Near Optimal Reward-Free Reinforcement Learning

Zihan Zhang, Simon Du, Xiangyang Ji
Proceedings of the 38th International Conference on Machine Learning, PMLR 139:12402-12412, 2021.

Abstract

We study the reward-free reinforcement learning framework, which is particularly suitable for batch reinforcement learning and scenarios where one needs policies for multiple reward functions. This framework has two phases: in the exploration phase, the agent collects trajectories by interacting with the environment without using any reward signal; in the planning phase, the agent needs to return a near-optimal policy for arbitrary reward functions. %This framework is suitable for batch RL setting and the setting where there are multiple reward functions of interes We give a new efficient algorithm, \textbf{S}taged \textbf{S}ampling + \textbf{T}runcated \textbf{P}lanning (\algoname), which interacts with the environment at most $O\left( \frac{S^2A}{\epsilon^2}\poly\log\left(\frac{SAH}{\epsilon}\right) \right)$ episodes in the exploration phase, and guarantees to output a near-optimal policy for arbitrary reward functions in the planning phase, where $S$ is the size of state space, $A$ is the size of action space, $H$ is the planning horizon, and $\epsilon$ is the target accuracy relative to the total reward. Notably, our sample complexity scales only \emph{logarithmically} with $H$, in contrast to all existing results which scale \emph{polynomially} with $H$. Furthermore, this bound matches the minimax lower bound $\Omega\left(\frac{S^2A}{\epsilon^2}\right)$ up to logarithmic factors. Our results rely on three new techniques : 1) A new sufficient condition for the dataset to plan for an $\epsilon$-suboptimal policy % for any totally bounded reward function ; 2) A new way to plan efficiently under the proposed condition using soft-truncated planning; 3) Constructing extended MDP to maximize the truncated accumulative rewards efficiently.

Cite this Paper


BibTeX
@InProceedings{pmlr-v139-zhang21e, title = {Near Optimal Reward-Free Reinforcement Learning}, author = {Zhang, Zihan and Du, Simon and Ji, Xiangyang}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {12402--12412}, year = {2021}, editor = {Meila, Marina and Zhang, Tong}, volume = {139}, series = {Proceedings of Machine Learning Research}, month = {18--24 Jul}, publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v139/zhang21e/zhang21e.pdf}, url = {https://proceedings.mlr.press/v139/zhang21e.html}, abstract = {We study the reward-free reinforcement learning framework, which is particularly suitable for batch reinforcement learning and scenarios where one needs policies for multiple reward functions. This framework has two phases: in the exploration phase, the agent collects trajectories by interacting with the environment without using any reward signal; in the planning phase, the agent needs to return a near-optimal policy for arbitrary reward functions. %This framework is suitable for batch RL setting and the setting where there are multiple reward functions of interes We give a new efficient algorithm, \textbf{S}taged \textbf{S}ampling + \textbf{T}runcated \textbf{P}lanning (\algoname), which interacts with the environment at most $O\left( \frac{S^2A}{\epsilon^2}\poly\log\left(\frac{SAH}{\epsilon}\right) \right)$ episodes in the exploration phase, and guarantees to output a near-optimal policy for arbitrary reward functions in the planning phase, where $S$ is the size of state space, $A$ is the size of action space, $H$ is the planning horizon, and $\epsilon$ is the target accuracy relative to the total reward. Notably, our sample complexity scales only \emph{logarithmically} with $H$, in contrast to all existing results which scale \emph{polynomially} with $H$. Furthermore, this bound matches the minimax lower bound $\Omega\left(\frac{S^2A}{\epsilon^2}\right)$ up to logarithmic factors. Our results rely on three new techniques : 1) A new sufficient condition for the dataset to plan for an $\epsilon$-suboptimal policy % for any totally bounded reward function ; 2) A new way to plan efficiently under the proposed condition using soft-truncated planning; 3) Constructing extended MDP to maximize the truncated accumulative rewards efficiently.} }
Endnote
%0 Conference Paper %T Near Optimal Reward-Free Reinforcement Learning %A Zihan Zhang %A Simon Du %A Xiangyang Ji %B Proceedings of the 38th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2021 %E Marina Meila %E Tong Zhang %F pmlr-v139-zhang21e %I PMLR %P 12402--12412 %U https://proceedings.mlr.press/v139/zhang21e.html %V 139 %X We study the reward-free reinforcement learning framework, which is particularly suitable for batch reinforcement learning and scenarios where one needs policies for multiple reward functions. This framework has two phases: in the exploration phase, the agent collects trajectories by interacting with the environment without using any reward signal; in the planning phase, the agent needs to return a near-optimal policy for arbitrary reward functions. %This framework is suitable for batch RL setting and the setting where there are multiple reward functions of interes We give a new efficient algorithm, \textbf{S}taged \textbf{S}ampling + \textbf{T}runcated \textbf{P}lanning (\algoname), which interacts with the environment at most $O\left( \frac{S^2A}{\epsilon^2}\poly\log\left(\frac{SAH}{\epsilon}\right) \right)$ episodes in the exploration phase, and guarantees to output a near-optimal policy for arbitrary reward functions in the planning phase, where $S$ is the size of state space, $A$ is the size of action space, $H$ is the planning horizon, and $\epsilon$ is the target accuracy relative to the total reward. Notably, our sample complexity scales only \emph{logarithmically} with $H$, in contrast to all existing results which scale \emph{polynomially} with $H$. Furthermore, this bound matches the minimax lower bound $\Omega\left(\frac{S^2A}{\epsilon^2}\right)$ up to logarithmic factors. Our results rely on three new techniques : 1) A new sufficient condition for the dataset to plan for an $\epsilon$-suboptimal policy % for any totally bounded reward function ; 2) A new way to plan efficiently under the proposed condition using soft-truncated planning; 3) Constructing extended MDP to maximize the truncated accumulative rewards efficiently.
APA
Zhang, Z., Du, S. & Ji, X.. (2021). Near Optimal Reward-Free Reinforcement Learning. Proceedings of the 38th International Conference on Machine Learning, in Proceedings of Machine Learning Research 139:12402-12412 Available from https://proceedings.mlr.press/v139/zhang21e.html.

Related Material