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Abstract

We study the global convergence and global opti-
mality of the actor-critic algorithm applied for the
zero-sum two-player stochastic games in a decen-
tralized manner. We focus on the single-timescale
setting where the critic is updated by applying
the Bellman operator only once and the actor is
updated by policy gradient with the information
from the critic. Our algorithm is in a decentral-
ized manner, as we assume that each player has
no access to the actions of the other one, which, in
a way, protects the privacy of both players. More-
over, we consider linear function approximations
for both actor and critic, and we prove that the se-
quence of joint policy generated by our decentral-
ized linear algorithm converges to the minimax
equilibrium at a sublinear rate O(

√
K), where

K is the number of iterations. To the best of our
knowledge, we establish the global optimality and
convergence of our decentralized actor-critic al-
gorithm on zero-sum two-player stochastic games
with linear function approximations for the first
time.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018) has
promoted the research of various areas, and has achieved
phenomenal empirical successes with the power of deep
neural networks (LeCun et al., 2015; Goodfellow et al.,
2016). Examples include video games (Mnih et al., 2015;
Vinyals et al., 2019), autonomous driving (Bojarski et al.,
2016; Codevilla et al., 2018), robotics (Levine & Abbeel,
2014; Akkaya et al., 2019), and artistic creation (Jaques
et al., 2016; Huang et al., 2019). RL is typically modeled
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as Markov decision process (Puterman, 2014, MDP), where
an agent aims to learn an optimal policy via interaction with
the environment. However, a wild range of real-world com-
plex problems has a multi-agent nature, where more than
one decision maker has to interact with each other, which
motivates the research on multi-agent RL (MARL) (Buso-
niu et al., 2008). A wealth of works have been published
on MARL, including both theoretical analysis (Wai et al.,
2018; Zhang et al., 2018) and empirical training frameworks
(Lowe et al., 2017; Rashid et al., 2018), in domains such as
team-battle video games (Peng et al., 2017), autonomous
driving (Zhou et al., 2020), and trading strategy analysis
(Bao & Liu, 2019). See Zhang et al. (2019) for a detailed
survey.

MARL is typically modeled as stochastic games (SGs)
(Shapley, 1953), which generalizes the MDP framework.
In stochastic games, agents (or players) may have different
pay-offs (or rewards) that they aim to maximize. We focus
on a specific multi-agent setting named zero-sum two-player
stochastic games, where two players try to maximize oppo-
site rewards. MARL plays a critical role in solving zero-sum
two-player stochastic games, and a wealth of MARL algo-
rithms and theoretical analysis are proposed in this area, e.g.
(Pérolat et al., 2015; 2017; 2018; Xie et al., 2020; Bai & Jin,
2020; Wei et al., 2017; Sidford et al., 2020). In contrast to
most existing works that assume players can observe each
other’s action and estimate a global value function, we con-
sider a fully-decentralized setting, where each player has no
access to the actions made by the other, even from previous
timesteps, and each player maintains its own value function
estimator, which protects the privacy of both players.

In our paper, we propose a decentralized single-timescale
actor critic algorithm on zero-sum two-player stochastic
games. In each iteration, each player learns the best re-
sponse towards the other player’s policy, so that their poli-
cies approach the minimax equilibrium at the end of train-
ing. We adopt the canonical actor critic (Konda & Tsitsiklis,
2000) scheme, where we let each player maintain its own
critic function with the belief that the other player adopts
the best response policy. Such decentralization enables our
algorithm to handle zero-sum n-player (n > 2) stochastic
games as well. In addition, we adopt linear function ap-
proximations in our algorithm for generalization, so that our
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algorithm is applicable to high-dimensional settings. We
also establish a theoretical analysis of our algorithm and
prove that the sequence of policies generated by our algo-
rithm converges to the minimax equilibrium at a sublinear
rate O(

√
K), where K is the number of iterations.

Contribution. To summarize, the contributions in this pa-
per are mainly three-folds: (1) We apply actor critic to zero-
sum two-player stochastic games in a decentralized manner,
which fully preserves the privacy of both players; (2) With
the help of linear function approximation, we develop a
generalizable decentralized linear actor critic algorithm, and
give the closed forms of actor and critic update; (3) Our
decentralized linear actor critic is theoretically guaranteed
to generate a sequence of policies that converge to the mini-
max equilibrium at a sublinear rate of

√
K, where K is the

number of iterations.

Related work. There is a large body of literature on apply-
ing multi-agent reinforcement learning methods to zero-sum
two-player stochastic games. In particular, under the tabu-
lar settings, Littman & Szepesvári (1996); Littman (2001);
Grau-Moya et al. (2018) extend the value iteration and Q-
learning algorithms (Watkins & Dayan, 1992) to zero-sum
stochastic games, and Pérolat et al. (2015; 2018); Srinivasan
et al. (2018) extend actor-critic algorithms (Konda & Tsit-
siklis, 2000). Among this line of works, our paper is most
related to Pérolat et al. (2015), which proposes a bi-level
actor critic algorithm that maintains a global critic function
for both players and solves the exact minimax equilibrium
with respect to the critic function in each iteration via lin-
ear programming. The algorithm they propose in Pérolat
et al. (2015) is 2γε

(1−γ)2 -optimal, with ε being the error for the
critic estimation, while our decentralized actor critic with
linear function approximations achieves a sublinear converg-
ing rate O(

√
K) to the minimax equilibria of two-player

zero-sum stochastic games. The works of Lagoudakis &
Parr (2012); Pérolat et al. (2016a;b); Yang & Wang (2019)
also adopt function approximation techniques and establish
finite-time convergence to the minimax equilibria. Differ-
ent from our work, they consider variants of value-iteration
methods, and their results are based on the framework of fit-
ted value-iteration (Munos & Szepesvári, 2008). Motivated
by the linear MDP model studied in Yang & Wang (2019),
the works of Zanette & Brunskill (2019); Jin et al. (2020);
Cai et al. (2020) impose the linear structure assumption on
the reward function and the transition kernel of the under-
lying stochastic games, which is also imposed in our paper.
Recently, Xie et al. (2020) studies zero-sum two-player
simultaneous-move stochastic games, where they control
a single player playing against an arbitrary opponent and
aim to minimize the regret. The optimistic least-squares
minimax value iteration they propose achieves an Õ(

√
K)

upper bound on the duality gap and regret.

Notations. Let [n] = {1, . . . , n} for n ∈ N+. Also, we
denote by U(a, b) the uniform distribution with boundaries
a and b (a < b). For any measure µ, function f : X → R,
and 1 ≤ p ≤ +∞, we write ‖f‖µ,p = (

∫
X |f(x)|pdµ)1/p.

2. Background
In this section, we introduce the background of zero-sum
two-player stochastic games, Bellman operators and actor
critic methods. A zero-sum two-player stochastic game is
a generalization of an MDP to a 2-player setting, and can
be modeled as a tuple (S,A1,A2,P, ζ, r, γ), where S is
the state space, A1 and A2 are discrete action spaces for
players 1 and 2, respectively, P : S × A1 × A2 → [0, 1]
is the Markov transition kernel, ζ : S → [0, 1] is the initial
state distribution, r : S × A1 × A2 → [−rmax, rmax] is
the deterministic reward function for both players, and γ ∈
[0, 1) is the discount factor. A policy πp(ap | s) measures
the probability that player p takes action ap at state s for
p ∈ {1, 2}.

At the t-th step of the game, players 1 and 2 take ac-
tions a1t ∼ π1(· | st) and a2t ∼ π2(· | st) given the cur-
rent state st, and receive deterministic rewards r(st, a1t , a

2
t )

and −r(st, a1t , a2t ), respectively, so that the sum of their
rewards is always zero. The policies π1 and π2 together
induce a stationary state distribution νπ1,π2(s) and a station-
ary state-action distribution ρπ1,π2(s, a1, a2) = νπ1,π2(s) ·
π1(a1 | s) ·π2(a2 | s). For any state-action pair (s, a1, a2) ∈
S ×A1 ×A2, we define the action-value function Qπ

1,π2

as follows,

Qπ
1,π2

(s, a1, a2) = (1− γ) · Eπ1,π2

[ ∞∑
t=0

γt·

r(st, a
1
t , a

2
t )
∣∣ s0 = s, a10 = a1, a20 = a2

]
, (2.1)

and the total expected reward J(π1, π2) as follows,

J(π1, π2) = Es∼ζ,π1,π2

[
Qπ

1,π2

(s, a1, a2)
]
.

Here, the expectation is taken with respect to s ∼ ζ(·),
a1 ∼ π1(· | s), and a2 ∼ π2(· | s). For zero-sum two-player
stochastic games, player 1 aims to maximize J(π1, π2),
while player 2 aims to minimize J(π1, π2). In other words,
we aim to solve the following optimization problem,

max
π1

min
π2

J(π1, π2). (2.2)

2.1. Bellman Operators

In this section, we introduce some Bellman operators, which
simplifies our notations in the sequel. Let v : S → R,
q1 : (S × A1) → R, q2 : (S × A2) → R, and q : (S ×
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A1 ×A2)→ R be any functions. We define the following
transition operators,

[Pv](s, a1, a2)

= E
[
v(s1)

∣∣ s0 = s, a0 = a1, a2 = a2
]
,

[Pπ
1

1 q1](s, a1, a2)

= Eπ1

[
q1(s1, a

1
1)
∣∣ s0 = s, a0 = a1, a2 = a2

]
,

[Pπ
2

2 a2](s, a1, a2)

= Eπ2

[
q2(s1, a

2
1)
∣∣ s0 = s, a0 = a1, a2 = a2

]
,

[Pπ
1,π2

q](s, a1, a2)

= Eπ1,π2

[
q(s1, a

1
1, a

2
1)
∣∣ s0 = s, a0 = a1, a2 = a2

]
.

We also define the following Bellman operators,

[Tπ
1

1 q1](s, a1, a2)

= (1− γ) · r(s, a1, a2) + γ · [Pπ
1

1 q1](s, a1, a2),
(2.3)

[Tπ
2

2 q2](s, a1, a2)

= (1− γ) · r(s, a1, a2) + γ · [Pπ
2

2 q2](s, a1, a2),
(2.4)

[Tπ
1,π2

q](s, a1, a2)

= (1− γ) · r(s, a1, a2) + γ · [Pπ
1,π2

q](s, a1, a2),
(2.5)

[T̂π
1,π2

q1](s, a1)

= Ea2∼π2(· | s)
[
(1− γ) · r(s, a1, a2)

+ γ · Pπ
1,π2

q1(s, a1, a2)
]
, (2.6)

[T̃π
1,π2

q2](s, a2)

= Ea1∼π1(· | s)
[
(1− γ) · r(s, a1, a2)

+ γ · Pπ
1,π2

q2(s, a1, a2)
]
. (2.7)

By the definition of Tπ1,π2

in (2.5), Qπ
1,π2

is the unique
fixed point of Tπ1,π2

. To simplify the notation, we define

P` = PP . . .P︸ ︷︷ ︸
`

.

Such a notation is also adopted for other operators such as
Pπ1,π2

and Tπ1,π2

.

2.2. Minimax Equilibrium

We define the optimal value of the zero-sum two-player
stochastic games as

Qπ
1
∗,π

2
∗ = max

π1
min
π2

Qπ
1,π2

= min
π2

max
π1

Qπ
1,π2

. (2.8)

Intuitively, stochastic games can be cast as a matrix game
in terms of the visitation measure (Altman, 1999), which al-
lows us to combine with Von Neumann’s minimax theorem

(Von Neumann & Morgenstern, 1947; Patek, 1997) to get
(2.8). To simplify the notation, we denote by Q∗ = Qπ

1
∗,π

2
∗ .

Note that (2.8) also defines optimal policies π1
∗ and π2

∗ at
the minimax equilibrium. In the setting of zero-sum two-
player stochastic games, the notion of minimax equilibrium
is equivalent to that of Nash equilibrium (Conitzer, 2016),
so that no player gets higher expected rewards by deviating
from the policies π1

∗ and π2
∗ at the equilibrium.

2.3. Actor Critic

One way of solving the objective in (2.2) is via directly
applying the actor critic method (Konda & Tsitsiklis, 2000)
in a centralized way. The actor critic method is composed of
iterations of actor update and critic update. In critic update,
a policy evaluation algorithm such as temporal-difference
(Tesauro, 1995) is adopted to estimate the action-value func-
tion, while in actor update, a policy improvement algorithm
such as Schulman et al. (2015; 2017) is invoked to refine the
policy with the information provided by the critic. To adopt
actor critic in the setting of zero-sum two-player stochastic
games, a natural way is to maintain an estimator of Qπ

1,π2

defined in (2.1), and improve the policy of each player with
the information provided by that estimator, while treating
the other player’s policy as a fixed component of the un-
derlying environment. This technique requires access to
both players’ actions when maintaining the global critic (the
estimator of Qπ

1,π2

). Such centralized global critic leaks
the decision-making strategy of both players. Also, algo-
rithms with centralized global critic are hard to be extended
to zero-sum n-player stochastic games, since the magnitude
of the domain space of Qπ

1,π2,...,πn grows exponentially
with n growing linearly. Those defects of centralized ac-
tor critic motivate us to consider applying actor critic in a
fully decentralized manner, as the algorithm presented in
the following section.

3. Algorithm
In this section, we introduce the details of our de-
centralized actor critic algorithm on zero-sum two-
player stochastic games. The key of developing
our decentralized algorithm is to maintain two sep-
arated estimators of the state-action value functions,
one for each player. We denote by Q̂π

1

(s, a1)

the estimator of minπ2 Ea2∼π2(· | s)[Q
π1,π2

(s, a1, a2)]

for player 1, and by Q̂π
2

(s, a2) the estimator of
maxπ1 Ea1∼π1(· | s)[Q

π1,π2

(s, a1, a2)] for player 2. To sim-
plify the notation, for the policies π1

k and π2
k in the k-th

iteration, we denote the stationary state distribution νπ1
k,π

2
k

and state-action distribution ρπ1
k,π

2
k

by νk and ρk, respec-
tively. We present our decentralized actor critic algorithm
for zero-sum two-player stochastic games in Algorithm 1
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Algorithm 1 Decentralized Actor Critic on Zero-Sum Two-Player Stochastic Games

Require: Initial policies π1
0 , π

2
0 , initial estimators Q̂π

1
0 , Q̂π

2
0 , the number of iterations K, the number of iterations T for the

subroutine, regularization parameter β, and TD parameter m.
1: for k ← 0, 1, 2, . . . ,K − 1 do
2: Actor update of player 1: π1

k+1 ← argmaxπ1 Eνk [〈Q̂π1
k(s, ·), π1(· | s)〉 − β · KL(π1(· | s) ‖π1

k(· | s))].
3: Find the best responding policy π2

k+1 via (π2
k+1, Q̂

π2
k+1)← BestResponse(π1

k+1, π
2
k, Q̂

π2
k , T, β,m).

4: Critic update of player 1: Q̂π
1
k+1 ← (T̂π

1
k+1,π

2
k+1)mQ̂π

1
k .

5: end for
Ensure: Policy sequences {π1

k}k∈[K] and {π2
k}k∈[K].

Algorithm 2 The Subroutine BestResponse

Require: Current policy π1 of player 1, initial policy π2
0 , initial estimator Q̂π

2
0 , the number of iterations T , regularization

parameter β, and TD parameter m.
1: for t← 0, 1, 2, . . . , T − 1 do
2: Actor update of player 2: π2

t+1 ← argmaxπ2 Eνk [〈Q̂π2
t (s, ·), π2(· | s)〉 − β · KL(π2(· | s) ‖π2

t (· | s))].
3: Critic update of player 2: Q̂π

2
t+1 ← (T̃π

1
k+1,π

2
t+1)mQ̂π

2
t .

4: end for
Ensure: π2

T and Q̂π
2
T .

and its subroutine in Algorithm 2.

Our algorithm follows the idea of treating the other player
as part of the environment when performing actor updates
and critic updates on each player. In every iteration, we first
perform actor update on player 1. See line 2 of Algorithm 1,
where KL(· ‖ ·) computes the Kullback–Leibler divergence.
We adopt PPO algorithm (Schulman et al., 2017) to calcu-
late the optimal policy with respect to Q̂π

1
k and meanwhile

constrain the KL divergence between π1
k and π1

k+1. The KL
constraint controls the learning step and prevents the algo-
rithm converging too fast to a suboptimal solution. In line 3
of Algorithm 1, a subroutine BestResponse given in Algo-
rithm 2 is performed to compute the best response of player
2 towards π1

k+1. Specifically, in subroutine BestResponse,
we run the actor and critic update of player 2 for T itera-
tions. The actor update in line 2 of Algorithm 2 adopts the
same PPO algorithm as in line 2 of Algorithm 1. In the
critic update in line 3 of Algorithm 2, we apply the operator
T̃π

1
k+1,π

2
t+1 m times on Q̂π

2
t , where T̃π

1
k+1,π

2
t+1 is defined

in (2.7). After T iterations, the policy π2
T obtained well

approximates the best response of player 2 towards π1
k+1,

i.e., π2
T well approximates argminπ2 Qπ

1
k+1,π

2

. Then, we
perform critic update for player 1 in line 4 of Algorithm
1, where we apply the operator T̂π

1
k+1,π

2
k+1 m times on

Q̂π
1
k , with π2

k+1 being the policy generated by the subrou-
tine and T̂π

1
k+1,π

2
k+1 defined in (2.6). Thus, the estimator

Q̂π
1
k+1 approximates Eπ1

k+1,π
2
k+1

[Qπ
1
k+1,π

2
k+1 ], which is ap-

proximately minπ2 Eπ1
k+1,π

2 [Qπ
1
k+1,π

2

] by the construction
of π2

k+1.

Our algorithm is single-timescale and decentralized. Each
time the actor of player 1 is updated, the actor and critic
of player 2 are updated T times to well-approximate the
best response. In other words, player 1 and player 2 are on
different levels. However, following from the discussion in
§2.2, we get the same minimax equilibrium by switching
the roles of player 1 and player 2. Also, from Algorithm
1 and 2, the number of actor updates are consistent with
that of critic updates for both players, which indicates that
our algorithm is single-timescale. Finally, in our algorithm,
each player maintains its own critic, and when updating the
critic with the Bellman operator defined in (2.6) and (2.7),
the action of the other player is actually marginalized out.
Thus, the whole algorithm words in a decentralized manner.

3.1. Linear Approximation

In this section, we consider linear approximation for both
policy and action-value function of each player. Here and
in the sequel, we use p ∈ {1, 2} to identify each player. We
focus on the family of energy-based policies as follows,

πp
θpk

(ap | s) =
exp
(
τ−1k · φp(s, ap)>θpk

)∑
a′∈Ap exp

(
τ−1k · φp(s, a′)>θpk

) . (3.1)

Here, τk is the temperature parameter, θpk ∈ Rd is the param-
eter of πp in the k-th iteration, and φp ∈ Rd is the feature
vector for player p. The parameters θp and τ are initialized
as follows,

θp0 ∼ U(−1, 1), τ0 ←∞. (3.2)

Here, τ0 ← ∞ indicates that the initial policy is uniform,
which is commonly adopted in the literature. We assume
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the feature vector φp in (3.1) is always available for player
p, and although the action spaces A1 and A2 may differ, we
assume the feature vectors for both players are of the same
dimension. To simplify the notation, we denote πp

θpk
by πpk,

for p ∈ {1, 2}. The linear approximation of the action-value
function for player p is given by

Q̂
πpk
ωpk

(s, ap) = φp(s, ap)>ωpk. (3.3)

Here, ωpk ∈ Rd is the parameter for the estimator Q̂π
p
k ,

and φp is the same feature vector in (3.1). To simplify the
notation, we denote Q̂π

p
k

ωpk
by Q̂π

p
k . The parameter ωp is

initialized as follows,

ωp0 ∼ U(−R/
√
d,R/

√
d). (3.4)

In (3.4), we let the parameter ωp lie in a centered ball in
Rd with radius R, where d is the dimension of the feature
vector φp. With the approximated action-value function, we
develop the closed forms of actor and critic update for both
players as follows.

Actor update for player p. The following lemma gives
the closed forms of the updates in line 2 of Algorithm 1 and
line 2 of Algorithm 2.

Lemma 3.1. With the energy-based policy πpk given in
(3.1) and the linear action-value function Q̂π

p
k given in

(3.3), we let θpk+1 = argmaxθ Eνk [〈Q̂π
p
k(s, ·), πp(· | s)〉 −

β · KL(πp(· | s) ‖πpk(· | s))]. Then, θpk+1 has the following
closed form

θpk+1 = τk+1 · (β−1ωpk + τ−1k θpk). (3.5)

Proof. See §A.1 for a detailed proof.

By Lemma 3.1 and setting τk+1 = (τ−1k + η)−1 for con-
stant η > 0, we obtain an exact greedy policy with respect
to the approximated state-action value function Q̂πk+1 un-
der the KL constraint. In what follows, we introduce the
closed form of critic update for both players under our linear
approximation.

Critic update for player 1. To simplify our analysis, we
assume m = 1 in Algorithm 1 and 2, hereafter. Thus, the
critic update for player 1 in line 4 of Algorithm 1 corre-
sponds to the following formula

ω̃1
k+1 = argmin

ω1

Eρk+1

[(
Q̂π

1
k+1(s, a1)

− Tπ
1
k+1

1 Q̂π
1
k(s, a1)

)2]
. (3.6)

The solution to the minimization problem in (3.6) is the min-
imum mean square error (MMSE) estimator of Tπ

1
k+1Q̂π

1
k ,

which has the following closed form,

ω̃1
k+1 =

(
Eρk+1

[
φ1(s, a1)φ1(s, a1)>

])−1
· Eρk+1

[
Tπ

1
k+1Q̂π

1
k(s, a1) · φ1(s, a1)

]
. (3.7)

Then, we use data to approximate the expectation
over the stationary state-action distribution ρk+1.
Specifically, we sample {(si,0, a1i,0, a2i,0)}i∈[N ] and
{(si,1, a1i,1, a2i,1, ri,1, si,2, a1i,2, a2i,2)}i∈[N ] where

(si,0, a
1
i,0, a

2
i,0)

i.i.d∼ ρk+1, (si,1, a
1
i,1, a

2
i,1)

i.i.d∼ ρk+1,
ri,1 = r(si,1, a

1
i,1, a

2
i,1), si,2 ∼ P(· | si,1, a1i,1, a2i,1),

a1i,2 ∼ π1
k+1(· | si,2), a2i,2 ∼ π2

k+1(· | si,2), and N is the

sample size. Then, the parameter ω1
k+1 for Q̂π

1
k+1 that we

obtain is given by

ω1
k+1 = ΠR

{[ N∑
i=1

φ1(si,0, a
1
i,0)φ1(si,0, a

1
i,0)>

]−1
·
N∑
i=1

(
(1− γ) · ri,1 + γ · Q̂π

1
k(si,2, a

1
i,2)
)
φ1(si,1, a

1
i,1)
}
.

(3.8)

Here, ΠR is the projection operator which projects the pa-
rameter into the centered ball in Rd with radius R.

Critic update for player 2. We omit the derivation of the
closed form of critic update for player 2, since it follows the
same idea as that for player 1. In the end, the critic update
for player 2 in line 3 of Algorithm 2 takes the following
form,

ω2
t+1 = ΠR

{[ N∑
j=1

φ2(sj,0, a
2
j,0)φ2(sj,0, a

2
j,0)>

]−1
·
N∑
j=1

(
(1− γ) · rj,1 + γ · Q̂π

2
t (sj,2, a

2
j,2)
)
φ2(sj,1, a

2
j,1)
}
.

(3.9)

Here, ω2
t+1 is the parameter for the estimator Q̂π

2
t+1 ,

ΠR is the same projection with that in (3.8), N is the
sample size, and we sample {(sj,0, a1j,0, a2j,0)}j∈[N ]

and {(sj,1, a1j,1, a2j,1, rj,1, sj,2, a1j,2, a2j,2)}j∈[N ] where

(sj,0, a
1
j,0, a

2
j,0)

i.i.d∼ ρπ1,π2
t+1

, (sj,1, a
1
j,1, a

2
j,1)

i.i.d∼ ρπ1,π2
t+1

,
rj,1 = r(sj,1, a

1
j,1, a

2
j,1), sj,2 ∼ P(· | sj,1, a1j,1, a2j,1),

a1j,2 ∼ π1(· | sj,2), a2j,2 ∼ π2
t+1(· | sj,2).

We refer our linear approximation of Algorithm 1 as de-
centralized linear actor critic algorithm and conclude it in
Algorithm 3. In what follows, we give our theoretical analy-
sis of our decentralized linear actor critic algorithm.
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Algorithm 3 Decentralized Linear Actor Critic on Zero-Sum Two-Player Stochastic Games
Require: The number of iterations K, the number of iterations T for the subroutine, regularization parameter β, learning

parameter η, and TD parameter m.
1: Initialize the parameters of π1

0 and π2
0 by θ10 ∼ U(−1, 1) and θ20 ∼ U(−1, 1), respectively.

2: Initialize the parameters of Q̂π
1
0 and Q̂π

2
0 by ω1

0 ∼ U(−R/
√
d,R/

√
d) and ω2

0 ∼ U(−R/
√
d,R/

√
d), respectively.

3: Set τ0 ←∞.
4: for k ← 0, 1, 2, . . . ,K − 1 do
5: Update θ1k to get θ1k+1 following (3.5) with p substituted by 1.
6: Set θ2k,0 ← θ2k and ω2

k,0 ← ω2
k.

7: for t = 0, 1, 2, . . . , T − 1 do
8: Update θ2k,t to get θ2k,t+1 following (3.5) with p substituted by 2.
9: Update ω2

k,t to get ω2
k,t+1 following (3.9) with π2

t+1 substituted by π2
k,t+1.

10: end for
11: π2

k+1 ← π2
k,T .

12: Update ω1
k to get ω1

k+1 following (3.8).
13: τk+1 ← (τ−1k + η)−1.
14: end for
Ensure: Policy sequences {π1

k}Kk=0 and {π2
k}Kk=0.

4. Theoretical Results
In this section, we introduce our theoretical results for our
decentralized linear actor critic algorithm presented in Al-
gorithm 3. We make the following assumptions to help us
establish the theoretical results.

Assumption 4.1 (Concentration Coefficient). We assume
there exists a state-action distribution ρ such that for an
arbitrary sequence of policies {π1

` , π
2
`}`∈[k], the k-step

future state-action distribution ρPπ1
1 ,π

2
1 · · ·Pπ1

k,π
2
k is abso-

lutely continuous with respect to ρ. Also, it holds for such
ρ that

Cρ = (1− γ)2
∞∑
k=1

kγk · c(k) <∞,

where c(k) = sup
{π`}`∈[k]

∥∥∥∥d(ρPπ1
1 ,π

2
1 · · ·Pπ1

` ,π
2
` )

dρ

∥∥∥∥
ρ,∞

.

In Assumption 4.1, Cρ is known as the discounted-average
concentrability coefficient of the future-state-action distri-
butions, which measures the stochastic stability properties
of the stochastic game. Such assumption is commonly im-
posed in the literature (Munos, 2005; Munos & Szepesvári,
2008; Scherrer, 2013; Scherrer et al., 2015; Farahmand et al.,
2016).

Assumption 4.2 (Zero Approximation Error). It holds for
any energy-based policies π1 and π2 taking the form of (3.1)
and any linear estimator Q̂π

p

taking the form of (3.3) that

inf
ω∈B(0,R)

Eρπ1,π2

[(
Tπ

p

p Q̂π
p

(s, a1, a2)− φp(s, ap)>ω
)2]

= 0.

Assumption 4.2 imposes a linear structure on the underlying
MDP, namely linear MDP (Yang & Wang, 2019). Specifi-
cally speaking, it assumes that the Bellman operator of any
joint policy maps a linear value function to a linear function.
Such an assumption is commonly adopted in the theoretical
analysis of RL (Lagoudakis & Parr, 2012; Pérolat et al.,
2016a;b; Yang & Wang, 2019). When Assumption 4.2 does
not hold, we just need to add an extra estimation error term
in our results.

Assumption 4.3 (Well-conditioned Feature). We assume
‖φp(s, ap)‖2 ≤ 1 for any s ∈ S, ap ∈ Ap, p ∈
{1, 2} and that the minimum singular value of the matrix
Eρk [φp(s, ap)φp(s, ap)>] is uniformly lower bounded by
λ∗ > 0 for any k ∈ [K].

Assumption 4.3 ensures that the minimization prob-
lem in (3.6) has a unique minimizer, and that
‖Eρk [φp(s, ap)φp(s, ap)>]−1‖2 ≤ 1/λ∗. Similar assump-
tions are commonly imposed in the literature (Bhandari
et al., 2018; Zou et al., 2019; Wu et al., 2020). In tabular set-
tings, such an assumption is just stating that all state-action
pairs can be reached.

We emphasize that even with those assumptions, the theo-
retical analysis is still nontrivial due to the decentralization,
the nonconvexity for each agent, and their interaction in a
minimax manner.

4.1. Main Theorem

In this section, we establish the upper bound of the total opti-
mality gap of our decentralized linear actor critic algorithm.
Specifically speaking, we are interested in upper bounding
L(K) = Eρ[

∑K
k=0 lk], where ρ is a state-action distribu-
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tion satisfying Assumption 4.1 and lk = Q∗ −Qπ
1
k+1,π̃

2
k+1 .

Here, recall that Q∗ is the optimal value function defined
in (2.8), and we denote by π̃2

k the best response of player 2
towards π1

k, i.e., Qπ
1
k,π̃

2
k = minπ2 Qπ

1
k,π

2

. We denote by εk
the following critic update error for k ∈ {0, 1, . . . ,K − 1},

εk(s, a1, a2) = [Tπ
1
k+1

1 Q̂π
1
k − Q̂π

1
k+1 ](s, a1, a2), (4.1)

where π̃2
k+1 is the best response towards π1

k+1. We now
give the following proposition which upper bounds εk.

Proposition 4.4. Let T = m = 1 and suppose As-
sumption 4.2 and 4.3 hold. Then, it holds for any given
k ∈ {0, 1, . . . ,K − 1} with probability at least 1− 2δ that

Eρ
[
|εk|
]
≤ 16(rmax +R)√

Nλ∗
· log

(
2d

δ

)
,

where the expectation is taken with respect to (s, a1, a2) ∼
ρ, the uncertainty comes from ωk, rmax is the maximum
reward magnitude, R is the domain radius of all {ωk}k∈[K],
N is the sample size, λ∗ is given in Assumption 4.3, and d
is the feature dimension.

Proof. See §A.2 for a detailed proof.

Proposition 4.4 establishes the upper bound of εk in one
iteration. We denote by εQ the following union bound,

εQ = max
k∈{0,1,...,K−1}

Eρ[|εk|], (4.2)

and use the following corollary of Proposition 4.4 to upper
bound εQ.

Corollary 4.5. Under the same conditions of Proposition
4.4, it holds with probability at least 1− δ that

εQ ≤
16(rmax +R)√

Nλ∗
· log

(
4Kd

δ

)
,

where the uncertainty comes from {ωk}k∈[K].

Finally, we give the following theorem which establishes
the optimality gap of our Algorithm 1.

Theorem 4.6. Let K be a sufficiently large number, ρ
be a state-action distribution satisfying Assumption 4.1,
β =
√
K, N = Ω(KC2

ρ log2(Kd)/λ2∗), δ ∈ (0, 1), T = 1,
m = 1, η = 1, and the sequence of policy parameters
{θk}Kk=0 be generated by running Algorithm 3 for K iter-
ations. Under Assumptions 4.1,4.2 and 4.3, it holds with
probability at least 1− δ that

L(K) = Eρ[
K∑
k=0

Q∗ −Qπ
1
k+1,π̃

2
k+1 ]

≤ O
(√

K log(|A1|/δ)
(1− γ)2

)
,

where the expectation is taken with respect to (s, a1, a2) ∼
ρ and the uncertainty comes from {ωk}k∈[K].

We sketch the proof in §5. Theorem 4.6 establishes an
O(
√
K) suboptimality of our decentralized linear actor

critic algorithm, where K is the total number of iterations.
To better understand the theorem, note that in single-agent
setting and with access to the true action-value function
Qπ, the nature policy gradient method achieves the same
O(
√
K) regret (Liu et al., 2019; Agarwal et al., 2019; Cai

et al., 2019). We use 2KN samples during the first k itera-
tions, as we need N data points for Player 1 and TN = N
data points for Player 2. The sample complexity becomes
Õ(K2) by our choice of parameters where Õ hides con-
stants and logarithms. Moreover, by the 1/

√
K rate of

convergence, the sample complexity to attain a Nash equi-
librium is Õ(1/ε4). Note that we employ an on-policy algo-
rithm that uses a fresh batch of data points at each iteration.
If we employ an off-policy algorithm instead that reuses the
same batch, the sample complexity becomes Õ(K) by our
choice of parameters, which translates to Õ(1/ε2). Such
a sample complexity matches that of Pérolat et al. (2015);
Bai & Jin (2020); Xie et al. (2020); Bai et al. (2020) in
the tabular case. However, our setting allows for function
approximation and decentralized execution, which are com-
mon in practice.

5. Proof Sketch
In this section, we sketch the proof of Theorem 4.6. For no-
tational convenience, we let Q̂π

1

(s, a1, a2) = Q̂π
1

(s, a1),
which leads to Tπ1,π2

Q̂π
1

= Tπ1

1 Q̂π
1

for any π2, where
Tπ1,π2

is defined in (2.5) and Tπ1

1 is defined in (2.3). Since
the valueQ∗ defined in (2.8) is the invariant point of Tπ1

∗,π
2
∗ ,

it holds that Q∗ = Tπ1
∗,π

2
∗Q∗. Thus, we can write

lk = Q∗ −Qπ
1
k+1,π̃

2
k+1

= Tπ
1
∗,π

2
∗Q∗ − Tπ

1
∗,π

2
∗Q̂π

1
k + Tπ

1
∗,π

2
∗Q̂π

1
k − Tπ

1
k+1

1 Q̂π
1
k

+ Tπ
1
k+1

1 Q̂π
1
k −Qπ

1
k+1,π̃

2
k+1

= Tπ
1
∗,π

2
∗Q∗ − Tπ

1
∗,π

2
∗Q̂π

1
k + Tπ

1
∗

1 Q̂π
1
k − Tπ

1
k+1

1 Q̂π
1
k

+ Tπ
1
k+1

1 Q̂π
1
k −Qπ

1
k+1,π̃

2
k+1

= γPπ
1
∗,π

2
∗(Q∗ − Q̂π

1
k)︸ ︷︷ ︸

,gk

+ γ(Pπ
1
∗

1 − Pπ
1
k+1

1 )Q̂π
1
k︸ ︷︷ ︸

,fk

+ Tπ
1
k+1,π̃

2
k+1Q̂π

1
k −Qπ

1
k+1,π̃

2
k+1︸ ︷︷ ︸

,hk

. (5.1)

Since the value Q∗ defined in (2.8) is the fixed point of
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Tπ1
∗,π

2
∗ , it holds that Q∗ = Tπ1

∗,π
2
∗Q∗. Thus, we can write

gk+1 = γPπ
1
∗,π

2
∗(Q∗ − Q̂π

1
k+1)

= γPπ
1
∗,π

2
∗ [Tπ

1
∗,π

2
∗Q∗ − Tπ

1
k+1,π̃

2
k+1Q̂π

1
k

+ Tπ
1
k+1,π̃

2
k+1Q̂π

1
k − Q̂π

1
k+1 ]

= γPπ
1
∗,π

2
∗ [Tπ

1
∗,π

2
∗Q∗ − Tπ

1
∗,π

2
∗Q̂π

1
k + Tπ

1
∗,π

2
∗Q̂π

1
k

− Tπ
1
k+1,π̃

2
k+1Q̂π

1
k + Tπ

1
k+1,π̃

2
k+1Q̂π

1
k − Q̂π

1
k+1 ]

= γPπ
1
∗,π

2
∗
[
γPπ

1
∗,π

2
∗(Q∗ − Q̂π

1
k) + γ(Pπ

1
∗

1 − Pπ
1
k+1

1 )Q̂π
1
k

+ Tπ
1
k+1,π̃

2
k+1Q̂π

1
k − Q̂π

1
k+1 ]

= γPπ
1
∗,π

2
∗(gk + fk + εk), (5.2)

where fk is defined in (5.1) and εk is defined in (4.1). By
applying (5.2) k times, we obtain that

gk = γPπ
1
∗,π

2
∗(Q∗ − Q̂π

1
k)

= (γPπ
1
∗,π

2
∗)kg0 +

k∑
t=1

(γPπ
1
∗,π

2
∗)t(fk−t + εk−t),

(5.3)

By the triangle inequality, it holds that

|g0| = |Q∗ − Q̂π
1
0 | ≤ rmax + ‖φ1‖2 · ‖ω1

0‖2 ≤ rmax +R,
(5.4)

where rmax is the maximum magnitude of the rewards, R is
the radius given in (3.4), and the last inequality follows from
‖ω1

0‖2 ≤ R and ‖φ1‖2 ≤ 1 which comes from Assumption
4.3. The following lemma establishes the upper bound for∑K

k=1 fk.

Lemma 5.1. Under Assumption 4.3, it holds for any
(s, a1, a2) ∈ S ×A×A that

K∑
k=0

fk(s, a1, a2) ≤ β log(|A1|), (5.5)

where β is the regularization parameter in line 2 of Algo-
rithm 1, and A1 is the action space of player 1.

Proof. See §A.3 for a detailed proof.

Recall that ρ is a given state-action distribution that satisfies
Assumption 4.1. Upon telescoping with respect to k and
taking expectation with respect to (s, a1, a2) ∼ ρ, we obtain
that

Eρ
[ K∑
k=0

(γPπ
1
∗,π

2
∗)kg0

]
≤ Eρ

[ K∑
k=0

(γPπ
1
∗,π

2
∗)k|g0|

]
≤ rmax +R

1− γ
, (5.6)

Eρ
[ K∑
k=0

k∑
t=1

(γPπ
1
∗,π

2
∗)tfk−t

]
= Eρ

[ K∑
t=1

(γPπ
1
∗,π

2
∗)t

K−t∑
k=0

fk
]
≤ β log(|A1|)

1− γ
, (5.7)

and

Eρ
[ K∑
k=0

k∑
t=1

(γPπ
1
∗,π

2
∗)tεk−t

]
≤

K∑
k=1

k∑
t=1

γtc(t)Eρ
[
εk−t

]
≤ KCρεQ

(1− γ)2
. (5.8)

Here, the second inequality in (5.6) follows from (5.4), the
inequality in (5.7) follows from (5.5), the first inequality in
(5.8) follows from Assumption 4.1, and the second inequal-
ity in (5.8) follows from Corollary 4.5. Combining (5.3),
(5.6), (5.7), and (5.8) together, we obtain that

Eρ[
K∑
k=0

k∑
t=1

gk] ≤ rmax +R+ β log(|A1|) +KCρεQ
(1− γ)2

.

(5.9)

Then, the following lemma upper bounds Eρ[
∑K
k=0 hk] for

which the proof is deferred to the appendix.

Lemma 5.2. Under Assumption 4.1 and 4.3, it holds that

Eρ
[ K∑
k=0

hk(s, a1, a2)
]
≤ rmax +R+KCρεQ

(1− γ)2
, (5.10)

where hk is defined in (5.1).

Proof. See §A.4 for a detailed proof.

Then, combining (5.1), (5.5), (5.9), and (5.10) together, we
obtain that

Eρ[
K∑
k=0

lk] = Eρ[
K∑
k=0

fk + gk + hk]

≤
2
(
KCρεQ + β log(|A1|) + rmax +R

)
(1− γ)2

.

Thus, following from Corollary 4.5, by choosing β =
√
K

and N = Ω(KC2
ρ log2(Kd)/λ2∗), it holds with probability

at least 1− δ that

Eρ[
K∑
k=0

lk] ≤ 32KCρ(rmax +R)

(1− γ)2 ·
√
Nλ∗

· log

(
4Kd

δ

)
+

2β

(1− γ)2
· log(|A1|) +

2(rmax +R)

(1− γ)2

≤ O
(√

K log(|A1|/δ)
(1− γ)2

)
,

which concludes the proof of Theorem 4.6.
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