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Abstract

We present a “conditional game” to be
played between two approximate inference al-
gorithms. We prove that exact inference is an
optimal strategy and demonstrate how the
game can be used to estimate the relative ac-
curacy of two different approximations in the
absence of exact marginals.

1 INTRODUCTION

Bayesian machine learning is partly motivated by the
recognition that an ability to express beliefs is fun-
damental to intelligence. These beliefs may be man-
ifested either indirectly through decisions as in bet-
ting, or directly as probabilities [1]. The problem of
Bayesian statistical inference - to compute such proba-
bilities for a given probabilistic model - is powerful and
general. Yet researchers should recognize that “real
intelligence” goes beyond statistical inference in many
ways. In particular, real intelligence is not just lim-
ited to expressing beliefs, but is also able to justify
and possibly modify its beliefs through communica-
tion. The need for this arises not only in cases where
two systems have different evidence, but also where
they have reached different conclusions from the same
evidence. That two systems might arrive at different
beliefs about the same model follows from the reality
that, because of constraints on resources, inference in
most practical applications must get by with approxi-
mations. In such applications it is not feasible to estab-
lish which approximation is best by simply comparing
with exact marginals, which will be unavailable. Any
usable method for ranking two approximations would
have to be based on some kind of direct comparison.
This paper investigates such a method, based on a
two-player game.
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2 BACKGROUND

The problem of assessing the accuracy of approxima-
tions has been previously considered. In the domain
of Monte-Carlo-based inference, techniques exist for
determining whether a sequence of samples has con-
verged [2]. For message-passing algorithms such as
Belief Propagation, there are heuristics to bound and
estimate the accuracy of the final approximation [3, 4].
And when samples from a true distribution are avail-
able, as when inference is combined with learning, then
the approximation accuracy can be estimated from the
log-likelihood of a test set.

These techniques have their uses. However, data
points are expensive in some domains, so it is not al-
ways possible to validate inference using a test set.
And heuristics may be unsuitable for making compar-
isons between two different types of approximation.
In general, evaluating the accuracy of an approxima-
tion against itself by some internal metric is bound to
be unreliable. Comparing two approximations by self-
appraisal will fail when one of the approximations is
overconfident due to its having overlooked some impor-
tant structure in the model, for instance in the case of
a sampling run which misses an important but isolated
mode.

Situations where the computational effort of multiple
humans has been expended in parallel analysis of the
same model are common in real life, and humans are
able to reclaim this seemingly duplicated effort by re-
solving their disagreements through argument and de-
bate. For intelligent systems to accomplish the same
kind of cooperation, they would seem first of all to re-
quire a way of directly comparing two approximations.
To the best of our knowledge, this paper is the first to
propose a formal method for doing so.

Finally, it is perhaps worth noting that approximate
inference competitions, such as the UAI approximate
inference competition, currently restrict themselves to
medium-sized models for which exact inference is still
tractable, because there has been no good way to com-
pare the accuracy of approximations without reference
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to exact marginals. As acknowledged by Bilmes (2006)
[5], in such a competition it would be helpful to be able
to evaluate the relative performance of algorithms on
large models. Our method provides a straightforward
way of carrying out such an evaluation.

3 THE CONDITIONAL GAME

We define a game played on a factor graph, called the
“conditional game” (CG). Factor graphs are a gen-
eral representation for statistical models, defining a
distribution over n variables x := (x1, . . . , xn) (here
assumed discrete) as a normalized product of non-
negative factors ψα (here assumed strictly positive)

P (x) =
1

Z

∏
α

ψα(xα) (1)

where α indexes a collection of sets of variables [6].

Play alternates between two players, the “marginal
player”, MP, and the “conditional player”, CP, over a
total of n turns. At turn i the MP expresses marginals
for variable xi, say qi(xi). The CP then chooses a value
for xi, say x∗i . The variable xi is then fixed to take
value xi = x∗i for the rest of the game. Play finishes
when the variables are all fixed, giving a complete as-
signment x = x∗. A quantity which we will call the
“value” of the game is then defined in terms of x∗ and
q:

V = log

∏n
i=1 qi(x

∗
i )∏

α ψα(x∗α)
(2)

Note that if the approximations q are exact condition-
als, i.e. if

qi(xi) = P (xi|x∗1:i−1) (3)

then we have

V = log

∏n
i=1 P (x∗i |x∗1:i−1)∏

α ψα(x∗α)
= log

P (x∗)∏
α ψα(x∗α)

(4)

= − logZ (5)

Thus if MP is exact, the choices of CP have no effect
on the value V of the game.

3.1 From approximations to players

To make the conditional game a game, one player
should be trying to maximize V and the other to min-
imize V . It doesn’t matter who does which, as long as
the two players are in competition.

Now suppose that MP is trying to maximize V , and
CP to minimize it. Because probabilities sum to one,
if CP has access to exact conditioned marginals then

it is possible for him to guarantee through appropriate
choice of x∗i that

qi(x
∗
i ) ≤ P (x∗i |x∗1, . . . , x∗i−1) (6)

If MP is not exact, then at least one of these in-
equalities can be made strict, in which case it follows
that V < − logZ. Thus exact marginals, yielding
V = − logZ, are the optimal (minimax) strategy for
MP.

Given an approximation Q(x;ψ) it is straightforward
to derive an MP strategy: at turn i, modify the model
ψ to condition on the appropriate variables (perhaps
this may be implemented by introducing new factors∏i−1
k=1 δ(xk, x

∗
k)), and set qi to the resulting approxi-

mate marginal of xi under Q1

qi(xi) = Q(xi|x∗1:i−1) (7)

≡ Q(xi;
∏
α

ψα(xα)

i−1∏
k=1

δ(xk, x
∗
k)) (8)

Note that for most message passing algorithms, the
cost of recomputing marginals after imposing a new
condition can be mitigated by reusing the messages
between runs. If two parts of the graph are uncorre-
lated or weakly correlated, then a variable in one part
of the graph can be conditioned without affecting the
messages in the other part.

Suppose that the conditional player CP trusts a dif-
ferent approximation to Q, call it R. A strategy for
CP can be derived which employs R. In this case, CP
has multiple options, but it seems sensible for him to
choose at turn i:

x∗i = argmin
xi

qi(xi)

R(xi| . . .)
(9)

which is guaranteed to satisfy (6) if R is exact, and to
do so strictly if MP is not exact. Also, it is optimal at
each turn, under the assumption that MP might play
optimally for the rest of the game.

A general strategy for MP or CP could be arbitrarily
complex, for instance attempting to look several moves
ahead by simulating the opposing player. This would
presumably be more expensive (or error-prone) than
simply coming up with a more accurate approximation
and using it in the “naive” strategies above. Thus we
will assume below that an approximation will always
be associated with one of the recommended strategies
(including the amendment for CP of section 3.3). This
allows us to drop the distinction between approxima-
tions and players, and to view V as a function of two

1In (8) we adopt the notation Q(x;ψ) to indicate Q’s
approximation to a model which is specified by the factors
ψ.
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approximations. We will write V +(Q,R) for the game
value when CP is trying to maximize V using approxi-
mation R against MP’s Q; and similarly V −(Q,R) for
when CP is minimizing V .

We now illustrate the CG with a simple example. The
model is the fully-connected graph with four binary
variables and six pairwise factors, each with entries[

0.1 1
1 1

]
. MP uses Belief Propagation [7] and CP

uses Gibbs sampling with 103 passes. CP tries to min-
imize V .

i x1 x2 x3 x4 MP CP

1 ? 0.743 < 0.798

2 1 ? 0.705 < 0.738

3 1 1 ? 0.645 > 0.628

4 1 1 0 ? 0.909 > 0.908

1 1 0 0

Table 1: An example game

The game is depicted in Table 1. Shown are the
probabilities that a variable takes the value 1, i.e.
qi(xi = 1). The final variable assignment is x∗ =
(1, 1, 0, 0). The final value of the game is V =

log 0.743×0.705×(1−0.645)×(1−0.909)
0.1 = −1.778. The true

logZ is 1.723.

3.2 A bound

We have seen that if MP plays exact marginals, the
game value will be optimal, with V = − logZ. We
can also derive a simple bound on V in the case that
MP’s marginals are not exact. We will assume that CP
is trying to minimize V , but results for the opposite
case are analogous. Let pi(xi) = P (xi|x∗1:i−1) denote
the conditioned exact marginals.

Theorem 1.

V − ≥ − logZ −
∑
i

max
xi
|log qi(xi)− log pi(xi)|

Proof. Let d = log
∏n
i=1

qi(x
∗
i )

pi(x∗i )
, then we can write V =

d− logZ. We have

d ≥
∑
i

min
xi

log
qi(xi)

pi(xi)
= −

∑
i

max
xi

log
pi(xi)

qi(xi)
(10)

≥ −
∑
i

max
xi
|log qi(xi)− log pi(xi)| (11)

Thus, if we can guarantee that all of MP’s marginals
are within a certain distance (measured between loga-
rithms) from the exact marginals, then we can lower-
bound V . The accuracy constraint must hold for both
unconditioned and conditioned marginals, but approx-
imations usually become more accurate with condi-
tioning, so this theorem gives some intuition as to
the relationship between V and the error of the node
marginals. We note, however, that the CG is less con-
cerned about the L1 error, and more concerned about
absolute error in log-marginals, to which we refer as
the Llog

1 error. For example, estimating 10−3 when

the true probability is 10−4 would give a greater Llog
1

error than estimating 0.2 when the true probability is
0.3, even though the L1 error is greater in the second
case.

3.3 Variable order

There is nothing special about the order i = 1, . . . , n
in which variables are conditioned at each turn, so it is
possible to have CP specify a different order by choos-
ing a variable as well as a value during his turn. (MP
must also be modified so that at each turn he spec-
ifies marginals for all variables, and not just for the
next variable, which he can no longer predict.) In the
new flexible-order setting, simply extending the op-
timization of equation 9 to variables gives a similar
optimality property. Thus at turn t, CP now chooses

(it, x
∗
it) = argmin

(j,xj)

j /∈i1:t−1

Q(xj |x∗i1:t−1
)

R(xj |x∗i1:t−1
)

(12)

where Q is MP’s estimate and R is CP’s. The extra
freedom for CP allows us to prove a complementary
bound to the previous one. Assume, again, that CP
wants to minimize V and has access to exact marginals
P .

Theorem 2. If CP is allowed to choose the vari-
able ordering, then he can achieve V − ≤ − logZ −
max(i,xi) log P (xi)

Q(xi)

Proof. V = − logZ + d where

d =

n∑
i=1

log
Q(x∗i |x∗1:i−1)

P (x∗i |x∗1:i−1)
(13)

An optimal CP will force each term of d to be negative

(or zero). Taking only the first, we have d ≤ log Q(x1)
P (x1)

.

But the variable ordering is now decided by CP, who
can choose the first variable to get the tightest bound.
He also chooses the variable’s value, so

d ≤ min
(i,xi)

log
Q(xi)

P (xi)
= −max

(i,xi)
log

P (xi)

Q(xi)
(14)
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3.4 The comparison of approximations

Having defined the conditional game, we now describe
how this game can be used to compare two approxi-
mate inference methods.

The value V of a game is a number typically near
− logZ (with equality in the case of an exact MP). We
could declare a “winner” by comparing V to − logZ,
but the true value of − logZ is unknown and in-
tractable. To identify the most accurate of two ap-
proximations, it is helpful to have a score which can
be compared to zero. Call the two approximations Q
and R and define the “difference score” by

S−(Q,R) = V −(Q,R)− V −(R,Q) (15)

i.e. the difference between two game values, played
with approximations switching roles as CP and MP,
and CP minimizing V . This will be ≥ 0 if Q is ex-
act. We also define S+ analogously using V +, that is,
where CP is maximising V .

We combine S+ and S− to get a “four-way score”,
based on the outcomes of four games2:

S4(Q,R) = S−(Q,R)− S+(Q,R) (16)

The advantage of S4 can be expressed as follows.
The difference score S− selectively penalizes under-
estimates of small probabilities by MP, while S+ pe-
nalizes over-estimates. For example, if MP under-
estimates 0.01 for P (xi = 0) when the true probability
is 0.1, and CP is trying to maximize V , then CP will be
forced to choose the alternate value xi = 1 (to which
MP assigns probability 0.99) since he is only looking
for over-estimates. The absolute contribution to the
error (e.g. d, equation 13) will then be

∣∣log 0.99
0.9

∣∣ = 0.1

rather than the much larger
∣∣log 0.01

0.1

∣∣ = 2.3.

Our proposed method has now evolved from a simple
two-player game with fixed roles into a more complex
ritual incorporating four such games, during which
players switch roles and objectives. The final prod-
uct may seem ad-hoc and inelegant. It may help to
draw a comparison to legal procedure, in which a sim-
ple building block - the questioning of a witness - is
employed in four ways to achieve a “fair trial”. The
witness may be called by the defense or the prosecu-
tion, and may be examined and cross-examined.

2If CP uses the rule of equation 12 to choose (vari-
able, value) pairs, then the four-way score incorporates four
terms corresponding to the values of four games. However,
there are only two state configurations x∗, since the config-
uration which a Q CP chooses when maximizing V against
a R MP is the same as that chosen by a R CP when min-
imizing V against a Q MP. Thus there are two pairs of
terms incorporating the same unnormalized probabilities∏
α ψα(x∗α). However, the terms in each pair do not cancel

out, because they occur with the same sign.

Finally, we combine the ideas of Theorems 1 and 2 to
prove a simple bound on S4.

Theorem 3. Suppose that we are given two approxi-
mations Q and R to a true distribution P , with∑

t

∣∣∣∣∣log
R(x∗it |x

∗
i1:t−1

)

P (x∗it |x
∗
i1:t−1

)

∣∣∣∣∣ ≤ δ (17)

for all x∗ and all sequences i1:t, while

max
(i,xi)

∣∣∣∣log
Q(xi)

P (xi)

∣∣∣∣ ≥ ε (18)

Then S4(R,Q) ≥ ε− 5δ.

Proof. Write S4(R,Q) = V −(R,Q) − V −(Q,R) −
V +(R,Q) + V +(Q,R). We bound each of the terms:

(a) By Theorem 1, V −(R,Q) ≥ − logZ − δ and
V +(R,Q) ≤ − logZ + δ.

(b) We bound V −(Q,R):

V −(Q,R) + logZ (19)

=
∑
t

log
Q(x∗it |x

∗
i1:t−1

)

P (x∗it |x
∗
i1:t−1

)
(20)

=
∑
t

(
log

Q(. . .)

R(. . .)
+ log

R(. . .)

P (. . .)

)
(21)

≤
∑
t

log
R(. . .)

P (. . .)
(22)

≤ δ (23)

Equation 22 follows from the fact that CP will choose
log R

Q to be negative.

(c) For the last term V +(Q,R), suppose the first con-
dition of the game is (i1, xi1) = (k, x∗k). Let (j, x∗j )
be the maximizing assignment in equation 18, so that

either log
Q(x∗j )

P (x∗j )
≥ ε or ≤ −ε. Assume the first case;

the proof for the second follows by similarly modifying
part (b) above. Now,

log
Q(x∗k)

R(x∗k)
≥ log

Q(x∗j )

R(x∗j )
(24)

= log
Q(x∗j )

P (x∗j )
− log

R(x∗j )

P (x∗j )
(25)

≥ ε− δ (26)

Then as in (b),

V + logZ (27)

=
∑
t

(
log

Q(. . .)

R(. . .)
+ log

R(. . .)

P (. . .)

)
(28)

≥ ε− δ +
∑
t

log
R(. . .)

P (. . .)
(29)

≥ ε− 2δ (30)
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where equation 29 follows from using 26 and i1 = k
for the first term of the summation.

Combining (a), (b), and (c) gives S4 ≥ ε− 5δ.

In other words, if we can bound the total Llog
1 er-

ror of one approximation above by δ, and if we know
that another approximation does worse than ε for the
maximum error of one of its variable marginals, and
if ε − 5δ > 0, then the first approximation will win
against the second one by the four-way score.

This bound is strict and so assumes the worst case
scenario for every game. A probabilistic analysis esti-
mating average-case performance given a random dis-
tribution of marginal errors might provide a more re-
alistic picture of the CG’s effectiveness, but we do not
undertake such an analysis here.

4 EXPERIMENTS

4.1 Alarm graph

We first present the results of playing the conditional
game between five different pairs of approximate infer-
ence algorithms, using the implementation in libDAI
[8], running on the “alarm graph” found in libDAI,
with 37 variables. The algorithms we consider are:

• Gibbs - Gibbs sampling, with 105 passes.

• BP - Belief Propagation, sequential updates [7].

• CBP - Conditioned Belief Propagation, with 4
levels [9].

• TreeEP - Tree Expectation Propagation [10].

• LCBP - Loop Corrected Belief Propagation [11].

The L1 and Llog
1 errors of the algorithms are shown in

Table 2. The S4 scores are shown in Table 3. We see
that the S4 scores agree with the average Llog

1 errors
on all pairs except BP vs Gibbs, where Gibbs wins
even though it has a larger average Llog

1 error. But

note that the maximum Llog
1 error of Gibbs is smaller

than that of BP, so there is at least one sensible error
measure which is consistent with the result of the game
in every case.

4.2 Generalized Belief Propagation

We might also be interested in measuring the rela-
tionship between score and error for multiple models
and a larger space of approximations. To this end

Method avg L1 avg Llog
1 max Llog

1

LCBP 8.981e-05 5.586e-4 0.01684
TreeEP 0.008652 0.04424 0.5475
CBP 0.01110 0.05355 1.256
BP 0.01627 0.0712988 1.6424
Gibbs 0.02251 0.2111 0.8298

Table 2: Errors between approximate and exact vari-
able marginals for different approximations.

S4 vs: TreeEP CBP BP Gibbs
LCBP 5.2507 13.795 22.75 12.998
TreeEP 8.383 13.453 3.996
CBP 27.575 3.734
BP -4.032

Table 3: Scores of games between approximations

we used approximations consisting of Generalized Be-
lief Propagation (GBP, [12])3 on a fully connected bi-
nary pairwise factor graph with triangular regions (re-
gions of size 3). Each approximation was defined by
a random set of triangular regions, chosen to be non-
singular [14]. As models we used factor graphs of 7
nodes with edge potentials drawn as exp(2W ), with
W a standard normal deviate. Figure 1 plots the re-
sults of playing the CG between 16 random pairs of
GBP approximations on each of 120 random models;
shown is the four-way score S4 and the difference in
Llog
1 error.4 Figure 2 plots the same results but shows

difference in L1 error instead, illustrating that the S4

score is better at capturing relative Llog
1 error than L1

error.

We will term the “agreement rate” of the CG against
a certain error metric as the rate at which the CG cor-
rectly identifies the approximation with smallest error.
This depends on the particular set of approximations
which are being compared (in our case, GBP with dif-
ferent sets of triangular regions). It can be estimated
from the fraction of points in the first and third quad-
rant in Figure 1 and Figure 2. For Llog

1 error, the
agreement rate was 0.754. For L1 error, it was 0.639.

4.3 Comparison to code-length game

We next compare the effectiveness of the conditional
game against another simple game, a modification of
the “code length game” [15]. The outcome of the code-

3For reliable convergence, our implementation used the
algorithm of Heskes, Albers, and Kappen [13], which has
the same fixed-points as GBP. We ran it with a tolerance
of 10−7.

4Each point is also reflected about the origin.



      68

A conditional game for comparing approximations

-8

-6

-4

-2

0

2

4

6

8

-20 -15 -10 -5 0 5 10 15 20

L
lo

g
1

er
ro

r
d

iff
er

en
ce

S4 score

Figure 1: Four-way score vs difference in Llog
1 error for

GBP

length game (CLG) is defined as follows:

max
p:
∑
x p(x)=1

min
κ:
∑
x e
−κ(x)≤1

Ep

[
κ+

∑
α

logψα

]
(31)

We have added the term
∑
α logψα to achieve the cor-

rect equilibrium for the model. The standard interpre-
tation of this saddle point is that one player chooses
a set of code lengths satisfying the Kraft inequality,
while another chooses a normalized distribution (P )
over symbols. The first player wants to minimize the
(modified) expected code length, and the second to
maximize it. The equilibrium is at p = eκ = P . Note
that a sample from this expectation (sign inverted)
can be implemented by changing the behavior of CP
in the CG so that he chooses a value randomly from
his own distribution R(xi| . . .) at each turn. This is
not a good strategy for CP in the CG, since in par-
ticular it ignores the marginals proposed by MP, but
the CLG is a simultaneous game, where each player is
unaware of the other’s actions, and so in that setting
CP (i.e., the distribution player) should act randomly.
If the distribution player wants to do well in the CLG
in expectation, then his best strategy is to sample as
described above. The expected value of the game is

E[V ] = ER
[
log

Q∏
α ψα

]
(32)

= ER
[
log

Q

P

]
− logZ (33)

where Q is MP’s approximation. This is equal to
− logZ ifQ is exact, and less than or equal to− logZ if
R is exact. The equivalent of the S− difference score
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Figure 2: Four-way score vs difference in L1 error for
GBP

yields a value which can be compared to zero. The
drawback of the CLG is that its outcome is stochas-
tic, and so one must average over many trials to get
a score of low variance. As a consequence, one might
object that a comparison between the CG and CLG is
unfair. However, the CLG is the only other game of
this type, of which we are aware.

We want to show that the CG is better on average than
the CLG at discriminating the error of many similar
approximations. For this we used the same GBP ap-
proximations as in section 4.2 (parameterized by trian-
gular region configurations) on the same distribution
over models. We played these approximations against
each other in a “single-elimination tournament”. Play-
ers are initialized at the leaves of a binary tree of uni-
form depth (here 8), and each node represents the win-
ner of a game played between its two children. The
“round” of a node is its distance from the leaves. See
Figure 3.

The tournament was repeated with different methods
of comparing approximations:

• conditional game (S4, S+, S−);

• code-length game (averaging over 1, 3, and 8
runs);

• exact comparison (comparing actual error of ap-
proximations).

The “exact” method is shown only as a reference, as we
are ultimately interested in problems for which exact
marginals are intractable.
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The results are shown in Figure 4. The error shown
in this plot is average Llog

1 over variable marginals,
averaged over all approximations in the same round,
geometrically averaged over 120 random factor graphs
generated as above. In both cases one can see that S4

outperforms S+ and S− by a small amount, while the
code length game performs poorly. In both cases, the
slope of the S4 curve was close to half of the slope of
the exact reference curve.

Round 4

Round 3

Round 2

Round 1

Round 0

Figure 3: Schematic of the single-elimination tourna-
ment on a binary tree
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CLG
CLG-3
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Exact

Figure 4: Plot of Llog
1 error as a function of round, for

tournament experiment (round 0 omitted).

It is interesting to see how the agreement rate, defined
in section 4.2, changes as a function of tournament
round. For Llog

1 error and S4 score, the agreement
rates (averaged over all the approximations and all the
graphs) for tournament rounds one through eight are
shown in table 4. There is a downward trend for both
games, which means that they are having a more dif-
ficult time discriminating errors with each new round.
This is consistent with the usual state of affairs when a
tournament is being played - it is easier to predict the
outcome of earlier matches than later ones, since the

Round 1 2 3 4
S4 0.71 0.68 0.67 0.65

CLG 0.55 0.53 0.53 0.51

Round 5 6 7 8
S4 0.65 0.63 0.55 0.53

CLG 0.49 0.56 0.33 0.50

Table 4: Agreement rates vs Llog
1 error for S4 and CLG

earlier matches are more likely to involve an uneven
pairing of players.

5 DISCUSSION AND FUTURE
WORK

We have described a technique for comparing two dif-
ferent approximations to a statistical model. The
only interface requirement for the approximation al-
gorithms is that they support variable conditioning,
i.e. can give estimates of marginals in a conditioned
model where a variable is conditioned to take a given
value. Some algorithms which satisfy this require-
ment particularly well are Belief Propagation [7] and
instances of Expectation Propagation [16], and GBP
[12].

The original motivation of this research was to ex-
plore ways of moving beyond the dominant approx-
imate inference framework, in which algorithms are
only able to express beliefs. It seemed that if one were
to be more adventurous, as a natural progression one
might seek frameworks in which algorithms are able
to defend or modify their beliefs through dialog. We
decided that an appropriate prototype for such com-
munication should be a two-player game. This was
supported partly by the observation that there is no
easy fitness function with which to measure the er-
ror of an approximation, but that relative compar-
isons (such as the code-length game) are possible. We
also noticed that two-player games already appear in
many places in machine learning, in the form of saddle
points minx maxy f(x, y): for example in the Convex-
Concave Procedure [17], Tree-Reweighted Belief Prop-
agation [18], Boosting [19], and the EM algorithm [20].

There is also a well-known (to formal semanticists)
two-player game which can be used to define the truth
value of a formula in first-order logic. The state of
the game is a node in the syntax tree of the formula.
Play starts at the root. A “falsifier” chooses branches
of conjunctions (AND clauses) which he thinks are
false, while a “verifier” chooses branches of conjunc-
tions (OR clauses) which he thinks are true. Upon
encountering a negation, they switch roles. (The falsi-
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fier and verifier can also instantiate the arguments of
∀ and ∃ quantifiers, respectively.) The formula is true
if and only if the verifier can win. [21] We find this
game particularly interesting, although it is not clear
what kind of analogy best relates it to the conditional
game.

Finally, we note that there is a body of literature which
applies iterative, message-passing-like algorithms to
look for solutions of games which have a graphical
structure, called “graphical games” [22]. We have not
found a way to make use of it here.

We have made preliminary attempts to harness the
conditional game in an approximate inference method,
by using it to guide a kind of natural selection between
competing approximations. This has proved difficult
because the game is approximate and so does not pre-
vent regression in fitness. Such regression is impossi-
ble in the traditional Genetic Algorithm setting where
the fitness of single individuals can be evaluated us-
ing an absolute (rather than relative) fitness function,
but has been recognized in that field in the context of
“population-dependent” fitness functions and coevolu-
tion [23].

A fundamental drawback of the conditional game is
that it requires a complete traversal of all variables in
the model, where the algorithm must be re-run once
for each variable. This is still faster than the presum-
ably exponential cost of exact inference, but would
seem unsuitable for large real-world models. One rem-
edy would be to use approximate inference algorithms
that “compile” a model into a form through which con-
ditional and marginal queries can be executed quickly.
An example of such an algorithm is described in recent
work applying Arithmetic Circuits [24] to approximate
inference [25].

Ideally, it would be possible to devise a game which can
be played locally on the nodes of a graphical model,
so that inference in different weakly-coupled areas of
the model can proceed asynchronously, together with
co-evolution towards locally superior approximations.
It is not yet clear how this could be done.

In conclusion, we have presented a novel game which
can be used for comparing approximate inference al-
gorithms in the absence of exact marginals. We have
shown that it has exact inference as an optimal strat-
egy, and we have proven theoretical bounds on its per-
formance in the case where neither player is exact.
We have presented experimental results which demon-
strate its effectiveness in distinguishing inference al-
gorithms on a graph of moderate difficulty, the alarm
graph. We have experimentally demonstrated its supe-
riority to another simple game, the code-length game,
for the purpose of comparing approximations based on

GBP. We hope that this research will help generate in-
terest in applications, techniques, and formalisms for
approximate inference which extend beyond the cur-
rent paradigm of simply expressing beliefs.
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