Convergent Decomposition Solvers for Tree-reweighted Free Energies

Jeremy Jancsary
Austrian Research Institute
for Artificial Intelligence (OFAT)
jeremy.jancsary@ofai.at

Abstract

We investigate minimization of tree-
reweighted free energies for the purpose of
obtaining approximate marginal probabil-
ities and upper bounds on the partition
function of cyclic graphical models. The
solvers we present for this problem work by
directly tightening tree-reweighted upper
bounds. As a result, they are particularly
efficient for tree-reweighted energies arising
from a small number of spanning trees.
While this assumption may seem restrictive
at first, we show how small sets of trees can
be constructed in a principled manner. An
appealing property of our algorithms, which
results from the problem decomposition, is
that they are embarrassingly parallel. In
contrast to the original message passing
algorithm introduced for this problem, we
obtain global convergence guarantees.

1 INTRODUCTION

Exact computation of marginal probabilities and the
partition function in general graphical models is an
NP-hard problem that scales exponentially in the
treewidth of the graph (Chandrasekaran et al., 2008).
Much effort has been put into construction of approx-
imate inference algorithms that remain tractable even
for graphs of large treewidth, such as those involving
many cycles. Good results were initially obtained us-
ing loopy belief propagation, which ignores the cycles
and performs message updates as if the graph were a
tree. Theoretical justification was later given to the
method by showing that it can be understood to min-
imize the so-called Bethe free energy (Yedidia et al.,

Appearing in Proceedings of the 14" International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

388

Gerald Matz
Institute of Telecommunications
Vienna University of Technology

gerald.matz@tuwien.ac.at

2003). However, the Bethe free energy is convex only
for tree-structured graphs. Hence, loopy belief propa-
gation cannot in general be expected to establish the
global minimum, nor is it guaranteed to converge.

In the seminal work of Wainwright et al. (2005a), tree-
reweighted (TRW) free energies were introduced to
rectify this problem. These energies arise from a con-
vex combination of log partition functions of spanning
trees that forms a natural upper bound on the exact
log partition function. The tree-reweighted free energy
itself then only depends on edge occurrence probabil-
ities resulting from the choice of trees. An adapted
message passing algorithm was derived that is reminis-
cent of loopy belief propagation, but minimizes a tree-
reweighted free energy instead of the Bethe free energy.
However, despite convexity of its objective function,
the algorithm is not guaranteed to converge. Indeed,
we will demonstrate this failure of convergence.

Consequently, recent work has focused on establishing
convergent variants of the original algorithm. Previ-
ous attempts have aimed at optimization of the tree-
reweighted free energy itself, rather than direct mini-
mization of the convex upper bound. In part, this is
due to the original presentation by Wainwright et al.
(2005a), who form the convex combination over all
spanning trees of the cyclic graph. Naturally, direct
minimization of this bound is infeasible. However,
if the upper bound is restricted to a small number
of spanning trees, this optimization problem has fa-
vorable properties. Moreover, approximate marginal
probabilities result naturally as a byproduct.

In fact, for the related maximum-a-posteriori (MAP)
problem, Komodakis et al. (2007) have shown that a
similar convex upper bound, formed over a small num-
ber of trees, can be minimized efficiently using the
projected subgradient algorithm. Optimization of the
upper bound on the log partition function differs in
two key ways. First, the problem is smooth, which
suggests improved asymptotic properties. Second, the
choice of spanning trees can have significant influence
on the tightness of the optimum.

Convergent Decomposition Solvers for Tree-reweighted Free Energies

In this paper, we make the following contributions:
(a) We investigate direct minimization of tree-
reweighted upper bounds on the log partition function
using the spectral projected gradient algorithm (Birgin
et al., 2000) and the projected quasi-Newton algorithm
(Schmidt et al., 2009). The core of the resulting algo-
rithms is embarrassingly parallel and we demonstrate
that it scales accordingly in the number of processors.
(b) We present strategies for choosing small sets of
spanning trees and study their effect on the error of
marginal probabilities, tightness of the upper bound
and computational cost. These results are of general
interest as the choice of trees (or edge probabilities) is
mandated by any tree-reweighted algorithm.

2 BACKGROUND

Next, we briefly review the most important concepts
we will be concerned with.

2.1 UNDIRECTED GRAPHICAL MODELS

We consider undirected graphical models G with ver-
tex set V and edge set £ defined over n discrete random
variables with pairwise interactions. The probability
of a particular variable state & € X™ thus factors as

p(x;0) = exp 295(565) + Z Ost(xst) — P(O) |,

seV (s,t)e€

where the log partition function is defined as

®(0) = log Z exp Z

xex" s

0s(zs) + Z Ost(Tst)
(

5,t)

We shall find it convenient to express the same factor-
ization using a vector-valued indicator function ¢(x),
which maps a variable state to binary indicators for
the corresponding components of 8 € R%:

p(z;0) = exp (¢p(z) - 6 — P(9)) (1)

and similarly,

®(0) =log Y exp(¢(z)-0).

xrxexn

(2)

Subsequently, we will be concerned with computation
of approximations to ¢(0) and the marginal probabil-

ities
E{Qba(m)} = Z p(m§0)¢(x(m)7)

xex "

3

where we use « to refer to a single index corresponding
to a particular state of a vertex s or an edge (s,t).

389

Interestingly, the first and second derivatives of ®(8)
generate the cumulants

05(0)

00,

820(0)
90,005

E{pa(2)} and = cov{ga(®), Ps(x)}.

Hence, the marginal probabilities are given precisely
by the gradient of the log partition function. More-
over, the covariance matrix, which is by definition pos-
itive semi-definite, forms the Hessian. Convexity of the
log partition function follows from this property.

2.2 TREE-REWEIGHTED BOUNDS

Consider now the set 7 = {T'} of all spanning trees
of a cyclic graph G. We use Z(T') to denote the set of
indices {a} corresponding to states z, of vertices and
x4 of edges that belong to a particular tree T. Each of
the spanning trees is associated with a parameteriza-
tion @(T) that is tractable by the structural assump-
tion. Wainwright et al. (2005a) observe that a convex
combination), p(T)®(0(T)) over trees yields an up-
per bound on @(0) if the tractable parameter vector
6 =1[0(Ty),...,0(T,)] € R™ lies in the convex set

(o) = {6 } (4)

and p = {p(T)} is constrained to belong to the simplex
of distributions over T,

0o(T)=0for all T, ¢ Z(T)
S0 o(T)O(T) = 6

A={p|SrpM) =1pM) 20} (5)
Observe that p must also be valid in the sense that
each edge is covered with non-zero probability, other-
wise C(0) is empty. The upper bound property now
follows directly from Jensen’s inequality:

D(0) = (37 p(T)O(T)) < 3p p(T)P(6(T)).

The structural constraints 6, (7) = 0 in C(6) are not
required for the upper bound to hold, but we include
them in our presentation to make explicit the fact that
the parameterizations O(T) are tractable.

A natural question is then how to obtain the tightest
upper bound possible within this framework. For a
given distribution p over spanning trees, and target
parameters @, we can simply optimize over the set of
tractable parameterizations 5,

(6)

Since the upper bound is a convex combination of con-
vex functions, and the constraint set is convex, this is
a convex optimization problem.

Jeremy Jancsary, Gerald Matz

2.3 TREE-REWEIGHTED ENERGIES

By forming the Lagrangian of (6) and exploiting the
conjugate duality relation between the log partition
function and the negative entropy of a distribution,
one can obtain an equivalent dual problem:

{’,L -0 + ZS H([Jzé) - Z(s,t) Vstl(u'st)}7 (7)

max

HEL(G)

where pus and pg have interpretations as node and

edge pseudomarginals, H(-) and I(-) denote the Shan-

non entropy and the mutual information, respectively,
and the constraint set

(8)

ps(zs) }

L(G) = { ‘ =

ensures proper local normalization and marginaliza-
tion consistency!. The edge probabilities v = {vg}
are strictly positive and arise from the valid distribu-
tion p € A over spanning trees.

zs Ms () =1

mgfwxs /~Lst (xst)

The objective function in (7) is the negative tree-
reweighted free energy. As the dual of a convex func-
tion, it is concave in p, and strong duality holds. The
primary advantage of problem (7) over (6) is its re-
duced dimensionality: it is independent of the number
of spanning trees involved. However, constraint set
L(G) is considerably more complicated than C(8).

3 APPROACH

The original message passing algorithm by Wainwright
et al. (2005a) can be understood to perform block co-
ordinate updates in the Lagrangian of (7). However,
without further precautions, the scheme is not guaran-
teed to converge. In practice, “damping” strategies are
often applied to improve the convergence characteris-
tics. In contrast, we investigate efficient methods for
direct minimization of (6). The coupling constraints
in C(@) are more easy to handle than £(G), and con-
vergent minimization schemes thus arise naturally. We
next discuss several key aspects of our approach.

3.1 OBTAINING MARGINALS

An approximation to the log partition function is nat-
urally given by the optimum of problem (6). In con-
trast, it is not so obvious how to obtain approximate
marginals from the solution. The key observation here
arises en route of deriving (7) from (6): By forming the
Lagrangian of (6), and taking derivatives with respect
to 0, one obtains the stationary conditions

Eo«(ry{¢a(x)} < o for all T, oo € Z(T) .

'We use st ~ s to denote edge states xs; that are
consistent with node state zs.

390

Consequently, at the optimal solution 5*, all trees
share a single set of marginals. To construct a full set
of pseudomarginals u, for each index «, we can thus
use the marginal probability of any tree T for which
a € Z(T) once (6) is solved to optimality. Notably,
the marginals of any tree can be obtained efficiently.

3.2 COMPUTING THE GRADIENT

As we pointed out in section 2.1, the derivative of the
log partition function @(-) with respect to 6, is given
by the corresponding marginal probability, E{¢(x)}.
Given that (6) is a weighted sum of such partition
functions, it is easy to see that the full gradient

Vg=>_[0-p(T)Eo(r){¢p(x)} - 0]
T
= [p(T1)Eq(r {&(x)}, ..., p(Tin)Eo(r,, {&(x)}]

is thus given as a vector of weighted component gra-
dients. In principle, this gradient can be computed
very efficiently; the only concern is the number m of
spanning trees involved. We discuss this issue in great
detail in section 3.5.

3.3 HANDLING THE CONSTRAINTS

We now turn to discussion of the constraint set
C(), defined in (4). Both the coupling constraints
>orp(T)O(T) = 6 and the structural constraints
04(T) = 0 are linear, so C(0) defines a convex poly-
tope. As we shall point out, projection onto this set
can be realized very efficiently. Formally, we search
the solution to the following optimization problem:

Po(0') = argmill|}§— 5’”; :
fec(6)

9)

For all T, if a ¢ Z(T), the structural constraints
prescribe 0,(T) = 0. These components are hence
fully specified. Otherwise, the coupling constraints
> r p(T)8,(T) = 6, must be satisfied. Among the ad-
missible {0,(7T)} for a given index a, whose weighted
sum must be 6,, the sum of squares is minimized if
(0,(T)—0.,(T))? is equal for all trees T with a € Z(T).
Consider now the distance from the target parameter
0o = Qo7 p(T)0.(T)—64) and the accumulated prob-
ability mass o = Z.T:aez(T) p(T). It can be verified
that the projection given by

Po(6') = {

ensures satisfaction of all constraints while adhering
to the optimality criterion discussed above. Hence, it
provides a solution to (9) which can be computed in
O(md), i.e. in time linear in the dimensionality of 6.

if (T
« otherwise

Convergent Decomposition Solvers for Tree-reweighted Free Energies

Algorithm 1: TIGHTENBOUND (SPG Variant)

: set of trees T and valid distribution p, target

input
parameters 6, arbitrary initial 8V, step size
interval [min, @max|, history length h
output: pseudomarginals p, upper bound @ > ¢(0)
GV Py
o) paralle}ized >or p(Tl¢(0<1)(T))
o) - 1/|[Po(8 ~ V)~ 67
k+1 . .
while |[Po(6% — V) — 6™ <& do
00 o Po(§) — I _ g0
6
repeat
choose A € (0,1)
G+ g | g
o) « parallelized Y, p(T)d(8%+H(T))
until &Y < max{e®) ... kMY 4 e)\Vgc) -d
ROPE 9*(?:1))_ 5(k(>k>
(k) +1) _
Yo = V§ V§
) min{amax, max{amin, (s®-s%))/(s®).yF) 1}
k+—k+1

return (¢, marginals{Vg“) H

; e.g. via interpolation

; see section 3.1

3.4 TIGHTENING THE BOUND

For now, assume that p(7") > 0 for a small number of
trees T' only. The gradient of our objective in (6) can
then be computed efficiently. Moreover, the constraint
set C(0) is convex and can be projected onto at little
cost. A principal method for optimization in such a
setting is the projected gradient algorithm. However,
this basic method can be improved on.

3.4.1 Spectral Projected Gradient Method

The main improvements of the spectral projected gra-
dient (SPG) method (Birgin et al., 2000) over classic
projected gradient descent are a particular choice of
the step size (Barzilai and Borwein, 1988) and a non-
monotone, yet convergent line search (Grippo et al.,
1986). In the setting of unconstrained quadratics, the
SPG algorithm has been observed to converge super-
linearly towards the optimum. We outline its appli-
cation to (6) in Algorithm 1. Besides the mandatory
input 7, p and 0, the meta parameters [min, ®max|
specify the interval of admissible step sizes, and history
length h specifies how many steps may be taken with-
out sufficient decrease of the objective. If the num-
ber of steps is exceeded, backtracking is performed
and the step size is decremented until sufficient de-
crease has been established. In our implementation,
we chose amin = 10719, apmax = 1019 and A = 10. In
the backtracking step, we simply multiply with a factor
A = 0.3. In practice, we found Algorithm 1 to be very
robust with respect to the choice of meta parameters.

391

(a)

Figure 1: (a) Two “snakes” cover any grid; (b) Two more
mirrored replicas achieve symmetric edge probabilities.

Proposition 1. For a given set of spanning trees T,
valid distribution over trees p and target parameters 0,
Algorithm 1 converges to the global optimum of (6).

Proof (Sketch). Convergence follows from the analysis
of the SPG method by Wang et al. (2005). O

3.4.2 Projected Quasi-Newton Method

The projected quasi-Newton (PQN) method was re-
cently introduced by Schmidt et al. (2009) and can
be considered a generalization of L-BFGS (Nocedal,
1980) to constrained optimization. At each iteration,
a feasible direction is found by minimizing a quadratic
model subject to the original constraints:

k) g gty ok 3 gkNT pk) (g _ gk
g"IEnCl(I;)@() +(6—6")).Vg)Jr%(g,g(NTBE (6—-0*)
where B(®) is a positive-definitive approximation to
the Hessian that is maintained in compact form in
terms of the previous p iterates and gradients (Byrd
et al., 1994). The SPG algorithm can be used to
perform the above minimization effectively. We hy-
pothesized that PQN might compensate for the larger
per-iteration cost through improved asymptotic con-
vergence and thus implemented a scheme similar to
Algorithm 1. We do not give a complete specification
here, as it only differs from Algorithm 1 in the choice
of the direction and the use of a traditional line search.

3.5 CHOOSING THE SET OF TREES

It is clear that Algorithm 1 is only efficient for a rea-
sonably small number of selected trees with p(T") > 0.
We refer to this set as S and denote the corresponding
vector of non-zero coefficients by ps. Subsequently, we
discuss how to obtain § and p; in a principled manner.

3.5.1 Uniform Edge Probabilities

According to the Laplacian principle of insufficient
reasoning, one might choose uniform edge occurrence
probabilities given by vy = (|V| — 1)/|€]. However,
in our formulation, we need to find a pair (S, ps) that
results in these probabilities. The dual coupling be-
tween (S, ps) and v is defined in terms of the map-

Jeremy Jancsary, Gerald Matz

Algorithm 2: COVERINGTREES

Algorithm 3: OPTIMALTREES

input : graph G, stopping criterion

output: selected trees S, valid ps

SM « {random spanning tree}, p{"” « [1], k + 1

while not criterion do
v — V(S(k'),p(sk)) ; compute edge probabilities
S . k) UMST(G,V<k)) ; MST f. edge cost v®
plF) 1/(k+1) ; for 1 € RFFE
k< Ek+1

return (S, p§k>)

ping v(S, ps) = Y res ps(T)v(T), where v(T) € RI|
indicates the edges contained in T, such that v (T) =
[(s,t) € Ep]. Algorithm 2 establishes a suitable pair
(S, ps) in a greedy manner. At each step, we add a
minimum spanning tree (MST) for weights given by
the current edge probabilities. We stop when v(S, ps)
is sufficiently uniform, which allows to trade off the
number of resulting trees against uniformity.

Proposition 2. Algorithm 2 determines a sequence

{V(S(k'),pgk))} that converges to a vector u with com-
ponents given by use = (V| —1)/|€| as k — oo.

We outline a proof in the supplementary material, ap-
pendix A.1.1; Algorithm 2 takes conditional gradient
steps that seek to minimize ||v(S, ps) — ul|3.

3.5.2 Snake-Based Strategy

For grid-structured graphs, we also found that fairly
uniform edge occurrence probabilities could be ob-
tained using four “snake”-shaped trees that in sum
cover all edges. This is best seen in terms of an il-
lustration, which we provide in Figure 1. If we choose
ps = 1/|S], the edges in the interior assume vg = 1/2,
whereas those on the boundary are given by vy = 3/4.

3.5.3 Constructing an Almost Minimal Set

If we choose a different stopping criterion, namely
vst > 0V(s,t), Algorithm 2 can also be used to greed-
ily establish a set of trees that is almost minimal in
the sense that its cardinality is close to the minimum
number of spanning trees required to cover all edges
of G. Note that there is no guarantee of optimality in
this respect. However, in practice, we found that Al-
gorithm 2 was very effective at establishing such sets.

3.5.4 Obtaining an Optimal Set

Wainwright et al. (2005a) show that one can obtain
even tighter upper bounds by optimizing (7) over the
edge occurrence probabilities v. This is achieved us-
ing conditional gradient steps, where each such outer

392

input : graph G, target parameters 0
output: selected trees S, valid ps, p, @ > &(0)
(S(l),pgl>) < COVERINGTREES(G, vst > 0 V(s,1))
k<1
while not converged do
(@™, ™) « TreaTENBOUND(S™®), p{*) | 6)
i®) o 1), 1K), ..] ; negative MI per edge
S+ M yMST(G,i*)) ; MST f. edge cost i®
plFtt) 1/(k+1) ; for 1 € RFF?
k+k+1

return (S, p® TicaTENBOUND(S™®, p{*, 6))

iteration involves solution of (7) for the current it-
erate v*) and a subsequent minimum spanning tree
(MST) search with edge weights given by the negative
mutual information (MI) of the current edge pseudo-
marginals, denoted by I(ps:). The resulting bound
is jointly optimal over v and u. Algorithm 3 defines
a similar procedure for the primal space we are oper-
ating in. It successively establishes pairs (S, ps) re-
sulting in increasingly tighter upper bounds @. The
invocation of COVERINGTREES(-) in the initialization
phase ensures that we start from a valid distribution
ps and a small set § such that each edge is covered
with non-zero probability and Algorithm 1 can be ap-
plied. In practice, the biggest gains are achieved in the
first few iterations. Hence, although it is expensive to
find a suitable tree at each iteration, the number of
trees stays relatively small, and we approach the joint
optimum in the process.

Proposition 3. Algorithm 3 determines a sequence
{®")} converging to an upper bound &* > () that is
jointly optimal over the choice of trees S, the distribu-
tion over trees pg, and the tractable parameterization
5, as k — oo.

The sketch of a proof is given in appendix A.1.2.

3.6 PARALLELIZING COMPUTATION

The computational cost of Algorithm 1 is dominated
by computation of >, p(T)®(@*+1(T)), which re-
quires sum-product belief propagation on each tree
T € §. One might then assume that compared to
traditional message passing algorithms, Algorithm 1
incurs an overhead that is asymptotically linear in the
number of selected trees. However, observe that the
terms {®(8**+1(T))} are completely independent of
each other. Hence, as long as the number of CPU cores
is greater than or equal to the number of trees, we can
avoid the additional cost by scheduling each run of be-
lief propagation on a different core. As we shall see in
section 4.2.3, this works very well in practice.

Convergent Decomposition Solvers for Tree-reweighted Free Energies

Table 1: Impact of the set of spanning trees on the approximation error

GRID ISINGGAUSS

GRID ISINGUNIFORM

REGULAR ISINGGAUSS COMPLETE EXPGAUSS

o(®) e(p) o(®) e(p) o(®) e(p) o(®) e(w)
4SNAKES 0.085 £ 0.01 0.112 &+ 0.01 0.104 + 0.01 0.087 £ 0.00 ~ ~
MINIMAL 0.088 + 0.01 0.113 +0.01 0.109 + 0.01 0.090 £ 0.00 0.833 = 0.10 0.308 £+ 0.05 0.397 + 0.07 0.074 + 0.01
UNIFORM 0.084 + 0.01 0.110 &+ 0.01 0.102 + 0.01 0.085 £ 0.00 0.833 = 0.10 0.308 £+ 0.05 0.394 + 0.07 0.074 + 0.01
* UNIFORM 0.083 + 0.01 0.110 4+ 0.01 0.101 + 0.01 0.085 + 0.00 0.833 = 0.10 0.308 + 0.05 0.394 + 0.07 0.074 + 0.01
OPTIMAL 0.031 + 0.01 0.091 + 0.02 0.053 + 0.01 0.079 £ 0.01 0.832 £ 0.10 0.308 + 0.05 0.377 &+ 0.07 0.075 + 0.01

4 EXPERIMENTS

We wanted to assess several aspects of our algorithms
empirically. Towards this end, we considered four
types of random graphs that varied with respect to
their structure and the exponential parameters 6.2

GRID ISINGGAUSS: an ng X ng grid of binary vari-
ables (X = {-1,+1}), with potentials chosen as
Os(xs) = Oxs and O (xs) = Ozsxs, Wwhere 0 ~ N(0,1)
was drawn independently for each node and edge.

GRID ISINGUNIFORM: Equal to the above, except that
6 was drawn from U(—1,41).

REGULAR ISINGGAUSS: A random regular graph with
n, binary variables, each of which was connected to ng
others, and potentials akin to GRID ISINGGAUSS.

COoMPLETE ExXPGAUSS: A complete graph with n.
variables (X = {0,1,2,3}) and potentials indepen-
dently drawn as 6,(xs) = 0 and s (xs) ~ N(0,1).

4.1 IMPACT OF TREE SELECTION

We considered four different ways of decomposing the
cyclic graphs into spanning trees: 4SNAKES, described
in section 3.5.2; MINIMAL, described in section 3.5.3;
UNIFORM described in section 3.5.1; and finally OPTI-
MAL (section 3.5.4). For the UNIFORM decomposition,
we stopped once mingg ;) Vs > 0.9max(,) vse- The
4SNAKES decomposition was only applicable to grids.

First, we wanted to assess the impact of the decom-
position scheme on the approximation errors e(@)
@ — @(0)|/P(0) and e(u) = ||p — E{o(x)}[1/d. We
generated 30 instances of each type of graph consid-
ered (with ng = 15,n, = 30,n4 = 10 and n. = 10)
and solved the corresponding instance of (6) to a tol-
erance of ¢ = 107° using Algorithm 1. For the OPTI-
MAL scheme, we used 50 outer iterations. The gains
were minuscule beyond this point. The reference val-
ues ¢(0) and E{¢p(x)} were computed using join trees
or brute force, depending on the type of graph.

Table 1 shows the average and the standard deviation
(indicated using +) of the error over the 30 instances

*We used libDAT (Mooij, 2010) to generate instances.

393

Table 2: Standard deviation of the approximation error
for 30 runs over the same graphs and potentials, using
different MINIMAL sets of trees at each run.

e(®)
0.096 £ 0.0018
0.112 + 0.0019

0.866 + 0.0003
0.355 + 0.0023

e(p)

0.113 + 0.0012
0.090 + 0.0010
0.351 £+ 0.0002
0.076 4+ 0.0004

GRID ISINGGAUSS
GRID ISINGUNIFORM
REGULAR ISINGGAUSS
CoMPLETE EXPGAUSS

of each type of graph. The tree decomposition was
computed anew for each instance. Unsurprisingly, the
OPTIMAL scheme performed best almost universally,
with large gains in some instances. More interestingly,
the other three schemes were rather closely tied, with
only a slight edge for the UNIFORM decomposition.
For comparison, we also computed the approximation
errors resulting from analytically determined uniform
edge probabilities (*UNIFORM), which corresponds to
an infinite number of iterations of Algorithm 2; the
gains over the UNIFORM scheme are negligible. Fi-
nally, we checked how deterministically the MINIMAL
scheme behaved on a single given graph (considering
its random nature). Table 2 shows that the deviation
over 30 independent decompositions was very low.

4.2 EFFECTIVENESS OF SOLVERS

In a second series of experiments, we compared our
own solvers (TRWSPG, outlined by Algorithm 1, and
TrRWPQN with p = 4) to the message passing algo-
rithm (TRWMP) of Wainwright et al. (2005a) and
a variant thereof (TRWDMP) that employs “damp-
ing” (o = 0.5). In our implementation of the latter,
we updated the messages by iterating over the edges
uniformly at random. For comparison, we used the
same types of graphs as in section 4.1, with ng, = 50,
n, = 100, ng = 10 and n. = 50.

4.2.1 Asymptotic Efficiency

First, we compared the asymptotic behavior of the
competing solvers. To this end, we ran them on the
same randomly generated instances of each type of
graph. Figure 2 shows the progress of the objective
as a function of iterations of the respective algorithm.
The plot displays only a single run of each solver

Jeremy Jancsary, Gerald Matz

— TrRWSPG
---- TRWPQN

5,200 3,360

" 4,950 TrRWDMP " 3,260

4,700 3,160

20

10 30 40

iteration

iteration

(a) GRID ISINGGAUSS, MINIMAL

(b) GRID ISINGUNIFORM, MINIMAL

" 1,960

(c) REG. ISINGGAUSS, MINIMAL

1,980

1,940

T R R B
0 20 40 60 80 100 120 140

iteration

iteration

(d) Comp. EXPGAUsS, MINIMAL

Figure 2: Asymptotic efficiency—only a single run is depicted to highlight convergence characteristics.

— TRWSPG
---- TRWPQN
TrWMP
TrWDMP

5,200

" 4,950

4,700

| T I 1
04 06 08

1
0.5 1 0 02

running time (s) running time (s)

(a) Grip IsINGGAUSS, MINIMAL

— TrRWSPG
---- TRWPQN
......... TrRWMP

TrwWDMP

5,200 3,330

" 4,950 " 3,230

3,130

running time (s) running time (s)

(e) Grip IsiNGGauss, UNIFORM

(b) GRID ISINGUNIFORM, MINIMAL

(f) GRID ISINGUNIFORM, UNIFORM

"8 1,960

2,000
1,980

1,940

1
0.1 0.2 0.3 0.5

running time (s) running time (s)

(C) REG. ISINGGAUSS, MINIMAL (d) Cowmp. EXPGAUSS, MINIMAL
i 2,000 [- 1
1,980 |- .
" 1,960 (- B v 1,500 il
1,940 |- 2 1,000 | s ,
L I I I I N I ! | L I
0 01 02 03 04 0 2 4 6 8 10 12
running time (s) running time (s)
(g) REc. IsinaGauss, Unirorm (h) Comp. ExpGauss, UNIFORM

Figure 3: Computational efficiency of competing solvers—average over 10 runs is shown here.

(rather than an average over multiple runs), so as not
to “average out” the convergence characteristics. Due
to a lack of space, we only show the curves for a partic-
ular set of trees obtained using the MINIMAL scheme;
the others triggered similar asymptotic behavior.

As one can see from Figure 2, the message updates
performed by TRWMP decrease the objective very
rapidly. However, this comes at a price. In some
cases, e.g. panel (c), the process diverges. We also
note that the iterates produced by TRWMP need not
lie within £(G). Feasibility is only guaranteed for the
optimal solution; hence, the curve can fluctuate about
the optimum, see panel (d). This can even happen
for TRWDMP, which generally improves smoothness
of convergence considerably, but decreases the objec-
tive more slowly. In contrast, the iterates of TRWSPG
and TRWPQN are always guaranteed to yield an up-
per bound. In terms of smoothness of convergence,
TRWPQN exposes the most desirable behavior. On
the other hand, TRWSPG implements a compromise
between smoothness and rapid decrease; while its non-
monotone line search can yield sporadic “bumps”, it
ultimately converges to the global optimum.

4.2.2 Computational Efficiency

Next, we assessed the solvers in terms of their com-
putational efficiency. For this purpose, we measured
the progress of the objective as a function of running

394

time, rather than iterations. We averaged the curve
of each solver over 10 runs in order to smoothen any
effects caused by the random nature of the updates
performed by TRWMP, or scheduling of the multiple
CPU threads used by TRWSPG and TRWPQN. All
results were obtained on a machine with eight Intel
Xeon CPU cores running at 2.4 GHz.

Figure 3 shows the resulting plots. We employed two
decomposition schemes at opposing ends of the spec-
trum, MINIMAL (top row), and UNIFORM (bottom
row). As expected, the results varied significantly with
the number of trees in use. For MINIMAL sets, we
found that TRWSPG approached the optimum even
more quickly than TRWMP, and much more so than
TRWDMP. TRWPQN was also competitive in some
cases, but was generally dominated by TRWSPG due
to the lower per-iteration cost. On the other hand,
TRWMP and its damped variant were more efficient
for the larger UNIFORM sets, since they only depend
on the edge occurrence probabilities. This is particu-
larly apparent in panels (e) and (f); over 50 spanning
trees were required to achieve uniform edge proba-
bilities, which significantly outnumbered the available
CPU cores. However, in section 4.1, we found that
there is only limited gain in establishing UNIFORM
sets. Hence, one should definitely opt for a MINIMAL
or 4SNAKES strategy with TRWSPG and TRWPQN.
In this regime, TRWSPG outperformed both TRWMP
and TRWDMP while guaranteeing convergence.

Convergent Decomposition Solvers for Tree-reweighted Free Energies

—— TrRWSPG
---- NoSMP

NAIVE
TRWDMP |

B 3,300

3,200

3,100

running time (s)

3,000
.

I 1 1 I 1 1 1 1 1 |
10 15 20 25 30 5 10 15 20 25 30

outer iteration outer iteration

(a) accumulated running time (b) progress of objective

Figure 4: Construction of OPTIMAL sets of spanning trees
for GRID ISINGUNIFORM—TRWSPG scales linearly until
after the number of trees exceeds the number of CPU cores.

4.2.3 Scalability of Optimal Tree Selection

We next considered OPTIMAL tree selection. Here, at
each iteration, the set of trees grows. One might then
expect the running time of Algorithm 1 to increase
at each iteration, such that the accumulated running
time grows superlinearly. We drew on two strategies
in order to suppress this effect. First, by parallelizing
computation, the cost of each iteration could be kept
constant until the number of trees exceeds the num-
ber of cores. Second, by warm-starting Algorithm 1,
almost-constant cost could be maintained up to a rele-
vant number of iterations: At each outer iteration, we
started from the previous solution 8*; the additional
parameters @(T*) of the newly added MST were ob-
tained from the weighted average over the other trees,
O(T*) = > qrcs\r+ Ps(17)0*(1"). All parameters were
then projected to obtain an initial feasible point.

Figure 4 shows a run of the OPTIMALTREES al-
gorithm. We compared our actual implementation
(TRWSPG) to an implementation that does not use
multi-processing (NOSMP) and a naive implemen-
tation that uses neither warm-starting nor multi-
processing (NAIVE). As one can see, the differences
are dramatic. Finally, we assessed an implementa-
tion (TRWDMP) that uses damped (o = 0.5) mes-
sage passing to solve the inner problem, as in Wain-
wright et al. (2005a). Figure 4 shows that up to a
relevant number of iterations, this is less efficient than
the TRWSP G-based scheme. Moreover, one does not
know in advance which damping factor to choose.

5 RELATED WORK

Our formulation is most closely related to the dual de-
composition scheme of Komodakis et al. (2007), who
optimize an upper bound on the MAP score. As op-
posed to our setting, there is no strong duality be-
tween the (discrete) primal MAP problem and mini-
mization of the convex upper bound, hence primal so-
lutions must be generated heuristically. Moreover, the
upper bound on the MAP score is non-differentiable,
which has recently been dealt with using proximal reg-

395

ularization (Jojic et al., 2010). On the other hand, the
upper bound on the log partition function depends on
the choice of trees, a different source of complication.

Several independent lines of work have focused on con-
vergent algorithms for convex free energies. Heskes
(2006) derives convergent double-loop algorithms. He
also argues that given sufficient damping, the orig-
inal algorithm of Wainwright et al. (2005b) should
converge. Globerson and Jaakkola (2007) provide
a convergent algorithm for tree-reweighted free ener-
gies that solves an unconstrained geometric program.
However, the authors note their work is mostly of the-
oretical interest, since “damped” message passing con-
verges more rapidly. Hazan and Shashua (2008) devise
a convergent algorithm for general convex energies by
imposing strict non-negativity constraints on certain
coefficients of the entropy terms. Meltzer et al. (2009)
provide a unifying view that relates convergence to the
order in which message updates are performed.

Concerning parallelization, Gonzalez et al. (2009) de-
vise an efficient concurrent implementation of belief
propagation. They show that synchronous schedules,
which are naturally parallel, converge less rapidly—
both empirically and theoretically. Hence, the au-
thors parallelize a residual-based asynchronous sched-
ule, which requires locking and considerable engineer-
ing effort. Moreover, their algorithm is not guaranteed
to converge. On the other hand, some schemes that do
guarantee convergence—such as that of Meltzer et al.
(2009)—rely on the order of updates, which makes it
inherently hard to gainfully employ parallelization.

6 CONCLUSION

We presented convergent optimization schemes for
computation of approximate marginal probabilities in
cyclic graphical models. For tree-reweighted energies
arising from a small number of spanning trees, our
SPG-based solver was shown to be more efficient than
the original message passing algorithm, while guaran-
teeing convergence. Moreover, we found empirically
that such energies provide approximations of reason-
able quality. If more accurate approximations are de-
sired, one can additionally optimize over the choice of
trees. Towards this end, we outlined an efficient al-
gorithm that draws on our convergent solvers at each
iteration to establish the joint global optimum.

Acknowledgements

We thank our reviewers. OFAI is supported by the
Austrian Federal Ministry for Transport, Innovation,
and Technology. JJ and GM acknowledge funding by
WWTF Grant ICT10-049 and FWF Grant S10606.

Jeremy Jancsary, Gerald Matz

References

J. Barzilai and J. M. Borwein. Two-point step size gra-
dient methods. IMA Journal of Numerical Analysis,
8:141-148, 1988.

D. P. Bertsekas. Nonlinear Programming. Athena Sci-
entific, 2nd edition, 1999.

E. G. Birgin, J. M. Martinez, and M. Raydan. Non-
monotone spectral projected gradient methods on
convex sets. STAM Journal of Optimization, 10(4):
1196-1211, 2000.

R. Byrd, J. Nocedal, and R. Schnabel. Representations
of quasi-Newton matrices and their use in limited
memory methods. Mathematical Programming, 63
(1):129-156, 1994.

V. Chandrasekaran, N. Srebro, and P. Harsha. Com-
plexity of inference in graphical models. In 2jth
Conference on Uncertainty in Artificial Intelligence
(UAI), 2008.

J. Edmonds. Matroids and the greedy algorithm.
Mathematical Programming, 1(1):127-136, 1971.

A. Globerson and T. S. Jaakkola. Convergent propa-
gation algorithms via oriented trees. In 23rd Confer-
ence on Uncertainty in Artificial Intelligence (UAI),
2007.

J. E. Gonzalez, Y. Low, and C. Guestrin. Residual
splash for optimally parallelizing belief propagation.
In 12th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), 2009.

L. Grippo, F. Lampariello, and S. Lucidi. A nonmono-
tone line search technique for Newton’s method.
SIAM Journal on Numerical Analysis, 23:707-716,
1986.

T. Hazan and A. Shashua. Convergent message-
passing algorithms for inference over general graphs
with convex free energies. In 24th Conference on

Uncertainty in Artificial Intelligence (UAI), 2008.

T. Heskes. Convexity arguments for efficient minimiza-
tion of the Bethe and Kikuchi free energies. Journal
of Artificial Intelligence Research, 26:153-190, 2006.

V. Jojic, S. Gould, and D. Koller. Accelerated dual
decomposition for MAP inference. In 27th Inter-
national Conference on Machine Learning (ICML),
2010.

N. Komodakis, N. Paragios, and G. Tziritas. MRF op-
timization via dual decomposition: Message-passing
revisited. In IEEFE 11th International Conference on
Computer Vision (ICCV), pages 1-8, 2007.

T. Meltzer, A. Globerson, and Y. Weiss. Convergent
message passing algorithms - a unifying view. In
Proceedings of the 25th Conference on Uncertainty
in Artificial Intelligence (UAI), 2009.

396

J. M. Mooij. libDAI: A free and open source C++
library for discrete approximate inference in graphi-

cal models. Journal of Machine Learning Research,
11:2169-2173, 2010.

A. Nedi¢ and V. G. Subramanian. Approximately op-
timal utility maximization. In IFEE Information
Workshop on Networking and Information Theory
(ITW), pages 206-210, 2009.

J. Nocedal. Updating quasi-Newton matrices with lim-
ited storage. Mathematics of Computation, 35:773—
782, 1980.

M. Schmidt, E. van den Berg, M. Friedlander, and
K. Murphy. Optimizing costly functions with sim-
ple constraints: A limited-memory projected quasi-
Newton algorithm. In 12th International Conference
on Artificial Intelligence and Statistics (AISTATS),
2009.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky.
A new class of upper bounds on the log partition
function. IEEE Transactions on Information The-
ory, 51:2313-2335, July 2005a.

M. J. Wainwright, T. S. Jaakkola, and A. S. Will-
sky. MAP estimation via agreement on (hy-
per)trees: Message-passing and linear-programming
approaches. [IEFEE Transactions on Information
Theory, 51(11):3697-3717, 2005b.

C. Wang, Q. Liu, and X. Yang. Convergence properties
of nonmonotone spectral projected gradient meth-
ods. Journal of Computational and Applied Mathe-
matics, 181(1):51-66, 2005.

. S. Yedidia, W. T. Freeman, and Y. Weiss. Under-
standing belief propagation and its generalizations.
In Ezxploring artificial intelligence in the new millen-
nium, pages 239-269. Morgan Kaufmann Publishers
Inc., 2003.

A SUPPLEMENTARY MATERIAL

We provide here additional material that is not offi-
cially part of the paper.

A.1 PROOFS W.R.T. TREE SELECTION

We start with a general discussion, as Proposition 2
and Proposition 3 are both based on the same frame-
work. In particular, both algorithms seek the solution
to a convex optimization problem

min

vET(G) fw),

where f(-) is a convex function of the edge occurrence
probabilities v and T(G) is the so-called spanning tree

Convergent Decomposition Solvers for Tree-reweighted Free Energies

polytope of a graph G (e.g. Edmonds, 1971). The lat-
ter is described by a number of inequalities that is
exponential in the size of G. Nonetheless, one can op-
timize efficiently over v using the conditional gradient
or Frank-Wolfe method (e.g. Bertsekas, 1999). Here,
at each iteration k, we determine a feasible descent
direction p®*) through the solution of the first-order
Taylor expansion of f(-) around v(*),

: *)Y 4 V(™) . (v — <k>}_
Jmin {F@) + V700 @)
We use v*%) to denote the minimizer of the above.
The feasible descent direction is then given by p*) =
v*®) — p(®) and the next iterate is obtained as

p D —) 4 o Fpk) k) o, 1].

)
Observe that this is equivalent to

pED — (k) x(k) (1— a(k))y(k)’ a®) e [0,1],
i.e., the new iterate is obtained as a convex com-
bination of the previous iterate and the extreme
point ©**) | which can be found efficiently using the
minimum spanning tree (MST) algorithm with edge
weights given by V f(v(*)). Hence, the MST algorithm
solves the linear program min, cr(q) Vfw®) . v over
the spanning tree polytope.

Lemma 1. The steps taken by Algorithm 2 and Algo-
rithm 8 are exactly of the form described above.

Proof. To see this, observe that at each step, the cur-
rent edge occurrence probabilities v(¥) are maintained
through the mapping

v = p(Ss® pEy = 3 pE(T)w(T),
TeSk)

where v(T) € RI€l indicates which edges are contained
in T, that is, v (T) = [(s,t) € Er]. Each step chooses
png) as 1/(k 4+ 1). Equivalently, we can develop the
iterate as piF™t = [a®) (1 — a(k))pgk)} with ()
1/(k 4+ 1). Moreover, we note that the extreme point
v**) corresponds to a particular tree T**) via the
relation *(*®) = p(T*(*)), Tt is precisely this tree 7**)
that Algorithm 2 and Algorithm 3 add to S® with
associated probability a*) at each step. But then,
through the mapping between (S, ps) and v, we obtain

V(k+1) — V(S(k+1)7pgk+1))
= a®u (W) + p(5H), (1~ a®)p(9)
— o) 4 (1 = o)) 8),

which is what we wanted to show.

397

To guarantee convergence of the framework, we also
need the following lemma.

Lemma 2. For the sequence of step sizes {a®)} cho-
sen as o'F) = 1/(k + 1), the conditional gradient algo-
rithm converges to the global minimum of f(-).

Proof (Sketch). We do not give an explicit proof here.
Global convergence of a conditional gradient algorithm
with {a(®)} chosen as a 1/(k 4 1) is shown by Nedi¢
and Subramanian (2009), among others. O

Note that it is also possible to choose a®) such that
sufficient decrease is obtained at each step by imposing
the Armijo condition (Bertsekas, 1999). It remains
to discuss the objective functions f(-) optimized by
Algorithm 2 and Algorithm 3.

A.1.1 Proof of Proposition 2

We wish to show that Algorithm 2 determines a se-

quence {V(S(k),pgk))} that converges to a vector u

with components given by ug = (|]V| —1)/|€|. To see
this, consider the optimization problem

def

funi(u) = HV*“”§

Vglﬂ‘l(lé:) funi(y)a

To apply the conditional gradient algorithm, we re-
quire the gradient of the objective, which we develop
as Vfumi(v) = 2(v — u). At each iteration k, to de-
termine the extreme point v**), we thus solve a min-
imum spanning tree problem with edge weights given
by 2(v*) — u). The constant factor 2 does not af-
fect the solution, nor does the constant vector u, the
components of which are all equal. Consequently, we
can solve the MST problem with edge weights given
by v®). This is exactly what Algorithm 2 does. Fi-
nally, we note that u € T(G) such that v = u can be
achieved. Proposition 2 then follows from Lemma 1
and Lemma 2.

A.1.2 Proof of Proposition 3

We wish to show that Algorithm 3 determines a se-
quence {@#*} converging to an upper bound &* >
&(0) that is jointly optimal over the choice of trees S,
the distribution over trees ps, and the tractable pa-
rameterization . To see this, consider the problem

min fops(v), fops given by (7).

veT(G)
It can be shown (Wainwright et al., 2005a) that fope(-)
is convex and differentiaable in v, and that its partial
derivatives are given by afTof: = —I(pk,), where I (k)
denotes the mutual information of (s, t) given the pseu-
domarginals p* that maximize the objective in (7).

Jeremy Jancsary, Gerald Matz

Note that at each iteration k, the term p**) depends
on the solution of (7) given the current iterate v(*).
Consequently, at each step, the conditional gradient
algorithm first determines p**), and then finds the
minimum spanning tree with the weight of edge (s, t)
given by —I(u;gk)). Wainwright et al. (2005a) show
that by minimizing fop(-) over v, one obtains an up-
per bound &* > &(0) that is jointly optimal over v and
p. Now, from Lemma 1, we conclude that Algorithm
3 takes the same steps as the conditional gradient al-
gorithm of Wainwright et al. (2005a). The only differ-
ence lies in the fact that the edge occurrence proba-
bilities »*) are implicitly maintained in terms of the
mapping v(S (k) pgk)), and that the pseudomarginals
p*®) are (equivalently) computed using Algorithm 1,
which at each step determines the parameterization
6*(%) that minimizes the upper bound for the current
iterate (S, pgk)). Furthermore, Lemma 2 guarantees
convergence for our choice of step sizes. It then follows
that the sequence of upper bounds {&*)} converges to
a jointly optimal upper bound &*.

A.2 AVAILABILITY OF SOFTWARE

Our SPG- and PQN-based solvers are made available
as opensource software in the PhiWeave machine learn-
ing library for approximate discriminative training of
graphical models at http://phiweave.sf.net. The
library is still in its infancy, but is approaching matu-
rity at rapid speed.

Specifically, the implementation of our solvers can
be viewed online at http://phiweave.svn.sf.net/
viewvc/phiweave/trunk/src/main/scala/net/
sf/phiweave/inference/SumDualDecomposition.
scala?view=markup. PhiWeave is currently lack-
ing documentation, but the situation will improve
substantially once the set of supported features has
stabilized.

398

http://phiweave.sf.net
http://phiweave.svn.sf.net/viewvc/phiweave/trunk/src/main/scala/net/sf/phiweave/inference/SumDualDecomposition.scala?view=markup
http://phiweave.svn.sf.net/viewvc/phiweave/trunk/src/main/scala/net/sf/phiweave/inference/SumDualDecomposition.scala?view=markup
http://phiweave.svn.sf.net/viewvc/phiweave/trunk/src/main/scala/net/sf/phiweave/inference/SumDualDecomposition.scala?view=markup
http://phiweave.svn.sf.net/viewvc/phiweave/trunk/src/main/scala/net/sf/phiweave/inference/SumDualDecomposition.scala?view=markup

