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Abstract

Many popular linear classifiers, such as logis-
tic regression, boosting, or SVM, are trained
by optimizing margin-based risk functions.
Traditionally, these risk functions are com-
puted based on a labeled dataset. We de-
velop a novel technique for estimating such
risks using only unlabeled data and knowl-
edge of p(y). We prove that the proposed risk
estimator is consistent on high-dimensional
datasets and demonstrate it on synthetic and
real-world data. In particular, we show how
the estimate is used for evaluating classifiers
in transfer learning, and for training classi-
fiers using exclusively unlabeled data.

1 Introduction

Many popular linear classifiers, such as logistic re-
gression, boosting, or SVM, are trained by optimiz-
ing a margin-based risk function. For standard linear
classifiers Ŷ = sign

∑

θjXj with Y ∈ {−1,+1}, and
X, θ ∈ R

d the margin is defined as the product

Y fθ(X) where fθ(X)
def

=

d
∑

j=1

θjXj . (1)

Training such classifiers is done by attempting to min-
imize the risk or expected loss

R(θ) = Ep(X,Y ) L(Y, fθ(X)) (2)

with the three most popular loss functions

L1(Y, fθ(X)) = exp (−Y fθ(X)) (3)

L2(Y, fθ(X)) = log (1 + exp (−Y fθ(X))) (4)

L3(Y, fθ(X)) = max(1− Y fθ(X), 0). (5)
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being exponential loss L1 (boosting), logloss L2 (logis-
tic regression) and hinge loss L3 (SVM). Since R(θ)
depends on the unknown p, it is replaced with its em-
pirical counterpart based on a labeled training set

θ̂n = argmin
θ

Rn(θ). (6)

Rn(θ) =
1

n

n
∑

i=1

L(Y (i), fθ(X
(i))) (7)

(X(1), Y (1)), . . . , (X(n), Y (n))
iid∼ p. (8)

Note, however, that evaluating and minimizing Rn re-
quires labeled data (8). While suitable in some cases,
there are certainly situations in which labeled data is
difficult or impossible to obtain.

In this paper we construct an estimator for R(θ) using
only unlabeled data, that is using

X(1), . . . , X(n) iid∼ p (9)

instead of (8). Our estimator is based on the observa-
tions that when the data is high dimensional (d → ∞)

fθ(X)|{Y = y}, y ∈ {−1,+1} (10)

is often normally distributed. This phenomenon is
supported by empirical evidence and may also be de-
rived using non-iid central limit theorems. We then
observe that the limit distributions of (10) may be esti-
mated from unlabeled data (9) and that these distribu-
tions may be used to measure margin-based losses such
as (3)-(5). We examine two novel unsupervised appli-
cations: (i) estimating margin-based losses in transfer
learning and (ii) training margin-based classifiers. We
investigate these applications theoretically and also
provide empirical results on synthetic and real-world
data. Our empirical evaluation shows the effective-
ness of the proposed framework in risk estimation and
classifier training without any labeled data.

The consequences of estimating R(θ) without labels
are indeed profound. Label scarcity is a well known
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problem which has lead to the emergence of semisuper-
vised learning: learning using a few labeled examples
and many unlabeled ones. The techniques we develop
lead to a new paradigm that goes beyond semisuper-
vised learning in requiring no labels whatsoever.

2 Unsupervised Risk Estimation

In this section we construct an estimator for R(θ)
(2) using the unlabeled data (9) which we denote
R̂n(θ ;X

(1), . . . , X(n)) or simply R̂n(θ) (to distinguish
it from Rn in (7)).

Our estimation is based on two assumptions. The first
assumption is that the label marginals p(Y ) are known
and that p(Y = 1) 6= p(Y = −1). While this assump-
tion may seem restrictive at first, there are many cases
where it holds. Examples include medical diagnosis
(p(Y ) is the well known marginal disease frequency),
handwriting recognition or OCR (p(Y ) is the easily
computable marginal frequencies of different letters
in the English language), life expectancy prediction
(p(Y ) is based on marginal life expectancy tables). In
these and other examples p(Y ) is known with great
accuracy even if labeled data is unavailable. Further-
more, this assumption may be replaced with a weaker
form in which we know the ordering of the marginal
distributions e.g., p(Y = 1) > p(Y = −1), but without
knowing the specific values of p(Y ).

The second assumption is that the quantity fθ(X)|Y
follows a normal distribution. As fθ(X)|Y is a lin-
ear combination of random variables, it is frequently
normal when X is high dimensional. From a theoret-
ical perspective this assumption is motivated by the
central limit theorem (CLT). The classical CLT states

that fθ(X) =
∑d

i=1 θiXi|Y is approximately normal
for large d if the data components X1, . . . , Xd are iid
given Y . A more general CLT states that fθ(X)|Y
is asymptotically normal if X1, . . . , Xd|Y are indepen-
dent (but not necessary identically distributed). Even
more general CLTs state that fθ(X)|Y is asymptoti-
cally normal if X1, . . . , Xd|Y are not independent but
their dependency is limited in some way. We examine
this in Section 2.1 where we also show that normality
holds empirically for several standard datasets.

To derive the estimator we rewrite (2) by taking ex-
pectation with respect to Y and α = fθ(X)

R(θ) = Ep(fθ(X),Y ) L(Y, fθ(X)) (11)

=
∑

y∈{−1,+1}

p(y)

∫

R

p(fθ(X) = α|y)L(y, α) dα.

Equation (11) involves three terms L(y, α), p(y) and
p(fθ(X) = α|y). The loss function L is known and

poses no difficulty. The second term p(y) is assumed to
be known (see discussion above). The third term is as-
sumed to be normal fθ(X) | {Y = y} =

∑

i θiXi | {Y =
y} ∼ N(µy, σy) with parameters µy, σy, y ∈ {−1, 1}
that are estimated by maximizing the likelihood of a
Gaussian mixture model. These estimated parameters
are used to construct the plug-in estimator R̂n(θ):

R̂n(θ) =
∑

y

p(y)

∫

R

p
µ̂
(n)
y ,σ̂

(n)
y

(fθ(X) = α|y)L(y, α) dα

(µ̂(n), σ̂(n)) = argmax
µ,σ

ℓn(µ, σ) (12)

ℓn(µ, σ) =
n
∑

i=1

log
∑

y(i)

p(y(i))pµy,σy
(fθ(X

(i))|y(i)).

We make the following observations.
1. The parameters of the loglikelihood ℓn in (12)

are µ = (µ1, µ−1) and σ = (σ1, σ−1) rather than
the parameter θ associated with the margin-based
classifier. We consider the latter one as a fixed
constant at this point.

2. The estimation problem (12) is equivalent to com-
puting the MLE for a 1-D Gaussian mixture
model where the label marginals are assumed to
be known. It is well known that in this case (bar-
ring the symmetric case of a uniform p(y)) the
MLE converges to the true parameter values.

3. The estimator R̂n (12) is consistent in the limit
of infinite unlabeled data

P
(

lim
n→∞

R̂n(θ) = R(θ)
)

= 1.

4. Under suitable conditions argminθ R̂n(θ) con-
verges to the expected risk minimizer

P

(

lim
n→∞

argmin
θ∈Θ

Rn(θ) = argmin
θ∈Θ

R(θ)

)

= 1.

This far reaching conclusion implies that in cases
where argminθ R(θ) is the Bayes classifier (as is
the case with exponential loss, log loss, and hinge
loss) we can retrieve the optimal classifier without
a single labeled data point.

5. Our assumptions are: (a) known and non-uniform
p(y) (b) high dimensional feature vector (c) weak
dependence between the features resulting in nor-
mality of the inner product 〈w, f(X)〉|Y (d) non-
sparsity of the parameter vector (e) the assump-
tion of a margin-based linear classifier. As our
analysis shows under these conditions it is possi-
ble to classify without labels in the limit of large
data. And for finite data the performance is some-
what worse than for labeled data (we investigate
this in our experiment section).
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2.1 Asymptotic Normality of fθ(X)|Y

The quantity fθ(X)|Y is essentially a sum of d random
variables which for large d is likely to be normally dis-
tributed. One way to verify this is empirically, as we
show in Figure 1 which contrast the histogram with a
fitted normal pdf for text, digit images, and face im-
ages data. For these datasets the dimensionality d is
sufficiently high to provide a nearly normal fθ(X)|Y .
For example, in the case of text documents (Xi is the
relative number of times word i appeared in the doc-
ument) d corresponds to the vocabulary size which is
typically a large number in the range 103 − 105. Sim-
ilarly, in the case of image classification (Xi denotes
the brightness of the i-pixel) the dimensionality is on
the order of 102 − 104.

Figure 1 shows that in these cases of text and image
data fθ(X)|Y is approximately normal for θ represent-
ing a random vector and an estimated classifier (Fig-
ure 1). The single caveat in this case is that normality
may not hold when θ is sparse, as may happen for
example for l1 regularized models in the last row of
Figure 1. See [1] for additional histograms.

From a theoretical standpoint normality may be ar-
gued using a central limit theorem. The original
central limit theorem states that

∑d
i=1 Zi is approx-

imately normal for large d if Zi are iid.

Proposition 1 (de-Moivre). If Zi, i ∈ N are iid with

expectation µ and variance σ2 and Z̄d = d−1
∑d

i=1 Zi

then we have the following convergence in distribution

√
d(Z̄d − µ)/σ  N(0, 1) as d → ∞.

As a result, the quantity
∑d

i=1 Zi (which is a linear

transformation of
√
d(Z̄d−µ)/σ) is approximately nor-

mal for large d. This relatively restricted theorem is
unlikely to hold in most practical cases as the data
dimensions are often not iid.

A more general CLT, by Lindberg, does not require the
summands Zi to be identically distributed and only re-
quires that the data dimensions be independent. More
general CLTs replace the condition that Zi, i ∈ N be
independent with the notion of limited dependence, for
example, m-dependence [7], [2]. A detailed discussion
about various such limit theorems may be found in [4].
The following result implies that normality holds if the
dependency of the RVs if bounded or does not grow
too fast in relation to d.

Definition 1. A graph G = (V, E) indexing random
variables is called a dependency graph if for any pair of
disjoint subsets of V, A1 and A2 such that no edge in
E has one endpoint in A1 and the other in A2, we have
independence between {Zi : i ∈ A1} and {Zi : i ∈ A2}.

The degree d(v) of a vertex is the number of edges
connected to it.

Proposition 2 ([11]). Let Z1, . . . , Zn be random vari-
ables having a dependency graph with maxv∈V d(v) <
D, and satisfying |Zi − EZi| ≤ B a.s., ∀i,
E(
∑n

i=1 Zi) = λ and Var(
∑n

i=1 Zi) = σ2 > 0

sup
w∈R

∣

∣

∣

∣

P

(∑n
i=1 Zi − λ

σ
≤ w

)

− Φ(w)

∣

∣

∣

∣

≤

1

σ

(

1√
2π

DB + 16
( n

σ2

)1/2

D3/2B2 + 10
( n

σ2

)

D2B3

)

where Φ is the CDF corresponding to a N(0, 1) dis-
tribution. This result states a stronger result than
convergence in distribution to a Gaussian in that it
states a uniform rate of convergence of the CDF (Φ
above is the N(0, 1) CDF). It can be shown that for
bounded D,B and σ = Var(

∑n
i=1 Zi) = O(n) we have

∑d
i=1(Zi − λ)/σ  N (as d → ∞) with an optimal

rate of n−1/2 [11].

The question of whether the above CLTs apply in prac-
tice is a delicate one. For text one can argue that the
appearance of a word depends on some words but is
independent of other words. Similarly for images it is
plausible to say that the brightness of a pixel is inde-
pendent of pixels that are spatially far removed from it.
In practice one needs to verify the normality assump-
tion empirically, which is simple to do by comparing
the empirical histogram of fθ(X) with that of a fit-
ted mixture of Gaussians. As Figure 1 above indicates
this holds for text and image data for most values of
θ, assuming it is not sparse. We refer the reader to [1]
for a more detailed discussion.

2.2 Unsupervised Consistency of R̂n(θ)

We start with proving identifiability of the maximum
likelihood estimator (MLE) for a mixture of two Gaus-
sians with known ordering of mixture proportions. In-
voking classical consistency results in conjunction with
identifiability we show consistency of the MLE es-
timator for (µ, σ) parameterizing the distribution of
fθ(X)|Y . Consistency of R̂n(θ), argminRn(θ) follows.

Definition 2. A parametric family {pα : α ∈ A} is
identifiable when pα(x) = pα′(x), ∀x implies α = α′.

Proposition 3. Assuming known label marginals with
p(Y = 1) 6= p(Y = −1) the Gaussian mixture
family pµ,σ(x) = p(y = 1)N(x ;µ1, σ

2
1) + p(y =

−1)N(x ;µ−1, σ
2
−1) is identifiable.

Proof. The proof follows from the well known result
that a family of Gaussian mixture model (with un-
known p(y)) is identifiable up to a permutation of the
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Figure 1: Centered histograms of fθ(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for multiple θ vectors (three
rows: random θ (θi ∼ U(1/2, 1/2)), logistic regression, and l1 regularized logistic regression-all regularization parameters
were selected by cross validation) and datasets (columns: RCV1 text data [8], MNIST digit images, and face images [9]).
For uniformity we subtracted the empirical mean and divided by the empirical standard deviation. The fifteen panels
show that even in moderate dimensionality (RCV1: 1000 top words, MNIST digits: 784 pixels, face images: 400 pixels)
the assumption that fθ(X)|Y is normal holds well for fitted θ values (except perhaps for l1 regularization in the last row
which promotes sparse θ).

labels y [12]. Assuming with no loss of generality that
p(y = 1) > p(y = −1), if pµ,σ(x) = pµ′,σ′(x) for all
x, then (p(y), µ, σ) = (p(y), µ′, σ′) up to a permuta-
tion of the labels. Since permuting the labels violates
our assumption p(y = 1) > p(y = −1) we establish
(µ, σ) = (µ′, σ′) proving identifiability.

Proposition 4. Under the assumptions of Proposi-
tion 3 the MLE estimates

(µ̂(n), σ̂(n)) = argmax
µ,σ

ℓn(µ, σ)

ℓn(µ, σ) =

n
∑

i=1

log
∑

y(i)

p(y(i))pµy,σy
(fθ(X

(i))|y(i)).

are consistent i.e., (µ̂
(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 ) converge as

n → ∞ to the true values with probability 1.

Proof. Denoting pη(z) =
∑

y p(y)pµy,σy
(z|y) with η =

(µ, σ) we note that pη is identifiable (see Proposition 3)

in η and the available samples z(i) = fθ(X
(i)) are iid

samples from pη(z). Since the MLE for an identifiable
parametric family is strongly consistent e.g., [6, chap.
17], the result of the proposition follows.

Proposition 5. Under the assumptions of Proposi-
tion 3 and assuming the loss L is given by one of (3)-
(5) with a normal fθ(X)|Y ∼ N(µy, σ

2
y), the estimate

R̂n(θ) =
∑

y

p(y)

∫

R

p
µ̂
(n)
y ,σ̂

(n)
y

(fθ(X) = α|y)L(y, α) dα.

is consistent, i.e., for all θ,

P
(

lim
n

R̂n(θ) = R(θ)
)

= 1.

Proof. The plug-in risk estimate R̂n is a contin-
uous function (when L is given by (3), (4) or

(5)) of µ̂
(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 (note that µy and σy
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are functions of θ), which we denote R̂n(θ) =

h(µ̂
(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 ). Using Proposition 4 we have

1=P (lim
n
(µ̂

(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 )=(µ

true
1 , µtrue

−1 , σtrue
1 , σtrue

−1 )).

Since continuous functions preserve limits we have

lim
n→∞

h(µ̂
(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 ) = h(µtrue

1 , µtrue
−1 , σtrue

1 , σtrue
−1 )

with probability 1 which concludes the proof.

2.3 Unsupervised Consistency of argmin R̂n(θ)

The convergence above R̂n(θ) → R(θ) is pointwise
in θ. If the stronger concept of uniform convergence
is assumed over θ ∈ Θ we obtain consistency of
argminθ R̂n(θ). This surprising result indicates that
in some cases it is possible to retrieve the expected
risk minimizer (and therefore the Bayes classifier in
the case of the hinge loss, log-loss and exp-loss) using
only unlabeled data. We show uniform convergence
using a modification of Wald’s classical MLE consis-
tency result [6, chap. 17].

Denoting pη(z) =
∑

y∈{−1,+1} p(y)pµy,σy
(f(X) =

z|y), with η = (µ1, µ−1, σ1, σ−1), we first show that the
MLE converges to the true parameter value η̂n → η0
uniformly. Uniform convergence of the risk estimator
R̂n(θ) follows. Since changing θ ∈ Θ results in a dif-
ferent η ∈ E we can state the uniform convergence in
θ ∈ Θ or alternatively in η ∈ E.

Proposition 6. Let θ take values in Θ for which η ∈
E for some compact set E. Assuming the conditions
in Proposition 5 the convergence of the MLE η̂n → η0
is uniform in η0 ∈ E (or alternatively θ ∈ Θ).

Proof. We first denote U(z, η, η0) = log pη(z) −
log pη0

(z) and α(η, η0) = Epη0
U(z, η, η0) =

−D(pη0
, pη) ≤ 0 with the latter quantity being non-

positive and 0 iff η = η0 (due to Shannon’s inequality
and identifiability of pη).

For ρ > 0 we define the compact set Sη0,ρ = {η ∈ E :
‖η − η0‖ ≥ ρ}. Since α(η, η0) is continuous it achieves
its maximum (with respect to η) on Sη0,ρ denoted by
δρ(η0) = maxη∈Sη0,ρ

α(η, η0) < 0 which is negative
since α(η, η0) = 0 iff η = η0. Furthermore, note that
δρ(η0) is itself continuous in η0 ∈ E and since E is
compact it achieves its maximum (which is negative)

δ = max
η0∈E

δρ(η0) = max
η0∈E

max
η∈Sη0,ρ

α(η, η0) < 0.

Invoking the uniform strong law of large numbers
e.g., [6, chap. 16], we have n−1

∑n
i=1 U(z(i), η, η0) →

α(η, η0) uniformly over (η, η0) ∈ E2. Consequentially,
there exists N such that for n > N with probability 1

sup
η0∈E

sup
η∈Sη0,ρ

1

n

n
∑

i=1

U(z(i), η, η0) < δ/2 < 0.

But since n−1
∑n

i=1 U(z(i), η, η0) → 0 for η = η0,

η̂n = max
η∈E

1

n

n
∑

i=1

U(z(i), η, η0)

is outside Sη0,ρ (for n > N uniformly in η0 ∈ E) which
implies ‖η̂n − η0‖ ≤ ρ. Since ρ > 0 is arbitrarily and
N does not depend on η0 we have η̂n → η0 uniformly
over η0 ∈ E.

Proposition 7. Assuming that X,Θ are bounded in
addition to the assumptions of Proposition 6 the con-
vergence R̂n(θ) → R(θ) is uniform in θ ∈ Θ.

Proof. SinceX,Θ are bounded the margin value fθ(X)
is bounded with probability 1. As a result the loss
function is bounded in absolute value by a constant C.
We also note that a mixture of two Gaussian models
(with known mixing proportions) is Lipschitz contin-
uous in its parameters

∣

∣

∣

∣

∣

∑

y

p(y)p
µ̂
(n)
y ,σ̂

(n)
y

(z)−
∑

y

p(y)pµtrue
y ,σtrue

y
(z)

∣

∣

∣

∣

∣

≤ t(z)‖(µ̂(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 )−(µtrue

1 , µtrue
−1 , σtrue

1 , σtrue
−1 )‖

which may be verified by noting that the partial deriva-
tives of pη(z) =

∑

y p(y)pµy,σy
(z|y) are bounded for a

compact E. These observations, together with Propo-
sition 6 lead to

|R̂n(θ)−R(θ)| ≤
∑

y

p(y)

∫

∣

∣

∣
p
µ̂
(n)
y ,σ̂

(n)
y

(fθ(X) = α)

− pµtrue
y ,σtrue

y
(fθ(X) = α)

∣

∣

∣
|L(y, α)|dα

≤ C

∫

∣

∣

∣

∑

y

p(y)p
µ̂
(n)
y ,σ̂

(n)
y

(α)−
∑

y

p(y)pµtrue
y ,σtrue

y
(α)

∣

∣

∣
dα

≤ C‖(µ̂(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 )−(µtrue

1 , µtrue
−1 , σtrue

1 , σtrue
−1 )‖

∫ b

a

t(z)dz

≤ C ′ ‖(µ̂(n)
1 , µ̂

(n)
−1 , σ̂

(n)
1 , σ̂

(n)
−1 )− (µtrue

1 , µtrue
−1 , σtrue

1 , σtrue
−1 )‖ → 0

uniformly over θ ∈ Θ.

Proposition 8. Under the assumptions of Prop. 7

P

(

lim
n→∞

argmin
θ∈Θ

R̂n(θ) = argmin
θ∈Θ

R(θ)

)

= 1.
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Figure 2: The relative accuracy of R̂n (measured by

|R̂n(θ) − Rn(θ)|/Rn(θ)) for logloss and hinge-loss on syn-
thetic data as a function of n (x axis), classifier accuracy
(acc) and p(Y ). The estimation error nicely decreases with
n (approaching 1% at n = 1000 and decaying further).
It also decreases with classifier accuracy (top) and non-
uniformity of p(Y ) (bottom).

Proof. We denote t∗ = argminR(θ), tn =
argmin R̂n(θ). Since R̂n(θ) → R(θ) uniformly, for
each ǫ > 0 there exists N such that for all n > N ,
|R̂n(θ)−R(θ)| < ǫ.

Let S = {θ : ‖θ − t∗‖ ≥ ǫ} and minθ∈S R(θ) > R(t∗)
(S is compact and thus R achieves its minimum on it).
There exists N ′ such that for all n > N ′ and θ ∈ S,
R̂n(θ) ≥ R(t∗)+ǫ. On the other hand, R̂n(t

∗) → R(t∗)
which together with the previous statement implies
that there exists N ′′ such that for n > N ′′, R̂n(t

∗) <
R̂n(θ) for all θ ∈ S. We thus conclude that for n > N ′′,
tn 6∈ S. Since we showed that for each ǫ > 0 there
exists N such that for all n > N we have ‖tn−t∗‖ ≤ ǫ,
tn → t∗ which concludes the proof.

3 Estimating Margin Based Risk

We consider applying our estimation framework in two
ways. The first application, which we describe in this
section, is estimating margin-based risks in transfer
learning where classifiers are trained on one domain
but tested on a somewhat different domain. The trans-
fer learning assumption that labeled data exists for the
training domain but not for the test domain motivates
the use of our unsupervised risk estimation. The sec-
ond application, which we describe in the next section,
is more ambitious. It is concerned with training clas-

Data Rn |Rn − R̂n|
|Rn−R̂n|

Rn
n p(Y )

sci v comp 0.7088 0.0093 0.013 3590 0.8257
sci v rec 0.641 0.0141 0.022 3958 0.7484
talk v rec 0.5933 0.0159 0.026 3476 0.7126
talk v comp 0.4678 0.0119 0.025 3459 0.7161
talk v sci 0.5442 0.0241 0.044 3464 0.7151
comp v rec 0.4851 0.0049 0.010 4927 0.7972

Figure 3: Error in estimating logloss for logistic regression
classifiers trained on one 20-newsgroup classification task
and tested on another. See text for more details.
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Figure 4: Performance of unsupervised classifier training
on RCV1 data (top class vs. classes 2-5) for misspeci-
fied p(Y ). The performance of the estimated classifier (in
terms of training set empirical logloss Rn (7) and test er-
ror rate measured using held-out labels) decreases with the
deviation between the assumed and true p(Y = 1) (true
p(Y = 1) = 0.3)). The classifier performance is very good
when the assumed p(Y ) is close to the truth and degrades
gracefully when the assumed p(Y ) is not too far from truth.

sifiers without labeled data whatsoever.

In evaluating our framework we consider both syn-
thetic and real-world data. In the synthetic exper-
iments we generate high dimensional data from two
uniform distributions X|{Y = 1} and X|{Y = −1}
with independent dimensions and prescribed p(Y ) and
classification accuracy. This controlled setting allows
us to examine the accuracy of the risk estimator as a
function of n, p(Y ), and the classifier accuracy.

Figure 2 shows that the relative error of R̂n(θ) (mea-
sured by |R̂n(θ)−Rn(θ)|/Rn(θ)) in estimating logloss
and hinge loss decreases with n achieving accuracy of
greater than 99% for n > 1000. The figure shows that
the estimation error decreases as the classifiers become
more accurate and as p(Y ) becomes less uniform. We
found these trends to hold in other experiments as well.
In the case of exponential loss, however, the estimator
performed substantially worse (figure omitted). This
is likely due to the exponential dependency of the loss
on Y fθ(X) which makes it very sensitive to outliers.

Figure 3 shows the accuracy of logloss estimation for
a real world transfer learning experiment based on the
20-newsgroup data. Following the experimental setup
of [3] we trained a classifier (logistic regression) on one
20 newsgroup classification problem and tested it on a
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related problem. Specifically, we used the hierarchical
category structure to generate train and testing sets
with different distributions (see Figure 3 and [3] for
more detail). The first column indicates the top cat-
egory classification task and the second indicates the
empirical log-loss Rn calculated using the true labels
of the testing set (7). The third and forth columns
indicate the absolute and relative errors of R̂n. The
unsupervised estimation of the logloss risk was very
effective with relative accuracy greater than 96% and
absolute error less than 0.02.

4 Unsupervised Learning of Classifiers

Our second application is a very ambitious one: train-
ing classifiers using unlabeled data by minimizing
the unsupervised risk estimate θ̂n = argmin R̂n(θ).
We evaluate the performance of the learned clas-
sifier θ̂n based on three quantities: (i) the unsu-

pervised risk estimate R̂n(θ̂n), (ii) the supervised

risk estimate Rn(θ̂n), and (iii) its classification error

rate err(θ̂n). We also compare the performance of

θ̂n = argmin R̂n(θ) with that of its supervised ana-
log argminRn(θ).

We compute θ̂n = argmin R̂n(θ) using two algorithms:
a gradient descent algorithm (using numerical finite
difference approximation to the gradient) and a grid
search algorithm that optimizes a different dimension
of θ̂ at each iteration. Although we focus on unsuper-
vised training of logistic regression (minimizing unsu-
pervised logloss estimate), the same techniques may
be generalized to train other margin-based classifiers
such as SVM by minimizing the unsupervised hinge-
loss estimate.

Figure 5 displays R̂n(θ̂n), Rn(θ̂n) on the training and

testing sets and the test set error rate err(θ̂n) on
two real world datasets: RCV1 (text documents) and
MNIST (handwritten digit images) datasets using the
gradient descent algorithm. Similar results were ob-
tained using the grid search algorithm (refer [1] for
more details). In the case of RCV1 we discarded all
but the most frequent 504 words (after stop-word re-
moval) and represented documents using their tfidf
scores. We experimented on the binary classification
task of distinguishing the top category (positive) from
the next 4 top categories (negative) which resulted in
p(y = 1) = 0.3 and n = 199328. 70% of the data was
chosen as a (unlabeled) training set and the rest was
held-out as a test-set. In the case of MNIST data, we
normalized each of the 28 × 28 = 784 pixels to have
0 mean and unit variance. Our classification task was
to distinguish images of the digit one (positive) from
the digit 2 (negative) resulting in 14867 samples and
p(Y = 1) = 0.53. We randomly choose 70% of the

Method RCV1 MNIST

GMM with Σ = σ2

yI 0.3564 0.3901
GMM with Diagonal Σ 0.2083 0.3163
GMM with Regularized Σ 0.1645 0.2032
Our method 0.0923 0.1023
Supervised logistic regression 0.07 0.05

Table 1: Test error comparison of logistic regression mod-
els (USL and supervised) with Gaussian mixture model in
high dimensional feature space.

data as a training set and kept the rest as a testing
set.

Figure 5 indicate that minimizing the unsupervised
logloss estimate is quite effective in learning an accu-
rate classifier without labels. Both the unsupervised
and supervised risk estimates R̂n(θ̂n), Rn(θ̂n) decay
nicely when computed over the train set as well as the
test set. Also interesting is the decay of the error rate.
For comparison purposes supervised logistic regression
with the same n achieved only slightly better test set
error rate: 0.05 on RCV1 (instead of 0.1) and 0.07 or
MNIST (instead of 0.1).

Table 1 shows our approach performs much better
compared to Gaussian mixture model clustering in the
original feature space. A likely reason is that our
method works in reduced dimensionality (1 dimen-
sional vs high dimensional) and that our 1-D normality
assumption is often realistic due to the CLT (whereas
assuming normality in the original high dimensional
space does is much more restrictive and less realistic).

4.1 Inaccurate Specification of p(Y )

Our estimation framework assumes that the marginal
p(Y ) is known. In some cases we may only have an in-
accurate estimate of p(Y ). It is instructive to consider
how the performance of the learned classifier degrades
with the inaccuracy of the assumed p(Y ).

Figure 4 displays the performance of the learned classi-
fier for RCV1 data as a function of the assumed value
of p(Y = 1) (correct value is p(Y = 1) = 0.3). We
conclude that knowledge of p(Y ) is an important com-
ponent in our framework but precise knowledge is not
crucial. Small deviations of the assumed p(Y ) from
the true p(Y ) result in a small degradation of logloss
estimation quality and testing set error rate. Natu-
rally, large deviation of the assumed p(Y ) from the
true p(Y ) renders the framework ineffective.

5 Related Work

Related problems have been addressed in [13, 10, 5].
The work in [10] estimates labels given several datasets
with different (known) label proportions. Our method
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Figure 5: Performance of unsupervised logistic regression classifier θ̂n computed using gradient descent on the RCV1

(text) and MNIST (images) dataset as a function of the algorithm iteration number. The risk estimates of θ̂n were
computed using the train set (left) and the test set (middle). The algorithm obtains relatively accurate classifiers whose
test set error rates are 0.1 - surprisingly similar to that of supervised logistic regression for the same n (the latter has test
error 0.05 for RCV1 and 0.07 for MNIST).

assumes only a single dataset with a known p(y). Thus
our method is applicable in many practical cases where
there is single dataset with known p(y). Nevertheless
the two methods complement each other in interesting
ways. Furthermore, as noted previously our analysis is
in fact valid when only the order of label proportions
is known, rather than the absolute values. Our paper
is a follow up of [5] which estimates the 0-1 risk for
arbitrary classifiers i.e., not necessarily linear margin
based classifiers. However, [5] assumes a symmetric
noise assumption which we avoid.

An important distinction between our work and the
references above is that our work provides an estimate
for the margin-based risk and therefore leads natu-
rally to unsupervised versions of logistic regression and
support vector machines. We also provide asymptotic
analysis showing convergence of the resulting classifier
to the optimal classifier (minimizer of (2)). Experi-
mental results show that in practice the accuracy of
the unsupervised classifier is on the same order (but
slightly lower naturally) as its supervised analog.

6 Discussion

In this paper we developed a novel framework for esti-
mating margin-based risks using only unlabeled data.
We shows that it performs well in practice on sev-

eral different datasets. We derived a theoretical basis
by casting it as a maximum likelihood problem for
Gaussian mixture model followed by plug-in estima-
tion. Remarkably, the theory states that assuming
normality of fθ(X) and a known p(Y ) we are able to
estimate the risk R(θ) without a single labeled exam-
ple. That is the risk estimate converges to the true risk
as the number of unlabeled data increase. Moreover,
using uniform convergence arguments it is possible to
show that the proposed training algorithm converges
to the optimal classifier as n → ∞ without any labels.

On a more philosophical level, our approach points at
novel questions that go beyond supervised and semi-
supervised learning. What benefit do labels provide
over unsupervised training? Can our framework be
extended to semi-supervised learning? Can it be ex-
tended to non-classification scenarios such as margin
based regression or margin based structured predic-
tion? When are the assumptions likely to hold and
how can we make our framework even more resistant
to deviations from them? These questions and others
form new and exciting open research directions.
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