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Abstract

The Nyström method is an efficient technique
for obtaining a low-rank approximation of
a large kernel matrix based on a subset of
its columns. The quality of the Nyström
approximation highly depends on the sub-
set of columns used, which are usually se-
lected using random sampling. This paper
presents a novel recursive algorithm for calcu-
lating the Nyström approximation, and an ef-
fective greedy criterion for column selection.
Further, a very efficient variant is proposed
for greedy sampling, which works on random
partitions of data instances. Experiments
on benchmark data sets show that the pro-
posed greedy algorithms achieve significant
improvements in approximating kernel ma-
trices, with minimum overhead in run time.

1 INTRODUCTION

The Nyström method (Williams and Seeger, 2001) is
an efficient technique for obtaining a low-rank approx-
imation of a large kernel matrix, using only a sub-
set of its columns. It can also be used to efficiently
approximate the singular values and vectors of a ker-
nel matrix (Williams and Seeger, 2001; Kumar et al.,
2009c). The Nyström method has been successfully
used in many large-scale applications including effi-
cient learning of kernel-based models such as Gaus-
sian processes (Williams and Seeger, 2001) and sup-
port vector machines (Cortes et al., 2010), fast multi-
dimensional scaling (Platt, 2005), approximate spec-
tral clustering (Fowlkes et al., 2004), and large-scale
manifold learning (Talwalkar et al., 2008).

The quality of the Nyström approximation highly
depends on the subset of selected columns. Al-
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though uniform sampling has been the most com-
mon technique for column selection (Williams and
Seeger, 2001), a considerable amount of research work
has been conducted to theoretically and empirically
study other sampling techniques. These techniques in-
clude: non-uniform sampling, using probabilities cal-
culated based on the kernel matrix (Drineas and Ma-
honey, 2005; Drineas et al., 2007; Kumar et al., 2009b);
adaptive sampling, in which probabilities are updated
based on intermediate approximations of the kernel
matrix (Deshpande et al., 2006; Kumar et al., 2009c);
and deterministic sampling, where columns are se-
lected such that some criterion function is optimized
(Smola and Schölkopf, 2000; Zhang et al., 2008).

In this paper, a greedy algorithm is proposed for si-
multaneously calculating the Nyström approximation
and selecting representative columns. The proposed
algorithm is based on a novel recursive formula for the
Nyström approximation which allows a greedy selec-
tion criterion to be calculated efficiently at each iter-
ation. First, a recursive formula is derived, in which
a rank-l Nyström approximation of a kernel matrix is
constructed by calculating a rank-1 Nyström approx-
imation based on one column, and then calculating
the rank-(l − 1) Nyström approximation of the resid-
ual matrix. Next, a novel criterion is developed for
selecting a representative column at each iteration of
the recursive algorithm. The selected column corre-
sponds to the direction which best represents other
data points in the high-dimensional feature space im-
plicitly defined by the kernel. The paper also presents
an efficient algorithm for greedy sampling, which parti-
tions data points into random groups, and selects the
column which best represents the centroids of these
groups in the high-dimensional feature space. This
approximate criterion is very efficient and it obtains
highly accurate Nyström approximations.

The rest of this paper is organized as follows. Sec-
tion 2 defines the notations used throughout the paper.
Section 3 reviews the basic Nyström method. Section
4 proposes a recursive algorithm for calculating the
Nyström approximation. Section 5 extends the algo-
rithm by proposing the greedy selection criteria. Re-
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lated work is then discussed in Section 6. Section 7
presents an empirical evaluation of the proposed algo-
rithms. Finally, Section 8 concludes the paper.

2 NOTATIONS

Throughout the paper, scalars, vectors, sets, and ma-
trices are shown in small, small bold italic, script, and
capital letters, respectively. In addition, the following
notations are used.

For a vector x ∈ Rp:
xi i-th element of x.
‖x‖ the Euclidean norm (`2-norm) of x.

For a matrix A ∈ Rp×q:
Aij (i, j)-th entry of A.
Ai: i-th row of A.
A:j j-th column of A.

For a kernel matrix K ∈ Rp×p:
K̃ a low rank approximation of K.

K̃k the best rank-k approximation of K ob-
tained using singular value decomposition.

K̃S rank-l Nyström approximation of K based
on the set S of columns, where |S| = l.

K̃S,k rank-k Nyström approximation of K based
on the set S of columns, where |S| = l and
k ≤ l.

3 THE NYSTRÖM METHOD

The Nyström method obtains a low-rank approxima-
tion of a kernel matrix using a subset of its columns.
Let K be an n × n symmetric positive semi-definite
(SPSD) kernel matrix defined over n data instances.
The Nyström method starts by selecting a subset of
l � n columns of K (usually by random sampling).
These columns represent the similarities between the
subset of l data instances and all data instances. Let S
be the set of the indices of selected columns, and R be
the set of the indices of remaining columns. Without
loss of generality, the columns and rows of K can be
arranged as follows:

K =

[
A B
BT C

]
, (1)

where A, B and C are sub-matrices of K whose el-
ements are {Kij : i, j ∈ S}, {Kij : i ∈ S, j ∈ R} ,
and {Kij : i, j ∈ R} respectively, and Kij denotes the
element of K at row i and column j.

The Nyström method calculates a rank-l approxima-
tion of K as (Williams and Seeger, 2001):

K̃S = DA−1DT , (2)

where D =
[
A B

]T
is an n × l matrix which con-

sists of the selected columns of K.

The Nyström method can also be used to approxi-
mate the leading singular values and vectors ofK using
those of A (Williams and Seeger, 2001), which is some-
times referred to as the approximate spectral decom-
position (Kumar et al., 2009c).The k leading singular
values and vectors of K can be approximated as:

Σ̃k =
n

l
Λk, Ũk =

√
l

n
DVkΛ−1

k . (3)

where k ≤ l � n. Vk and Uk are l × k and n ×
k matrices whose columns are the k leading singular
vectors of A and K respectively. Λk and Σk are k × k
matrices whose diagonal elements are the k leading
singular values of A and K respectively.

The approximate singular values and vectors of K can
be used to map data points to a k-dimensional space:

Y = Σ̃
1/2
k ŨTk = Λ

−1/2
k V Tk D

T , (4)

where Y is a k × n matrix whose columns represent
data instances in the k-dimensional space. The ker-
nel matrix over data points in the k-dimensional space
represents a rank-k approximation of K which can be
calculated as:

K̃S,k = Y TY = DVkΛ−1
k V Tk D

T . (5)

Throughout the rest of the paper, “Nyström approx-
imation” and “rank-l Nyström approximation” are
used interchangeably to refer to K̃S , while “rank-k
Nyström approximation” refers to K̃S,k.

The computational complexity of calculating A−1 is
O
(
l3
)
, and those of calculating Y and K̃S,k are

O
(
l3 + nlk

)
and O

(
l3 + nlk + n2k

)
, respectively. It

should be noted that the approximate singular vec-
tors, as well as the basis of the k-dimensional space
are, however, non-orthonormal (Kumar et al., 2009c).
In some applications, additional steps might be re-
quired to obtain orthonormal vectors. This, however,
increases the computational complexity.

4 RECURSIVE NYSTRÖM
METHOD

In this section, an algorithm is derived which calcu-
lates the Nyström approximation in a recursive man-
ner. At each iteration of the algorithm, one column is
selected and a rank-1 Nyström approximation is calcu-
lated based on that column. A residual matrix is then
calculated and the same steps are repeated recursively
on the residual matrix.
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Let q ∈ S be the index of one of the selected columns,
α be the q-th diagonal element of K, δ be the q-th
column of K, and β be a column vector of length l−1
whose elements are {Kiq : i ∈ S \ {q}}. Without
loss of generality, the rows and columns of K (and
accordingly A and D) can be rearranged such that the
first row and column correspond to q. The matrices A
and D in Equation (2) can be written as:

A =

[
α βT

β Γ

]
, D =

[
δ ∆T

]
, (6)

where Γ is a (l − 1) × (l − 1) sub-matrix of A whose
elements are {Kij : i, j ∈ S \ {q}}, and ∆ is a (l −
1) × (n) sub-matrix of D whose elements are {Kij :
i ∈ S \ {q}, j ∈ {1, .., n}}.

Let S = Γ − 1
αββ

T be the Schur complement
(Lütkepohl, 1996) of α in A. Use the block-wise inver-
sion formula (Lütkepohl, 1996) of A−1 and substitute
with D and A−1 in Equation (2):

K̃S =
[
δ ∆T

][
1
α + 1

α2β
TS−1β − 1

αβ
TS−1

− 1
αS
−1β S−1

] [
δT

∆

]
(7)

The right-hand side of (7) can be simplified to:

K̃S =
1

α
δδT +

(
∆− 1

α
βδT

)T
S−1

(
∆− 1

α
βδT

)
(8)

Let K̃{q} = 1
αδδ

T be the rank-1 Nyström approxima-
tion of K obtained using the column corresponding to

q 1, and E
(K)
{q} be an n × n residual matrix which is

calculated as: E
(K)
{q} = K−K̃{q}. It can be shown that

E
(Γ)
{q} = S and E

(∆)
{q} = ∆− 1

αβδ
T are the sub-matrices

of E
(K)
{q} corresponding to Γ and ∆ respectively. K̃S

can be written in terms of E
(Γ)
{q} and E

(∆)
{q} as:

K̃S = K̃{q} + E
(∆)
{q}

T
E

(Γ)
{q}
−1
E

(∆)
{q} . (9)

The second term is the Nyström approximation of

E
(K)
{q} based on S \ {q}. This means that rank-l

Nyström approximation of K can be constructed in a
recursive manner by first calculating a rank-1 Nyström
approximation of K based on the column correspond-
ing to q, and then calculating the rank-(l−1) Nyström
approximation of the residual matrix based on the
columns corresponding to the remaining elements of
S.

Based on this recursion, the rank-l Nyström approxi-
mation of K can be expressed as a summation of rank-
1 approximations calculated at different iterations of

1This can be obtained using Equation (2) when A is a
scalar and D is a column vector.

the recursive formula:

K̃S =

l∑
t=1

ω(t)ω(t)T , (10)

where ω(t) = δ(t)/
√
α(t), δ(t) is the column sampled

at iteration t, and α(t) is the corresponding diagonal
element. δ(t) and α(t) can be efficiently calculated as:

δ(t) = K:q −
t−1∑
r=1

ω(r)
q ω

(r), α(t) = δ(t)
q , (11)

where q is the index of the column selected at iteration
t, K:q denotes the q-th column of K, and δq denotes

the q-th element of δ. K̃S can also be expressed in a
matrix form as: WTW , where W is an l × n matrix
whose t-th row is ω(t)T . The columns ofW can be used
to represent data instances in a l-dimensional space.
However, as the rows of W are non-orthogonal, addi-
tional steps are applied to obtain an orthogonal basis.
The proposed algorithm calculates the k leading sin-
gular vectors of W (or equivalently, the eigenvectors of
WWT ), and then uses these vectors to represent data
instances in a low-dimension space as follows:

Y = ΩTkW, (12)

where Y is a k × n matrix whose columns represent
data instances in the k-dimensional space, and Ωk is a
k × k matrix whose columns are the k leading singu-
lar vectors of W . The corresponding rank-k Nyström
approximation of K is:

K̃S,k = Y TY = WTΩkΩTkW. (13)

Although the recursive Nyström algorithm calculates
the same rank-l Nyström approximation K̃S as the
traditional Nyström formula (Equation 2), it calcu-
lates different estimates of Y and K̃S,k. The advan-
tage of the recursive algorithm is that the basis of low-
dimension representation is orthogonal, and that K̃S,k
is the best rank-k approximation of K̃S .

The computational complexity of calculating δ(t)

(Equation 11) in terms of previous ω’s is O (nt),
and that of W is O

(
nl2
)
. The computational

complexity of orthogonalization steps is O
(
l3 + nl2

)
.

Thus, the computational complexity of calculat-
ing Y is O

(
l3 + nlk + nl2

)
and that of K̃S,k is

O
(
l3 + nlk + n2k + nl2

)
. This is the same complexity

as the traditional Nyström method with orthogonal-
ization.

5 GREEDY SAMPLING
CRITERION

The recursive nature of the Nyström method can be
used to develop an efficient greedy algorithm for sam-
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Figure 1: Projection for rank-1 Nyström approxima-
tion.

pling columns while calculating the low-rank approx-
imation. The basic idea here is to select, at each it-
eration, the column that constructs the best rank-1
Nyström approximation of the current residual ma-
trix. Thus, there is a need to define a quality measure
for the rank-1 Nyström approximation obtained by the
recursive Nyström method at each iteration, and then
to select the column that maximizes this quality mea-
sure. In the recursive algorithm, the residual matrix is
initially equal to K, and the goal is to select a column
q from the n columns of K. For a candidate column i,
the rank-1 Nyström approximation of matrix K based
on that column is calculated as:

K̃{i} =
1

Kii
K:iK

T
:i , (14)

where K:i denotes the i-th column of K, and Kii de-
notes the i-th diagonal element of K.

A key observation about Equation (14) is that the
rank-1 Nyström approximation based on the i-th col-
umn implicitly projects all data points onto a line
which contains data point i and the origin in the high-
dimensional feature space defined by the kernel (as
illustrated in Figure 1). To prove that, assume that a
linear kernel is used (The same proof applies to other
kernel types, as any kernel matrix implicitly maps data
vectors to a high-dimensional linear space.) The kernel
matrix is calculated as K = XTX, where X is an d×n
data matrix, and d is the number of features. Let X:i

be the i-th column of X. X:i also represents a vector
that connects data point i and the origin. K:i and Kii

can be written as: K:i = XTX:i, and Kii = ‖X:i‖2,
where ‖.‖ is the `2 norm. Based on this, K̃{i} can be
expressed as:

K̃{i} = XT X:i

‖X:i‖
XT

:i

‖X:i‖
X, (15)

where XTX:i/‖X:i‖ is a column vector whose j-th ele-
ment is XT

:jX:i/‖X:i‖. This value is the scalar projec-

tion of data point j onto X:i. This means that K̃{i}

implicitly projects all data points into a 1-dimensional
subspace (i.e., a line) which contains data point i and
the origin, and then calculates the inner-products be-
tween the projected points.

Based on this observation, an efficient criterion can be
developed for column selection. The criterion selects
the column δ = K:q which achieves the least squared
error between data points in the feature space and
their projections onto X:q (also called the reconstruc-
tion error). The intuition behind this criterion is that
greedily minimizing reconstruction error in the high-
dimensional feature space leads to minimizing the dif-
ference between kernel matrices in the original and re-
constructed spaces. It should be noted that this is sim-
ilar to principal components analysis (PCA), in which
the projection onto the principal subspace minimizes
the squared reconstruction error.

Let ji be the projection of data point j onto X:i. X:ji

represents a vector in the direction of X:i whose length
is the scalar projection of data point j onto X:i. The
goal is to find a data point q such that the sum of
squared errors between data points and their projec-
tions onto X:q is minimized. This can be expressed as
the following optimization problem:

q = arg min
i

Σnj=1‖X:j −X:ji‖2 (16)

Since vector (X:j−X:ji) is orthogonal to X:ji , the dis-
tance between a data point j and its projection ji is:
‖X:j − X:ji‖2 = ‖X:j‖2 − ‖X:ji‖2, and the objective
function of (16) is: Σnj=1‖X:j−X:ji‖2 = Σnj=1‖X:j‖2−
Σnj=1‖X:ji‖2. The term Σnj=1‖X:j‖2 is the sum of the
lengths of all data vectors which is a constant for differ-
ent values of i, and the term Σnj=1‖X:ji‖2 can be writ-

ten as: Σnj=1(XT
:jX:i/‖X:i‖)2 = ‖XTX:i/‖X:i‖‖2 =

‖K:i/
√
Kii‖2. Accordingly, the optimization problem

(16) is equivalent to:

q = arg max
i

‖ 1√
Kii

K:i‖2. (17)

This means that to obtain the best rank-1 approxi-
mation according to the squared error criterion, the
proposed algorithm evaluates ‖K:i/

√
Kii‖2 for all the

columns of K, and selects the column with the maxi-
mum criterion function. The same selection procedure
is then applied during the next iterations of the re-
cursive algorithm on the new residual matrices (i.e.,
‖E:i/

√
Eii‖2).

The computational complexity of the selection crite-
rion is O

(
n2 + n

)
per iteration, and it requires O

(
n2
)

memory to store the residual of the whole kernel ma-
trix after each iteration. In the rest of this section, two
novel techniques are proposed to reduce the memory
and time requirements of the greedy selection criterion.



     273

Ahmed K. Farahat, Ali Ghodsi, Mohamed S. Kamel

Algorithm 1 Greedy Nyström Approximation

Inputs: K, l, k, Outputs: S, K̃S , K̃S,k, Y

1. Initialize S = { }, Generate a random partition-
ing P , Calculate G: Gji =

∑
r∈Pj

Kir

2. Initialize f
(0)
i = ‖G:i‖2, and g

(0)
i = Kii

3. Repeat t = 1→ l:

(a) q = arg max
i

f
(t)
i /g

(t)
i , S = S ∪ {q}

(b) δ(t) = K:q −
∑t−1
r=1 ω

(r)
q ω(r), α(t) = δ(r)

q

(c) γ(t) = G:q −
∑t−1
r=1 ω

(r)
q υ(r)

(d) ω(t) = δ(t)/
√
α(t), υ(t) = γ(t)/

√
α(t)

(e) Update f i’s, gi’s (Equation 19)

4. W =
[
w(1) ... w(l)

]T
, K̃S = WTW

5. Ω = eigvec(WWT ), Y = ΩTkW , K̃S,k = Y TY

Memory-Efficient Sampling To reduce the mem-
ory requirements of the greedy algorithm, the sam-
pling criterion for each data instance can be calculated
in a recursive manner as follows. Let f i = ‖E:i‖2
and gi = Eii be the numerator and denominator of
the criterion function for data point i respectively,
f = [f i]i=1..n, and g = [gi]i=1..n. It can be shown
that f and g can be calculated recursively as follows2:

f (t) =
(
f − 2

(
ω ◦

(
Kω − Σt−2

r=1

(
ω(r)Tω

)
ω

(r)
))

+ ‖ω‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)

.

(18)

where ◦ represents the Hadamard product operator,
and ‖.‖ is the `2 norm. This means that the greedy
criterion can be memory-efficient by only maintaining
two score variables for each data point, f i and gi,
and updating them at each iteration based on their
previous values and the selected columns so far.

Partition-Based Sampling In order to reduce the
computational complexity, a novel partition-based cri-
terion is proposed, which reduces the number of scalar
projections to be calculated at each iteration. The
criterion partitions data points into c � n random
groups, and selects the column of K which best rep-
resents the centroids of these groups in the high-
dimensional feature space. Let Pj be the set of
data points that belong to the j-th partition, P =

2The proof is omitted due to space limitation.

{P1,P2, ...Pc} be a random partitioning of data points
into c groups, and G be an c×n matrix whose element
Gji is the inner-product of the centroid of the j-th
group and the i-th data point, weighted with the size
of the j-th group. The use of weighted inner-products
avoids any bias towards larger groups when calculat-
ing the sum of scalar projections. As the scalar pro-
jections are implicitly calculated in a high-dimensional
linear space defined by the kernel matrix K, Gji can
be calculated in this linear space as: Gji =

∑
r∈Pj

Kir.

In general, it requires O
(
n2
)

to calculate G given K.
However, G needs to be calculated only once during
the calculation of K. In the case of a linear kernel, this
complexity could be significantly reduced by calculat-
ing the centroids of each group in the feature space,
and then the inner-products between each centroid and
all data points. This computational complexity could
be reduced further if the data matrix is very sparse.
In addition, there is no need to calculate and store the
whole kernel matrix in order to calculate G.

Let H(t) be the residual of G at iteration t, and γ(t) be
the column of H corresponding to the selected column
at iteration t, which can be calculated as: γ(t) = G:q−∑t−1
r=1 ω

(r)
q υ(r). It can be shown that for partition-

based sampling, f and g can be calculated as:

f (t) =
(
f − 2

(
ω ◦

(
GTυ − Σt−2

r=1

(
υ(r)Tυ

)
ω

(r)
))

+ ‖υ‖2 (ω ◦ ω)
)(t−1)

,

g(t) =
(
g − (ω ◦ ω)

)(t−1)

.

(19)

where υ(t) = γ(t)/
√
α(t). The computational com-

plexity of the new update formulas is O
(
ncl + nl2

)
(or O (nc+ nt) per iteration). Algorithm 1 shows the
complete greedy Nyström algorithm.

6 RELATED WORK

Different sampling schemes have been used with the
Nyström method. Williams and Seeger (2001), who
first proposed the use of Nyström approximation for
kernel methods, used uniform sampling without re-
placement to select columns. This has been the most
commonly used sampling scheme for Nyström meth-
ods. Non-uniform sampling has also been used with
Nyström methods. This includes non-uniformly sam-
pling columns based on the corresponding diagonal el-
ements of the kernel matrix (Drineas and Mahoney,
2005), or the norms of its columns (Drineas et al.,
2007). Recently, Kumar et al. (2009b) showed that
uniform sampling without replacement outperforms
other random sampling techniques on real data sets.
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Figure 2: The relative accuracy and run time of rank-l approximations K̃S for different methods.

Adaptive sampling has also been used with Nyström
methods. These techniques update sampling proba-
bilities based on intermediate approximations of the
kernel matrix. Deshpande et al. (2006) suggested an
adaptive sampling algorithm which iteratively samples
subsets of columns using probabilities calculated based
on the low-rank approximation error so far. This adap-
tive mechanism is more effective than fixed sampling.
However, it is computationally more complex, as it re-
quires the calculation of the Nyström approximation
at each iteration of the algorithm. A more efficient
algorithm for adaptive sampling (Kumar et al., 2009c)
calculates sampling probabilities based on the approx-
imation error of a small part of the kernel matrix. A
more recent work (Kumar et al., 2009a) uses an en-
semble of Nyström approximations to obtain a better
low-rank approximation of the kernel matrix.

Besides random sampling, deterministic sampling has
also been used with Nyström methods. Sparse greedy
matrix approximation (SGMA) (Smola and Schölkopf,
2000) is a related algorithm, which selects a set of ba-
sis kernel functions, and represents other kernel func-
tions as a linear combination of these basis functions:
K̃ = KS:T , where KS: denotes the subset of selected
columns, and T is a matrix of coefficients. The au-
thors showed that low-rank approximation which opti-
mizes the approximation error in the reproducing ker-
nel Hilbert space (RKHS) is equal to Nyström approx-
imation (Schölkopf and Smola, 2002, chap. 10). They
also proposed a greedy algorithm to select columns of
the kernel matrix and recursively update T based on
the newly selected columns. The selection criterion

used by SGMA is based on maximizing the improve-
ment of the low-rank approximation error in RKHS.
To reduce the complexity of this algorithm, a proba-
bilistic speedup was suggested by the authors to eval-
uate the criterion function for only a random subset of
columns. This makes the complexity of the selection
criterion O(Nnl2) (or O(Nnt) per iteration), where N
is the size of the random subset. Ouimet and Bengio
(2005) proposed another greedy sampling algorithm
which recursively selects samples that are far (using
some threshold) from the subspace spanned by previ-
ously selected samples. Incomplete Cholesky decom-
position (Fine and Scheinberg, 2002) can also be used
to greedily select columns for the Nyström method.
Zhang et al. (2008) recently proposed an algorithm
which first applies the k-means algorithm to cluster
data points, and then uses the centroids of clusters
for calculating the Nyström approximation. As the
k-means algorithm scales as O(ndlt), where d is the
number of features and t is the number of iterations,
this algorithm is computationally infeasible for data
sets with large number of features.

On the other hand, there is considerable research work
on low-rank approximation of rectangular matrices.
Most of this work is based on random sampling of
columns (and/or rows) (Frieze et al., 2004; Drineas
et al., 2007; Mahoney and Drineas, 2009). One de-
terministic approach has been proposed by Çivril and
Magdon-Ismail (2008), who suggested a greedy algo-
rithm for low-rank construction of a rectangular ma-
trix, based on selecting columns that best fit the space
spanned by the leading singular vectors of the matrix.
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Table 1: Properties of data sets used to evaluate dif-
ferent Nyström methods. n and d are the number of
instances and features respectively.

Data set Type n d

Reuters-21578 Documents 5946 18933
Reviews Documents 4069 36746

LA1 Documents 3204 29714
MNIST-4K Digit Images 4000 784

PIE-20 Face Images 3400 1024
Yale-B-38 Face Images 2414 1024

Comparison to Related Work Like adaptive
sampling, the greedy algorithm presented in this paper
selects columns based on intermediate approximations
of the kernel matrix. However, at each iteration, the
greedy algorithm deterministically selects one column,
while adaptive methods randomly sample a subset of
columns. In term of computational complexity, the
complexity of adaptive sampling based on the full ker-
nel (Deshpande et al., 2006) is O(n2v + nv2 + v3) per
iteration, where v is the number of samples selected so
far. The greedy selection criterion without partition-
ing (O(n2l)) is therefore less complex than the last
iteration of the adaptive algorithm with the full kernel
(when v = l). On the other hand, the greedy criterion
without partitioning is more complex than adaptive
sampling based on part of the kernel (Kumar et al.,
2009c), which is O(nv2 + v3) per iteration.

In comparison to SGMA (Smola and Schölkopf, 2000),
it can be shown that maximizing the improvement
in approximation error is equivalent to minimizing
the squared reconstruction error in the feature space.
However, the basic selection criterion presented here
(O
(
n2l
)
) is more efficient than that of SGMA with

probabilistic speedup (O(nNl2)) when l/n ≥ 1/N . In
addition, the approximation of K as KS:T does not
allow SGMA to be directly applied to approximate
spectral decomposition and dimension reduction. In
this case, the Nyström method has to be applied to
columns selected by SGMA, which requires extra com-
putational cost. In comparison to k-means (Zhang
et al., 2008), which is O(ndlt), the greedy selection
criterion is computationally less complex for data sets
with large number of features (when dt > n). On
the other hand, the partition-based selection criterion
(O(ncl+nl2)) is much less complex than the two adap-
tive sampling methods, SGMA, and sampling based on
k-means centroids.

The greedy Nyström algorithm is also different from
the greedy algorithm proposed by Çivril and Magdon-
Ismail (2008), as the latter depends on the availability
of the leading singular vectors to select columns.

7 EXPERIMENTS AND RESULTS

Experiments have been conducted on six benchmark
data sets, whose properties are summarized in Table 1
The Reuters-21578 is the training set of the Reuters-
21578 collection (Lewis, 1999). The Reviews and LA1
are document data sets from TREC collections3. The
pre-processed versions of Reviews and LA1 that are
distributed with the CLUTO Toolkit (Karypis, 2003)
were used. The MNIST-4K is a subset of the MNIST
data set of handwritten digits4. The PIE-20 and
YaleB-38 are pre-processed subsets of the CMU PIE
(Sim et al., 2003) and Extended Yale Face (Lee et al.,
2005) data sets respectively (He et al., 2005).

Similar to previous work (Kumar et al., 2009b), the
low-rank approximations obtained by greedy Nyström
algorithm are compared to those obtained by other
Nyström methods relative to the best low-rank approx-
imation obtained by singular value decomposition. In
particular, the following quality measure is used:

Relative Accuracy =
‖K − K̃r‖F
‖K − K̃Nys‖F

, (20)

where K is the kernel matrix, K̃r is the best rank-r
approximation obtained using singular decomposition,
K̃Nys is the rank-r Nyström approximation (i.e., K̃S ,

or K̃S,k), and ‖.‖F is the Frobenius norm. The rel-
ative accuracy is between 0 and 1 with higher values
indicating a better low-rank approximation. The run
times of different algorithms are also compared.

The basic greedy Nyström algorithm
(GreedyNyström) and its partition-based variant
(PartGreedyNys) are compared to six well-known
Nyström methods: (1) UniNoRep: Uniform sam-
pling without replacement, which has been shown to
outperform other random sampling methods (Kumar
et al., 2009b); (2) AdaptFull: Adaptive sampling
based on the full kernel matrix (Deshpande et al.,
2006), (3) AdaptPart: Adaptive sampling based on
a part of the kernel matrix (Kumar et al., 2009c),
(4) k-means, Nyström method based on k-means
centroids (Zhang et al., 2008), (5) SGMA: The
SGMA algorithm with probabilistic speedup (Smola
and Schölkopf, 2000), and (6) ICD: The incomplete
Cholesky decomposition with symmetric pivoting
(Fine and Scheinberg, 2002).

For adaptive sampling, similar to Kumar et al. (2009c),
10 iterations were used (i.e., l/10 columns were sam-
pled in each iteration). For SGMA, a random sub-
set size of 59 was used, as suggested by Smola and
Schölkopf (2000). For k-means, the k-means algorithm

3http://trec.nist.gov
4http://yann.lecun.com/exdb/mnist
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Figure 3: The relative accuracy and run time of rank-k approximations K̃S,k for different methods.

by Zhang et al. (2008) was used, with the same num-
ber of iterations. Experiments with randomness were
repeated 10 times, and the average and standard de-
viation of measures were calculated. Linear kernels
were used for document data sets, and Gaussian ker-
nels with σ = 10 for image data sets.

Two sets of experiments were conducted to evaluate
the quality of rank-l and rank-k Nyström approxima-
tions (K̃S and K̃S,k) for different sampling methods.

For K̃S,k, as SGMA and ICD do not directly allow

the calculation rank-k approximation from K̃, SGMA
and ICD were used for selecting columns and then a
traditional Nyström formula was applied.

Figures 2 and 3 show the relative accuracies and
run times for the two experiements. It can be ob-
served from results that the greedy Nyström method
(GreedyNyström) achieves significant improvement
in estimating low-rank approximations of a kernel ma-
trix, compared to other sampling-based methods. It
also achieves better accuracy than SGMA and k-
means for most data sets. Although the k-means
achieves better accuracy for some data sets, it obtains
much worse accuracy for others. This inconsistency
could be due to the nature of the k-means algorithm,
which might obtain a poor local minimum. It can
also be seen that GreedyNyström is more efficient
than SGMA and AdaptFull, but is computation-
ally more complex than UniNoRep and AdaptPart.
The latter two methods, however, obtain inferior ac-
curacies. GreedyNyström is also computationally
less complex than k-means for data sets with large

number of features. On the other hand, the partition-
based algorithm (PartGreedyNys) outperforms the
two adaptive sampling methods in obtaining low-rank
approximations, and it requires small overhead in run
time compared to UniNoRep. PartGreedyNys ob-
tains slightly lower accuracies than GreedyNyström
and SGMA when calculating K̃S , but in much less
time, and it outperforms all other deterministic meth-
ods when calculating K̃S,k. PartGreedyNys is also
not sensitive to the number of random partitions used.
It can also be noted that ICD obtains inferior approx-
imation accuracies compared to other methods5.

8 CONCLUSIONS

This paper presents a novel recursive algorithm for cal-
culating the Nyström approximation and an effective
greedy criterion for column selection. The proposed
criterion obtains, at each iteration, the rank-1 approx-
imation which minimizes the reconstruction error in
the high-dimensional space implicitly defined by the
kernel. It has been empirically shown that the pro-
posed algorithm consistently achieves a significant im-
provement in the accuracy of low-rank approximation
compared to traditional Nyström methods, and is less
computationally demanding than other deterministic
methods. In addition, a partition-based algorithm for
greedy sampling is provided, which achieves very good
approximation accuracies and is more efficient than
adaptive and deterministic sampling methods.

5This was also observed by Zhang et al. (2008) and Tal-
walkar (2010)
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