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Abstract

We introduce a new perspective on spec-
tral dimensionality reduction which views
these methods as Gaussian random fields
(GRFs). Our unifying perspective is based
on the maximum entropy principle which is
in turn inspired by maximum variance un-
folding. The resulting probabilistic models
are based on GRFs. The resulting model is
a nonlinear generalization of principal com-
ponent analysis. We show that parameter
fitting in the locally linear embedding is ap-
proximate maximum likelihood in these mod-
els. We directly maximize the likelihood and
show results that are competitive with the
leading spectral approaches on a robot nav-
igation visualization and a human motion
capture data set.

1 Introduction

Spectral approaches to dimensionality reduction in-
volve taking a data set containing n points and forming
a matrix of size n X n from which eigenvectors are ex-
tracted to give a representation of the data in a low
dimensional space. Several spectral methods have be-
come popular in the machine learning community in-
cluding isomap [Tenenbaum et al., 2000], locally linear
embeddings [LLE, Roweis and Saul, 2000], Laplacian
eigenmaps [LE, Belkin and Niyogi, 2003] and max-
imum variance unfolding [MVU, Weinberger et al.,
2004]. These approaches [and kernel PCA, Scholkopf
et al., 1998] are closely related to classical multidimen-
sional scaling [CMDS, Mardia et al., 1979].

In classical multidimensional scaling an n x n dis-
tance matrix is converted to a similarity matrix and
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visualized through its principal eigenvectors. Viewed
from the perspective of CMDS the main difference be-
tween the spectral approaches developed in the ma-
chine learning community is in the distance matrices
they (perhaps implicitly) proscribe.

In this paper we introduce a probabilistic approach to
constructing this distance matrix: maximum entropy
unfolding (MEU). We describe how isomap, LLE, LE
and MVU are related to MEU using the unifying per-
spective of Gaussian random fields and CMDS.

The parameters of the model are fitted through max-
imum likelihood in a Gaussian random field (GRF).
The random field specifies dependencies between data
points rather than the more typical approach which
specifies dependencies between data features.

Our method is based on maximum likelihood. Nor-
mally maximum likelihood algorithms specify a dis-
tribution which factorizes over the data points (each
data point is independent given the model parame-
ters). Our model’s distribution factorizes over the fea-
tures (each feature from the data set is independent
given the model parameters). This means that maxi-
mum likelihood in our model is consistent as the num-
ber of features increases, p — oo rather than the num-
ber of data points. This leads to a blessing of dimen-
sionality where the parameters are better determined
as the number of features increases.

In Section 2 we derive our model through using stan-
dard assumptions from the field of dimensionality re-
duction and the maximum entropy principle [Jaynes,
1986]. We then relate the model to other popular spec-
tral approaches to dimensionality reduction. We then
consider how the parameters of the model can be fit-
ted through maximum likelihood. Finally we demon-
strate the model (with comparisons) on two real world
data sets. First though, we will briefly review classical
multidimensional scaling which provides the general
framework through which these approaches can be re-
lated [see also Ham et al., 2004].
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1.1 Classical Multidimensional Scaling

Given an n xn matrix of similarities, K, or dissimilari-
ties, D, between a set of data points, multidimensional
scaling considers the problem of how to represent these
data in a low dimensional space. One way of doing this
is to associate a ¢ dimensional latent vector with each
data point, y; ., and define a set of dissimilarities be-
tween each latent point, d; ; = ||x;,. — X]‘7:H§, to give a
matrix A. Here we have specified the squared distance
between each point as the dissimilarity.!

If the error for the latent representation is then taken
to be the sum of absolute values between the dissimi-
larity matrix entries,

n 1—1

BEX) =Y ldij—dijlly

i=1 j=1

(1)

and we assume that the data dissimilarities also rep-
resent a squared Euclidean distance matrix (perhaps
computed in some high, maybe infinite, dimensional
space) then the best linear dimensionality reduction is
given by the following procedure [Mardia et al., 1979,
pg 400],

1. Convert the matrix of dissimilarities to a matrix
of similarities by taking B = —%HDH where H =
I-n"'11T7 is a centering matrix.

Extract the first ¢ principal eigenvectors of B.

Setting X to these principal eigenvectors (appro-
priately scaled) gives a global minimum for the
error function (1).

2 Maximum Entropy Unfolding
Classical multidimensional scaling provides only a lin-
ear transformation of space in which the squared dis-
tances are expressed. The novelty of modern spectral
approaches is distance computation in spaces which
are nonlinearly related to the data. This gives a non-
linear algorithm. This can be seen clearest for kernel
PCA. In kernel PCA the squared distances are embed-
ded in a Hilbert space and related to the original data
through a kernel function,

(2)

which is recognized as the squared distance in “fea-
ture space” [see Ham et al., 2004]. In CMDS this is
known as the standard transformation between a sim-
ilarity and distance [Mardia et al., 1979]. Kernel PCA

dij = k(yi:yi:) = 2k(yi, ¥j,:) + k(Y5 ¥5.:)

Tt is more usual to specify the distance directly as the
dissimilarity, however, for our purposes it will be more con-
venient to work with squared distances
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(KPCA) recovers an x;. for each data point and a
mapping from the data space to the X space. Under
the CMDS procedure the eigenvalue problem is per-
formed on the centered kernel matrix,

B = HKH,

where K = [k(y;,:,y;,:)]; ;- This matches the KPCA

algorithm [Schélkopf et al., 1998]%. However, for the
commonly used exponentiated quadratic kernel,

2
2);
KPCA actually ezpands the feature space rather than

reducing the dimension [see Weinberger et al., 2004,
for some examples of this].

k(yi,:» y5,:) = exp(—= lyi: — ¥j.:|

The observation that KPCA expands the feature space
motivated the maximum variance unfolding algorithm
[MVU, Weinberger et al., 2004]. The idea in MVU is
to learn a kernel matrix that will allow for dimension-
ality reduction. This is achieved by only considering
local relationships in the data. A set of neighbors is de-
fined (e.g. by k-nearest neighbors) and only distances
between neighboring data points are respected. These
distances are specified as constraints, and the other
elements of the kernel matrix are filled in by maximiz-
ing the trace of the kernel matrix, tr (K), i.e. the total
variance of the data in feature space, while respecting
the distance constraints and keeping the resulting ma-
trix centered. Maximizing tr (K) in turn maximizes
the interpoint squared distances for all points that are
unconnected in the neighborhood graph, thereby un-
ravelling the manifold.

In this paper we consider an alternative maximum en-
tropy formalism of this problem. Since entropy is re-
lated to variance, we might expect a similar result in
the quality of the resulting algorithm, but since max-
imum entropy also provides a probability distribution
we should also obtain a probabilistic model with all
the associated advantages (dealing with missing data,
extensions to mixture models, fitting parameters by
Bayesian methods, combining with other probabilistic
models). Importantly, our interpretation will also en-
able us to relate other well known spectral techniques
to our algorithm as they each turn out to approximate
maximum entropy unfolding in some way.

In the maximum entropy formalism [see e.g. Jaynes,
1986], we maximise the entropy of a distribution sub-
ject to constraints on the moments of that distribu-
tion. Here those constraints will be the expectations
of the squared distances between two data points sam-
pled from the model. Constraints will only apply to

2For stationary kernels, kernel PCA also has an inter-
pretation as a particular form of metric multidimensional
scaling, see Williams [2001] for details.
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points that are defined to be “neighbors”. For contin-
uous data, the maximum entropy can only be defined
relative to a base distribution [Jaynes, 1986]. We fol-
low a common choice and take the base distribution
to be a spherical Gaussian with covariance v~'I. The
maximum entropy distribution is then given by

p(Y) ocexp (—;tf (WYYT))

X exXp —%Z Z )\i,jdi,j s

i JEN()

where N (i) represents the set of neighbors of data
point ¢ (a point cannot be its own neighbor), and
Y = [yi.,--,¥n:] " € R"*P is a design matriz con-
taining our data. Note that we have introduced a fac-
tor of —1/2 in front of our Lagrange multipliers, {)\; ;},
for later notational convenience. We now define the
symmetric matrix A to contain \; ; if ¢ is a neighbor
of j and zero otherwise. This allows us to write the
distribution as

p(Y) x exp <;tr (vYYT) - itr (AD)) .

We introduce a matrix L which is symmetric and con-
strained to have a null space in the constant vector,
L1 = 0. Its off diagonal elements are given by —A
and its diagonal elements are given by

b= Z i

JEN(4)
to enforce the null space constraint. This enables us
to write
1
|L +1|? < 1 T)
Y)=—F—e ——tr (L+10)YY . (3
p(Y) = 5 e (gt (L DYYT) ) )

We arrive here because the distance matrix is zero
along the diagonal. This allows us to set the diago-
nal elements of L as we please without changing the
value of tr (LD). Our choice to set them as the sum of
the off diagonals gives the matrix a null space in the
constant vector enabling us to use the fact that

D = 1diag (YY") ' —2YY" +diag (YY) 17

(where the operator diag (A) forms a vector from the
diagonal of A) to write

—tr (AD) = tr (LD) = —2tr (LYY "),

which in turn allows us to recover (3). This probabil-
ity distribution is a Gaussian random field. It can be
written as

p 1
_ |L + 12 I+
p(Y)—gWeXP *§Y;,j(L+’YI)}’:,J ,
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which clarifies the fact that the GRF is being expressed
independently across data features (each vector y:. ;
contains the jth feature from all data points). This
contrasts with most applications of Gaussian models
that are applied independently across data points. No-
table exceptions include [Zhu et al., 2003, Lawrence,
2004, 2005, Kemp and Tenenbaum, 2008]. As with all
maximum entropy methods, maximum likelihood for
this model is equivalent to finding the correct setting
of the Lagrange multipliers.

2.1 Maximum Likelihood and Blessing of
Dimensionality

When we consider maximum likelihood consistency ar-
guments [see e.g. Wasserman, 2003, pg 126] we see that
this model isn’t consistent as we increase the number
of data points, n, for fixed data dimensionality, p, but
it is consistent as we increase data dimensionality, p,
for a fixed number of data points n. The number of
parameters will increase as we increase the number of
data (each datum requires K parameters to connect
with K neighbors). However, as we increase features
there is no corresponding increase in parameters. In
other words as the number of features increases there
is a clear blessing of dimensionality.

There is perhaps a deeper lesson here in terms of how
we should interpret such consistency results. In the
“sampled points” formalism, as we increase the num-
ber of data points, the parameters become better de-
termined. In the “sampled features” formalism, as we
increase the number of features, the parameters be-
come better determined. However, for consistency re-
sults to hold, the class of models we consider must
include the actual model that generated the data. If
we believe that “Essentially, all models are wrong, but
some are useful” [Box and Draper, 1987, pg 424] we
may feel that encapsulating the right model within our
class is a practical impossibility. Given that, we might
pragmatically bias our choice somewhat to ensure util-
ity of the resulting model. From this perspective, in
the large p small n domain, the “sampled features”
formalism is attractive. A practical issue can arise
though. If we wish to compute the likelihood of an
out of sample data-point, we must first estimate the
parameters associated with that new data point. This
can be problematic. Of course, for the sampled-points
formalism the same problem exists when you wish to
include an out of sample data-feature in your model.

2.1.1 Parameter Gradients

We can find the parameters A through maximum like-
lihood on this distribution. Some algebra shows that
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the gradient of each Lagrange multiplier is given by,

dlog p(Y)
dA;j

1 1
=5 {dig) vy — 5 i

where (), represents an expectation under the dis-
tribution p(-). This result is expected given our max-
imum entropy formulation: the Lagrange multipliers
have a gradient of zero when the constraints are sat-
isfied. To compute gradients we need the expectation
of the squared distance given by

(dij) = (Wil wi) — 2w + () i) s

which we can compute directly from the covariance
matrix of the GRF, K = (L 4+~I) ",

(dij) =p (kiy — 2k j + kj ;).

This is immediately recognized as a scaled version of
the standard transformation between distances and
similarities (see (2)). This relationship arises naturally
in the probablistic model. Every GRF has an implied
associated distance matrix. It is this matrix that is
being used in CMDS. The machine learning audience
might interpret this as the relationship between dis-
tances in “feature space” and the kernel function. Note
though that here (and also in MVU) each individual el-
ement of the kernel matrix cannot be represented only
as a function of the corresponding two data points (i.e.
we can’t represent them as k; ; = k(y;.,y;.)). Given
this we feel it is more correct to think of this matrix
as a covariance matrix induced by our specification of
the random field rather than a true Mercer kernel.

If K neighbors are used for each data point there are
O(Kn) parameters in the model, so the model is non-
parametric in the sense that the number of parameters
increases with the number of data. For the parameters
to be well determined we require a large number of fea-
tures, p, for each data point, otherwise we would need
to look to regularize the model. This implies that the
model is well primed for the so-called “large p small n
domain”.

Once the maximum likelihood solution is recovered the
data can be visualized, as for MVU and kernel PCA,
by looking at the eigenvectors of the centered covari-
ance matrix HKH. We call this algorithm maximum
entropy unfolding (MEU).

Note that the entropy of a Gaussian is related to the
determinant of the covariance matrix. The determi-
nant of the covariance can be expressed as the sum of
the log of the eigenvalues of K, log |K| = Y_"_, log A;.
In contrast MVU looks to maximize the trace of the co-
variance matrix tr (K) = Y"1 | \;, subject to distance
constraints.

When optimizing in MVU and MEU we need to en-
sure that the covariance matrix is positive definite. In
MVU this is ensured through a semidefinite program.
In MEU the objective is not linear in K so we need
to use other approaches. Possibilities include exploit-
ing the fact that if the Lagrange multipliers are con-
strained to be positive the system is “attractive” and
this guarantees a valid covariance [see e.g. Koller and
Friedman, 2009, pg 255]. Although now (as in a sug-
gested variant of the MVU) the distance constraints
would be inequalities. Another alternative would be to
constrain L to be diagonally dominant through adjust-
ing v. We will also consider an alternative approach
in Section 2.3.

Finally, we note that for MEU and MVU, as we in-
crease the neighborhood size to K = n — 1, we re-
cover principal component analysis. In this limit all ex-
pected squared distances, implied by the GRF model,
are required to match the observed squared distances
and L becomes non-sparse. Classical multidimensional
scaling on the resulting squared distance matrix is
known as principal coordinate analysis and is equiva-
lent to principal component analysis [see Mardia et al.,
1979].

2.2 Relation to Laplacian Eigenmaps

The relationship to Laplacian eigenmaps [Belkin and
Niyogi, 2003] is starting to become clear. In Lapla-
cian eigenmaps a graph Laplacian is specified across
the data points. This Laplacian has exactly the same
form as our matrix L, which we will henceforth refer
to as the Laplacian. The parameters of the Lapla-
cian are set either as constant or according to the dis-
tance between two points. The smallest eigenvectors
of this Laplacian are then used for visualizing the data
(disregarding the eigenvector associated with the null
space). From the eigendecomposition of K = UAUT
it is easy to show that L = U (A™! —4I) U is the
eigendecomposition of L. So in other words, the prin-
cipal eigenvalues of K will be the smallest eigenval-
ues of L. The very smallest eigenvalue of L is zero
and associated with the constant eigenvector. How-
ever, in CMDS this would be removed by the center-
ing operation and in LE it is discarded. So we see
that once the parameters of the Laplacian have been
set CMDS is being performed to recover the latent
variables in Laplacian eigenmaps. However, since the
moment constraints are not being imposed in Lapla-
cian eigenmaps, the squared distance matrix used for
CMDS will not preserve the interneighbor distances
as it will for MVU and MEU. In fact since the co-
variance matrix is never explicitly computed it is not
possible to make specific statements about what these
distances will be in general. However, LE gains signifi-
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cant computational advantage by not representing the
covariance matrix explicitly. No matrix inverses are
required in the algorithm and the resulting eigenvalue
problem is sparse. This means that LE can be applied
to much larger data sets than would be possible for
MEU or MVU.

2.3 Relation to Locally Linear Embedding

When introducing MEU we discussed how it is neces-
sary to constrain the Laplacian matrix to be positive
semidefinite. A further way of doing this is to factorize
the Laplacian as

L=MM"

where M is non-symmetric. If M is constrained so
that M1 = 0 then we will also have L1 = 0. We
can achieve this constraint by setting the diagonal
elements m;; = —Zje/\/—(i) mj,;. Then if we force
mj; = 0if j ¢ N (i) we will have a Laplacian ma-
trix which is positive semidefinite without need for any
further constraint on M. Note that the sparsity pat-
tern of L will be different from the pattern of M. The
entry for ¢; ; will only be zero if there are no shared
neighbors between ¢ and j.

In the locally linear embedding [Roweis and Saul,
2000], an alternative approach to dimensionality re-
duction is taken. The idea is to first derive a set of
weights that allow each data point to be reconstructed
from its neighbors. This involves a minimization of
the form,

2
n

Z Yi: — Z Wj,iYj,:

J=1 JEN(3) 9

E(W) (4)

Once the matrix of weights is found, the next step
is to find a low dimensional embedding of the data,
X, which best respects the linear relationships defined
by W. This turns out to be computed through an
eigenvalue problem on the matrix (I — W)(I — W),
where W is a matrix with elements w; ; if ¢ and j are
neighbors and zero otherwise.

Locally linear embeddings turn out to be a specific
case of the MEU random field model where

1. The diagonal sums, m; ;, are further constrained
to unity.

2. The parameters of the model are optimized by
maximizing the pseudolikelihood of the resulting
GRF.

To see the first point, we note that if the diagonals were
constrained to unity then we can write M =1 — W.
Here the sparsity pattern of W matches M, apart from
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the diagonal which is set to zero. These constraints
mean that (I — W)T1 = 0. LLE proscribes that the
smallest eigenvectors of (I—W)(I-W)" = MM =
L are used with the constant eigenvector associated
with the eigenvalue of 0 being discarded. As for the
Laplacian eigenmaps this is equivalent to CMDS on
the Gaussian random field described by L.

For the second point the pseudolikelihood approxima-
tion [see e.g. Koller and Friedman, 2009, pg 970] to
the joint density in a graphical model is the product
of the conditional densities:

n

p(Y) ~ [ [ p(yi:[Y\2),

i=1

where Y\; represents all that data other than the ith
point. The true joint likelihood is proportional to the
product of conditional densities, but it requires renor-
malization. In pseudolikelihood this normalization is
ignored. To see how this decomposition applies we first
factorize the model by noting that

r(YY'MM') =) m[YY'm,;
i=1
so for the MEU model we have
- 1
Y —-m; YY 'm,.|.
p(Y) x Hexp ( 5 M m )

This provides the necessary factorization for the con-
ditionals which can be rewritten as

2
my; v; wj,iy
1,0 T /s
2 Z A

m
JEN(G) 5

p(yi:[Y\i) oc exp

This shows that optimizing the log pseudolikelihood is
equivalent to optimizing

logp(Y) = > logp(yi.[Y\,)
=1

which is equivalent to solving n independent regression
problems with a constraint on the regression weights
that they sum to one. This is exactly the optimiza-
tion suggested in (4). Although for MEU we see that
the constraint arises because the regression weights are
constrained to be wj;/m;; and m;; = Zje./\/(i) Wy
In LLE a further constraint is placed that m;; =1
which implies none of these regression problems should
be solved to a greater precision than another. How-
ever, the algorithm also works if this further constraint
isn’t imposed.

Locally linear embeddings are therefore an approxima-
tion to maximum likelihood on the Gaussian random
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field. They have a neat way of constraining the Lapla-
cian to be positive semidefinite by assuming a factor-
ized form. The pseudolikelihood also allows for rela-
tively quick parameter estimation by ignoring the par-
tition function from the actual likelihood. This again
removes the need to invert to recover the covariance
matrix and means that LLE can be applied to larger
data sets than MEU or MVU. However, the sparsity
pattern in the Laplacian for LLE will not match that
used in the Laplacian for the other algorithms due to
the factorized representation.

LLE is motivated by considering local linear embed-
dings of the data, although interestingly, as we increase
the neighborhood size to K = n — 1 we do not recover
PCA, which is known to be the optimal linear em-
bedding of the data under linear Gaussian constraints.
The fact that LLE is optimizing the pseudolikelihood
makes it clear why this is the case. In contrast the
MEU algorithm, which LLE approximates, does re-
cover PCA when K =n — 1.

2.4 Relation to Isomap

Isomap more directly follows the CMDS framework.
In isomap [Tenenbaum et al., 2000] a sparse graph of
distances is created between all points considered to
be neighbors. This graph is then filled in for all non-
neighboring points by finding the shortest distance be-
tween any two neighboring points in the graph (along
the edges specified by the neighbors). The resulting
matrix is then element-wise squared to give a matrix
of square distances which is then processed in the usual
manner (centering and multiplying by -0.5) to pro-
vide a similarity matrix for multidimensional scaling.
Compare this to the situation for MVU and MEU.
Both MVU and MEU can be thought of as starting
with a sparse graph of (squared) distances. The other
distances are then filled in by either maximizing the
trace of the associated covariance or maximizing the
entropy. Importantly, though, the interneighbor dis-
tances in this graph are preserved (through constraints
imposed by Lagrange multipliers) just like in isomap.
For both MVU and MEU the covariance matrix, K, is
guaranteed positive semidefinite because the distances
are implied by an underlying covariance matrix that is
constrained positive definite. For isomap the shortest
path algorithm is effectively approximating the dis-
tances between non-neighboring points. This can lead
to an implied covariance matrix which has negative
eigenvalues [see Weinberger et al., 2004]. The algo-
rithm is still slower than LLE and LE because it re-
quires a dense eigenvalue problem and the application
of a shortest path algorithm to the graph provided by
the neighbors.
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3 Experiments

The advantage of our approach is mainly in the unify-
ing perspective it gives and its potential to exploit the
characteristics of the probabilistic formulation to ex-
plore extensions based on missing data, Bayesian for-
mulations etc. However, for illustrative purposes we
conclude with a short experimental section.

For our experiments we consider two real world data
sets. Code to recreate all our experiments is avail-
able online. We applied each of the spectral methods
we have reviewed along with MEU using positive con-
straints on the Lagrange multipliers (denoted MEU).
The value of v was always kept fixed to 1074, To
evaluate the quality of our embeddings we follow the
suggestion of Harmeling [Harmeling, 2007] and use the
GPLVM likelihood [Lawrence, 2004, 2005]. The higher
the likelihood the better the embedding. Harmel-
ing conducted exhaustive tests over different mani-
fold types (with known ground truth) and found the
GPLVM likelihood was the best indicator of the man-
ifold quality amoungst all the measures he tried. Our
first data set consists of human motion capture data.

3.1 Motion Capture Data

The data consists of a 3-dimensional point cloud of
the location of 34 points from a subject performing a
run. This leads to a 102 dimensional data set contain-
ing 55 frames of motion capture. The subject begins
the motion from stationary and takes approximately
three strides of run. We hope to see this structure in
the visualization: a starting position followed by a se-
ries of loops. The data was made available by Ohio
State University. The data is characterized by a cyclic
pattern during the strides of run. However, the an-
gle of inclination during the run changes so there are
slight differences for each cycle. The data is very low
noise, as the motion capture rig is designed to extract
the point locations of the subject to a high precision.

The two dominant eigenvectors are visualized in Figure
1(a)-(e) and the quality of the visualizations under the
GPLVM likelihood is given in Figure 1(f).

There is a clear difference in quality between the meth-
ods that constrain local distances (MVU, isomap and
MEU) which are much better under the score than
those that don’t (LE and LLE).

3.2 Robot Navigation Example

The second data set we use is a series of recordings
from a robot as it traces a square path in a build-
ing. The robot records the strength of WiFi signals
in an attempt to localize its position [see Ferris et al.,
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Figure 1: Motion capture data visualized in two dimensions for each algorithm using 6 nearest neighbors. Models
capture either the cyclic structure or the structure associated with the start of the run or both parts.

2007, for an application]. Since the robot moves only
in two dimensions, the inherent dimensionality of the
data should be two: the reduced dimensional space
should reflect the robot’s movement. The WiFi sig-
nals are noisier than the motion capture data, so it
makes an interesting contrast. The robot completes a
single circuit after entering from a separate corridor, so
it is expected to exhibit “loop closure” in the resulting
map. The data consists of 215 frames of measurement,
each frame consists of the WiFi signal strength of 30
access points.

The results for the range of spectral approaches are
shown in Figure 2(a)-(e) with the quality of the meth-
ods scored in Figure 2(f). Both in the visualizations
and in the GPLVM scores we see a clear difference in
quality for the methods that preserve local distances
(i.e. again isomap, MVU and MEU are better than
LLE and LE).

4 Discussion and Conclusions

We have introduced a new perspective on spectral di-
mensionality reduction algorithms based around max-
imum entropy. Our starting point was the maximum
variance unfolding and our end point was a novel ap-
proach to dimensionality reduction based on Gaussian
random fields. We hope that this new perspective on
dimensionality reduction will encourage new strands
of research at the interface between these areas.
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One feature that stands out from our unifying per-
spective is the three separate stages used in existing
spectral dimensionality algorithms.

1. A neighborhood between data points is selected.
Normally k-nearest neighbors or similar algo-
rithms are used.

Interpoint distances between neighbors are fed to
the algorithms which provide a similarity matrix.
The way the entries in the similarity matrix are
computed is the main difference between the al-
gorithms.

The relationship between points in the similarity
matrix is visualized using the eigenvectors of the
similarity matrix.

Our unifying perspective shows that actually each of
these steps is somewhat orthogonal. The neighbor-
hood relations need not come from nearest neighbors,
for example we could use sparse graph fitting ap-
proaches to derive the neighborhood. The main dif-
ference between the different approaches to spectral
dimensionality reduction is how the entries of the sim-
ilarity matrix are determined. Maximum variance un-
folding looks to maximize the trace under the distance
constraints from the neighbours. Our new algorithms
maximize the entropy or, equivalently, the likelihood
of the data. Locally linear embedding maximizes an
approximation to our likelihood. Laplacian eigenmaps
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Figure 2: The robot WiFi navigation data for different algorithms with six neighbors used. Some models struggle
to captured the loop structure (perhaps because of the higher level of noise). Most models also show the noise

present in the data WiFi signals.

parameterize the inverse similarity through appealing
to physical analogies. Finally, isomap uses shortest
path algorithms to compute interpoint distances and
centres the resulting matrix to give the similarities.

The final step of the algorithm attempts to visualize
the similarity matrices using their eigenvectors. How-
ever, it simply makes use of one possible objective
function to perform this visualization. Considering
that underlying the similarity matrix, K, is a sparse
Laplacian matrix, L, which represents a Gaussian-
Markov random field, we can see this final step as
visualizing that random field. There are many poten-
tial ways to visualize that field and the eigenvectors of
the precision is just one of them. In fact, there is an
entire field of graph visualization proposing different
approaches to visualizing such graphs. However, we
could even choose not to visualize the resulting graph.
It may be that the structure of the graph is of inter-
est in itself. Work in human cognition by Kemp and
Tenenbaum [2008] has sought to fit Gaussian graphi-
cal models to data in natural structures such as trees,
chains and rings. Visualization of such graphs through
reduced dimensional spaces is only likely to be appro-
priate in some cases, for example planar structures.
For this model only the first two steps are necessary.

One advantage to conflating the three steps we’ve iden-
tified is the possibility to speed up the complete algo-
rithm. For example, conflating the second and third
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step allows us to speed up algorithms through never
explicitly computing the similarity matrix. Using the
fact that the principal eigenvectors of the similarity are
the minor eigenvalues of the Laplacian and exploiting
fast eigensolvers that act on sparse matrices very large
data sets can be addressed. However, we still can un-
derstand the algorithm from the unifying perspective
while exploiting the computational advantages offered
by this neat shortcut.

There are similarities between maximum entropy un-
folding and the GPLVM [Lawrence, 2004, 2005]. Both
specify a similar Gaussian density over the training
data. A Gauss Markov random field can easily be spec-
ified by a Gaussian process through appropriate covari-
ance functions. The O-U covariance function in a one
dimensional latent space k(z,z’) = exp(— ||z — a/||;)
gives a sparse inverse with only neighbors connected.
In the GPLVM the neigborhood is optimized as part
of the training procedure, for MEU it is pre-specified.

Notes

The plots in this document were generated using
MATweave. Code was run using Octave version 3.2.4
on the architecture x86_64-pc-linux-gnu . They
were generated on 05/01/2011 .
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