] 2]

[ 1
=2 P sup m it 9i9(z) >

e i/ﬁ[zgl(g(zmﬂ) +g(z)) +1]
sup Ly oig(z)

AT |0 /g [T (9() + 1]
Ly oig(zi) €

sup >
Z2m~ m o o m
e, | 9<9 \/%[Ziﬂ(g(zi)) +1] 2v2

N | ™

| o

DN

>

€
2

1 m
Lm0l
=2 P sup m Zic1 9i9(24) > € ,
2 ~D™ o ge§g ((/%[Z?zl(g(zl))_*_l] 2\/§

where the penultimate inequality follow by observing that if a/c > ¢, then a/c’ > ¢, for all ¢’ < ¢ and the last inequality
follows by observing « > 1. ]

We will use the following bounded difference inequality (van Handel, 2016, Theorem 3.18), which provide us with a finer
tool that McDiarmid’s inequality.
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Lemma 10 ((van Handel, 2016)). Let f(x1,22,...,x,) be a function of n independent samples x1,xa, .. .xT,. Let

¢ :mgmxf(xl,x%...,xn) = f(ZT1, @2, e T 1, T g1y e ey T

Then,

62
P(f(l'l,l’g,...,xn) ZE[f($1,$2,...,xn)] +6) g6}(1)(_42:02)

Using the above inequality and a peeling argument, we show the following upper bound expressed in terms of Rademacher
complexities.

Lemma4. Fix 1<« <2and 2" € Z™. Then, the following inequality holds:

Lsmo oo [logy m] 2332 m 2
=199\ %3 R
P|sup m Ziz1 0i9(%1) >el2™]|<2 ) exp i mQ(k?i];(zl ) _ 2;(1 7oy |Lecop2iyi-2
7| o5 \/m (9(z:)) +1] k=0 642 o7
Proof. By definition of Gy, the following inequality holds:
2k+1 2k+1

Ly oig(z)
sup

< < ml/a'
09x 1) R/ L[S0 (g(=0)) + 1] {/E[Sm (o) + 1] (2)

c\1-1/c
Thus, for € > 2 (%) , the left-hand side probability is zero. This leads to the indicator function factor in the right-hand
side of the expression. We now prove the non-indicator part.

By the union bound,

1 m 1 m
=3 0i9(z = > 0i9(2
IP’ sup m Zic1 0i9(%) >e|2™|=P|sup sup m Zic1 9i9(24) m
55 {/LIx7 (9(=0)) + 1] RENED %ﬂ [ (9(0)) + 1]
= 0;9(z;
SZ]P Zz 1 g( ) N Zm
o gesuzm) VLI (9(2)) +1]
N :
0;9(z;
SZP | Xty 0ig(2i))] m
ok et VL2 (g(z:)) + 1]

a) 2k
<SP osup —|ZULg ) >ey/ — ™
k 7| geSk(z) T m

b) 2k
< 2P| sup Zazg(zz)>e\/ 2™,
k7 9eSk(z) M i=1

where the (a) follows by observing that for all g € G, [X1% (g(2;)) + 1] > 2% /m and (b) follows by observing that for a

particular o, - Y7 05(2;) < €/ %C, then for o = o, the value would be = Y1) o7g(2;) > e {/ 2 2° Hence it suffices to

bound
2I~c
]P’ sup Zalg(zz) > €\ 2™,
9€Sk(z") M =1

for a given k. We will apply the bounded difference inequality ((van Handel, 2016, Theorem 3.18)), which is a finer

concentration bound than McDiarmid’s inequality in this context, to the random variable sup g, (1) % > oig(z;). For

any o, let g, denote the function in Gy (2]") that achieves the supremum. For simplicity, we assume that the supremum
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can be achieved. The proof can be extended to the case when its not achieved. Then, for any two vectors of Rademacher
variables o and o that differ only in the 5" coordinate, the difference of suprema can be bounded as follows:

1 m 1o, 1 m 1o,
%g lga(Zi)—E;Uiga'(zi)SEZ; iga(zi)_ggaiga(zi)

(05 = 07)95(2;)
< 2 U'(ZJ)

T oom

g\.—

The sum of the squares of the changes is therefore bounded by
2k+3

4 4
SN RE) s s PG s 3ol < pm2t -
i=1

g€k (2]") i=1 9SGk (27") i=1 m

. m - . R (51 (1)) . ,
Since E, [bngegk(z m) Lsm, aig(zi)] =R, (Gx(21")), by the Lemma 10, for € > T the following holds:

ok
IP sup Zolg(zz) >e\/ 2™
geGk(27) M5
2 m
=P| sup Zalg(zl) R (Sr(21")) > \/— mm ™|z
T g€k () M =1 m

— % 2 (Gk(21"))
m[e\o‘/%—iﬁzr(gk(z nl )
= exp

a 2k
k+5 2k(1 2/0)
2 3220

<expl| -

: 2..2_ 2 R (Gr(z1") o
—(e - < — > miJkiZ )
Since, (e — a)® < a® — /2, for e > =™ S We can write:

- 2
R (Gk(21"))

m]mp () p( 6)

IP’[ sup Zazg(zl) > €\

951 (1) 322 e
2332 m 2
m-R; (G (2 €
= exp ( 2(’€+];( 1 )) ) exXp ( ok(1-2/a) )
64 m2-2]c
For e < w, the bound holds trivially since the right-hand side is at most one. O

The following is a margin-based relative deviation bound expressed in terms of Rademacher complexities.

Theorem 2. Fix 1 < a < 2. Then, with probability at least 1 — 0, for all hypothesis h € H, the following inequality holds:

m

R(h) - R% (h)<16\/_\/W|:tm(9)+loglogm+log ]

Proof. Lettk (G) be the k-peeling-based Rademacher complexity of G defined as follows:

2M2 m
€5(9) =1og 3 [ (MG )
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Combining Lemmas 1, 2, 3, and 4 yields:

[ R(h) - Rg(h) ]
P [sup———=2->">¢
S~D™ | hest  /R(h)+T
1 sm .
< 8 P sup m 27,:1 Uzg(zz) €

>
AP 05 (/LIS (g(2)) +1] 2v2

1 m
= —1 04 Zi
=8 E |P|sup m 2i21 7:9(%) >
i M R E RV BT

m
z

m?R2

m(Gk(21")) €
SIGZW@Dml;eXp(W - exp —W 1€£4\/§(%)1—1/a

m2-2/a

m* Rz, (S (21")) €
=16 ; ZmINE‘Dm |:exp (2k+5 +exXp —W 16S4\/§(21T;:)1—1/a

m2—2/c

202 m 2
m* R, (Sk(21")) €
< 16(1Og2 m) ZmQEDm [eXp (2k+5 - exp —W 16S4\/§(%)1—1/a

m2-2/e

62

— |1 1-1
k(1-2 2k fe
5122 (;_2//:) ) 634\/5(%)

m

< 16(logy m) sup em(9) . exp (—
k

Hence, with probability at least 1 - 4,

R(h) - R%(h ok(1/2-1/a) T N
SUPM gsupmin(l(iﬂ tfﬁ(g)+loglogm+log66,4\/§() )
m

net¢  {/R(h)+T k mi-1/e

For a < 2, the first term in the minimum decreases with k£ and the second term increases with k. Let kg be such that
& b 16 16
2% =16 | supr,,(9) + loglogm + log 57 16| vn(G) + loglogm + log 5 )
k

Then for any £,

2k(1/2—1/a) 1 ok 1-1/c
supmin(lﬁ\/§11 tk (9) +log10gm+log6,4\/§()
& ml-1/a ) m

2k0(1/2—1/a) 16 9ko 1-1/c
< supmax [ 16v/25—————1 [tk (9) +loglogm + log —, 4v/2 | =—
& ml—l/a K} m

2160(1/2—1/04) 1 2k0 1-1/a
< max(16\/§11 tm(9) + loglogm + log £,4ﬁ i
mli-1/e 5 m

kO 1—1/a
34\/5(2)
m

16
. 16\/§(tm(9) + loglogm+log6)
m

1-1/c

Rearranging and taking the limit as 7 — 0 yields the result.

Lemma 11. Forany z,y,z > 0, if (v —y /7 < 2), then the following inequality holds:

r<z+2 %2+ (2y)aT.
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Proof. In view of the assumption, we can write:

r<z+yYr <2max(z,y V),

If 2 > y ¢/, then x < 2z. if 2 < y ¢/, then = < (2y)*/(®~D)_ This shows that we have = < 2max(z, (2y)'~'/*). Plugging
in the right-hand side in the previous inequality and using the sub-additivity of x — ¢/x gives:

x < z+y§/5§z+y(\‘/Qmax(z,@y)a/(a*l)) <ztyV2z+ystioata,

The lemma follows by observing that 25 <2fora > 1. O

Corollary 6. Let G be defined as above. Then, with probability at least 1 — 8, for all hypothesis h € 3 and o € (1,2],

16logm -3
R(h)—ﬁg(h)£32\/5‘\‘/mtm(9)+ig 2 ] .

Proof. By Theorem 2,
1-1/a

tm(G) +loglogm + log%6
m

R(h) - RE(h) <16 \“/R(h)(

Let B = t,,,(§) +loglogm+log 2. Let a, = 1+e~“*. Let 6, = 6/k?. Then, by the union bound, for all ay, with probability
at least 1 — 6,
~ B +2logk\'"Yx
R(h) - B2(h) < 16v/2 “§/R(R) (&) .
m

Let o > o > ovge1. Then (k + 1) < L1og L. Then,

1-1/c

/i (2
W(B+210g(k+1))

L-1/an 1-1/ags1
2min(" R(h)(M)gM) R(h)(MW) )
m

1-1/a

m

Hence, with probability at least 1 — 4, for all « € (1, 2],
_ B+2log -1\ 7"
R(h) - R(h) <16V25/R(h) (gal)
m
The lemma follows by observing that

B+ 2log L\ 1-1/a log L\ 1-1/a 1-1/a 1-1/a
(P2 ) ) ) () ()
m m m m m m
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D. Upper Bounds on Peeling-Based Rademacher Complexity

Lemma 5. Ifthe functions in G take values in {0, 1}, then the following upper bounds hold for the peeling-based Rademacher
complexity of G:

1
tn(9) < < log E[Sg(:")].

Proof. By definition,

252 m
t,(9) =suplog E [exp (miﬁm(Sk(zl)))] '
k 27" 2k+5

For any g € G5, (2]"), since g takes values in [0, 1], we have:

WAOESWEE

i=1

k+1

Thus, by Massart’s lemma and Jensen’s inequality, the following inequality holds:

R (Gr(21")) < \/210g;1%[|9k(z;n)|], /2%1

2k+1
< \/2log E [Sg(z1")]

Hence, )
tm(S)SS%prglogz@[Sg( )] = logE[Sg(Z1 )]

O
Lemma 6. For a set of hypotheses G,
t(9) < sup log[ E [exp{fk(zm 9)}]]
0<k<log,(m) zt~Dm
where
(2", 9)= [1+f logNg(Sk(zl VA~ e , 2] ) ]
Proof. By Dudley’s integral,
-~ 2% Im log N- m
R (Gk(21")) =minT + f \/ 0g N2(5r (21 )’e)de
T e=T m
Choosing 7 = % and changing variables from e to E% yields,
2k/2 2k/2
TN =2 2 [ Vo Na(5ua), /B m e
Using (a +b)? < 2a% + 2b? and the Cauchy-Schwarz inequality yields,
2{}{2 (gk(zm ) 1 1 - 2
T < E 1+ ('/6=1/\/E\/10gN2(9k(21 )76\/ Qk/m)de)
1 1 m
< 6 (1 + fe=1/ﬁ10gN2(9k(zl ),e\/2k/m)de) .
O

Recall that the worst case Rademacher complexity is defined as follows.

R (H) = sup Ry, (H)
zi"



Relative Deviation Margin Bounds

E. Unbounded Margin Losses

Theorem 3. Fix p>0. Let 1 <a<2,0<e<1,and0< % < eas1. For any loss function L (not necessarily bounded)
and hypothesis set 3 such that £, (h) < +oo for all h € X,

— N P[L(h,z) > t] -P[L(h, z) > t - p]
P :gEL(h)—LS(h) >I‘T(a76)6\/ﬁa(h)+7+p] < Plihjl}fl,lgeR NSRS, >e],

a=1
1

where T (a,€) = 552 (1+7)% + L (32)" (1+(252)" 7% E[1+7(1°g(1/5) ] L

ot =)

Proof. Fix 1 <a <2ande>0andS assume that for any h € H and ¢ > 0, the following holds:

P[L(h,z) > t] -P[L(h, 2) > t - p]
PL(h,z) >t]+7

<e€. (12)

1 —
Letty = ‘)‘7‘1 Y Lo(h)+T [%] “~'. We show that this implies that for any h € H, L(h) — Ls(h) < T (a,€)e/Lo(h) + T+
min(p, t1). By the properties of the Lebesgue integral, we can write

+00
L(h) = E..p[L(h,2)] = f P[L(h, 2) > t] dt.
0
Similarly, we can write

“BL(h, 2) > u] du

+ 00

L(h) =B, p[L(h,2)] =

P[L(h,z) > t-p]dt

+

%xﬁﬁ

wﬁﬁ[L(h,z)>t—p]dt—[0”fp?[L(h,z)>t—p]dt
and La(h):[O+°°P[La(h,z)>t]dt:/0+°° at® VPL(h, 2) > t] dt.

To bound L(h) - L(h), we simply bound P[L(h, z) > t] = P[L(h, z) > t — p] by P[L(h, z) > t] for large values of ¢, that
is t > t1, and use inequality (12) for smaller values of ¢:

= L(h) - L(h)
=f0+°°P[L(h,z)>t]—fP7[L(h,z)>t—p]dt+fopf@[L(h,z)>t_p]dt

< f0+°° P[L(h,2) > t] - B[L(h,2) > t - p]dt + p

g[otlei‘/IP’[L(h,z)>t]+7'dt+f

+o00
t1

P[L(h,z) > t]dt + min(ty, p),

where the last two inequalities use the fact that L is non-negative. The rest of the proof is similar to (Cortes et al., 2019,
Theorem 3). O]

Corollary 9. Let € < 1, 1 < < 2. and hypothesis set H such that L., (h) < +oo for all h € H,

2(a-D tp
m- a

N [Tog E[No (£(5¢), 2,22m)] + log L + log log 2
L(h) - Lg(h) <minvy \"/La(h)\} 2 i £
pT

m- «

log E[Nwo (£ (30,2 22m)]+10g L +log log 2&
Whgrg")/:l_‘o (a7\/08 [ (L(70) 2 5(271))]4- og 5 +loglog ): O(logm)

The proof of Corollary 9 is similar to that of Corollary 3 and is omitted.



Relative Deviation Margin Bounds

F. Applications
F.1. Algorithms

As discussed in Section 5.2, our results can help derive tighter guarantees for margin-based algorithms such as Support
Vector Machines (SVM) (Cortes and Vapnik, 1995) and other algorithms such as those based on neural networks that can be
analyzed in terms of their margin. But, another potential application of our learning bounds is to design new algorithms,
either by seeking to directly minimize the resulting upper bound, or by using the bound as an inspiration for devising a new
algorithm.

In this sub-section, we briefly initiate this study in the case of linear hypotheses. We describe an algorithm seeking to
minimize the upper bound of Corollary 4 (or Corollary 7) in the case of linear hypotheses. Let R be the radius of the sphere
containing the data. Then, the bound of the corollary holds with high probability for any function h:x — w - x with w € R?,
|w|2 < 1, and for any p > 0 for d = (R/p)?. Ignoring lower order terms and logarithmic factors, the guarantee suggests
seeking to choose w with |w| < 1 and p > 0 to minimize the following:

Ro(w) + %\/Ryw),

where we denote by Eg(w) the empirical margin loss of h:x + w - x. Thus, using the so-called ramp loss ®,:u +
min(1, max(0,1 - %)), this suggests choosing w with [w| < 1 and p > 0 to minimize the following:

Mz

1 A 1 X
— D C,(yiw - xi) + = | — ), Pp(yiw - x;).
m;3 P P mz; g

This optimization problem is closely related to that of SVM but it is distinct. The problem is non-convex, even if @, is
upper bounded by the hinge loss. The solution may also not coincide with that of SVM in general. As an example, when the
training sample is linearly separable, any pair (w*, p*) with a weight vector w* defining a separating hyperplane and p*
sufficiently large is solution, since we have Y.;"; @, (y;w* - x;) = 0. In contrast, for (non-separable) SVM, in general the
solution may not be a hyperplane with zero error on the training sample, even when the training sample is linearly separable.
Furthermore, the SVM solution is unique (Cortes and Vapnik, 1995).

In the above, we used the ramp loss since it is closest to the hinge loss used in SVM and it has been shown recently that
a slightly modified version of the ramp loss can also benefit from favorable adversarial loss guarantees in the context of
linear hypotheses (Bao et al., 2020). Furthermore, it can of course be upper-bounded by the hinge loss. We note that our
margin-based results hold for several loss functions highlighted in Figure 1.

F.2. Margin-Based Bounds for Known Hypothesis Sets

Ensembles of predictors in base hypothesis set J{: let d be the VC-dimension of J and consider the family of ensembles
F={xr Xh_wihp(z):hy € H,wy > 0,37 _, wi = 1}. The most well known existing margin bound for ensembles such
as AdaBoost in terms of the VC-dimension of the base hypothesis given by Schapire et al. (1997) is:

R(h) < R%(h) + /B, (13)

where ¢’ is some universal constant and where 3/ = 9] (%). Gao and Zhou (2013) showed that

R(h) < R (h) +2\/ RE(h) Bl + Bin, (14)

where S, = 9] (%). However, their proof technique depends crucially on the fact that the underlying hypothesis set
is an ensemble of predictors. We can directly apply our relative deviation margin bounds to recover their result, up to
logarithmic factors. The following upper bound on the fat-shattering dimension holds (Bartlett and Shawe-Taylor, 1998):
fat,(F) < c¢(d/p)*log(1/p), for some universal constant c. Plugging in this upper bound in the bound of Corollary 4 yields

the following:
R(h) < Rg(h) + 2/ RG(h) B + Bim (15)
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with 3, = 9] (%). The margin bound in (15) is thus more favorable than (13) and comparable to (14).

Feed-forward neural networks of depth d: let Hy = {x — x;:i € {0,1,...n},x e [-1,1]"} u{0,1} and

Hi=13o| > w-h|:|w[li<R
heuj<; H;

for i € [d], where o is a p-Lipschitz activation function. Then, the following upper bound holds for the fat-shattering

dimension of H (Bartlett and Shawe-Taylor, 1998): fat,(Hq) < Cd(Rp/‘#
bound of Corollary 4 gives the following:

R(h) < R%(h) +2\/ Re(h) B + B (16)

~ f d? d(d+1) ; 2d
with 8, = O (w . In comparison, the best existing margin bound for neural networks by (Bartlett and
Shawe-Taylor, 1998, Theorem 1.5 , Theorem 1.11) is

R(h) < R%(h) +c\/BL,, a7)

log n. Plugging in this upper bound in the

~f d2 d(d+1) ; 2d
: . R
where ¢’ is some universal constant and where 3}, = O (%

than (17).

). The margin bound in (16) is thus more favorable



