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Abstract

In this paper we present a generalization
of kernel density estimation called Con-
vex Adaptive Kernel Density Estimation
(CAKE) that replaces single bandwidth se-
lection by a convex aggregation of kernels
at all scales, where the convex aggregation
is allowed to vary from one training point
to another, treating the fundamental prob-
lem of heterogeneous smoothness in a novel
way. Learning the CAKE estimator given a
training set reduces to solving a single con-
vex quadratic programming problem. We de-
rive rates of convergence of CAKE like es-
timator to the true underlying density un-
der smoothness assumptions on the class and
show that given a sufficiently large sample
the mean squared error of such estimators is
optimal in a minimax sense. We also give a
risk bound of the CAKE estimator in terms
of its empirical risk. We empirically compare
CAKE to other density estimators proposed
in the statistics literature for handling het-
erogeneous smoothness on different synthetic
and natural distributions.

1 Introduction

The problem of density estimation is as follows: Given
n i.i.d. points z1,...,z, sampled from the distribution
with a density function f, the task is to construct a
density estimator f : R? x (R%)™ — R which provably
converges to the true underlying density function f in
a suitable sense. Accurate density estimation allows
one to build accurate classifiers, regressors and also fa-
cilitates data visualization. Parametric approaches to
density estimation e.g. fitting a mixture of Gaussians
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to the data with the expectation-maximization algo-
rithm (Bishop et al., 2006) require strong parametric
assumptions on the true underlying density function
which are seldom known. A variety of non-parametric
approaches for density estimation such as kernel den-
sity estimation (KDE) and wavelet based methods ex-
ist. Non parametric methods require only the weaker
assumption that the underlying function that we are
trying to recover belongs to a smooth class of func-
tions, and hence are suitable in many domains where
no knowledge of appropriate parametric form is avail-
able.

Kernel density estimation (KDE) (Parzen, 1962) is
the most popular non-parametric method for density
estimation in part because other approaches such as
wavelets do not extend well beyond one or two dimen-
sions. KDE involves fitting smoothing kernels, which
is a symmetric probability density function (PDF), at
the different training points. The density at a point z
is then simply the sum of kernel contributions due to
all training points x; at x. This yields an estimator of

the form R

(@) = g il k (557). (1)
k is a smoothing kernel that is chosen priori. Examples
of smoothing kernels include Gaussian and Epanech-
nikov kernels. The task in KDE is to estimate the
bandwidth A. Some common approaches to estimat-
ing h include maximizing the leave-one-out likelihood
cross validation and minimizing least squares cross val-
idation error (LSCV) (An excellent survey of band-
width selection methods can be found in (Jones et al.,
1996), (Hall et al., 1995)). Though kernel density es-
timators are consistent (Tsybakov, 2009) they are not
good at modeling distributions which have spatially
varying smoothness. This affects the problem visually
and also leads to slower rates of asymptotic conver-
gence. In this paper we will present a generalization
of KDE called Convex Adaptive Kernel Density Esti-
mation (CAKE). The basic idea of CAKE is to use
a set of base kernels with different bandwidths to fit
kernels at different training points by a convex aggre-
gation (CA) of these base kernels. However, the trick
is to allow this CA’s to vary across the different train-
ing points. This turns out to be equivalent to fitting
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a kernel at the different training point with the band-
width being a function of the coefficients of the CA,
the training point and the test point where we need to
estimate the density. By doing so we are able to learn
a density estimator that adapts well to varying levels
of smoothness of the true density.

Previous Work. One of the proposed techniques
to solve the problem of learning density functions
with spatially varying levels of smoothness is to learn
the optimal smoothing kernel by solving a variational
problem that minimizes the variance or mean inte-
grated squared error (MISE) of the density estimates
via Legendre’s polynomials (Gasser et al., 1985). Such
kernels are data independent and are difficult to gen-
eralize to higher dimensions. In the “variable kernel”
density estimation method (VKDE) the bandwidth
varies with the p*" nearest neighbour of the training
points to the remaining n — 1 training points. VKDE
with smoothing parameter h is defined as

HOEESS k(52),

where d,, ; is the distance of the ™ nearest neighbour
of x; in the dataset, and h is a universal smoothing
factor. Estimators obtained by VKDE are probabil-
ity density functions (PDF), and inherit the smooth-
ness properties of the kernel k, but still are not very
good at capturing complex distributions and require
optimization over a continuous variable A and a dis-
crete variable p. Nearest neighbour KDE (NNKDE)
fits kernels of bandwidth A at all training points where
h varies with the p*® nearest neighbour of the test point
x where we need to estimate the density. NNKDE is
known to exhibit rough tails (Silverman, 1986) that are
discontinuous and do not necessarily integrate to 1. A
generalization of the “variable kernel” method which
is known to work well for 1-d problems is the adaptive
kernel density estimation (AKDE) method (Breiman
et al., 1977), where the width of the kernel varies ac-
cording to the training points. AKDE works by first
choosing a bandwidth h, to get a pilot density estimate
at different training points, and then scales the band-
width of each training point by 6;, giving larger band-
widths at training points where the density is small
and smaller bandwidths where the density is large.
The estimator is

1
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where 6; is the local bandwidth scaling factor. Giro-
lami et al (Girolami & He, 2003) proposed the reduced
set density estimator (RSDE) where the kernel contri-
butions due to the different training points were scaled
by different weights and the density is estimated as

flx) =30, 7 )- (4)
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The weights ; were then learnt by solving a convex QP
which minimizes the ISE under convexity constraints.
Due to the structure of the optimization problem the
vector 7y turns out to be sparse, and hence only the
reduced set (non-zero ; values) matters. However it is
clear that for points that are far away from the reduced
set the density estimate of RSDE is an underestimate.

Support vector density estimation (Vapnik & Mukher-
jee, 1999) fits a cdf to the sampled data by solving
an optimization problem which minimizes the ¢;
distance between the estimator of cumulative dis-
tribution function and its empirical counterpart.
Work on similar lines has been done in (Song et al.,
2008; Shawe-Taylor & Dolia, 2007). However, these
methods to our knowledge lack theoretical results
on the bias, variance and consistency of such es-
timators. Devroye et al (Devroye & Lugosi, 2000)
investigated learning kernel density estimators in an
L, framework. They proposed the double kernel
method where a pair of kernels k,[ are used to learn
the bandwidth A which is provably universal. Though
promising, to our knowledge no empirical work has
been done in this framework. Liu et al proposed
the RODEO density estimator (Liu et al., 2007) !
to fit high dimensional distributions. They learn a
semi-parametric density estimator where in order to
estimate the density at a point x, product kernels
are fitted at the different training points and these
product kernels are a product of d univariate kernels
along different dimensions with different bandwidths.
The bandwidths along the different dimensions are
learnt by using a test statistic which compares the
magnitude of the derivative of the density estimates
along different dimensions to the variance of the
density estimate. The resulting estimator provably
achieves better rates of convergence than KDE, under
certain sparsity assumptions.

Our Contributions. The problem of learning
an optimal Mercer kernel has been of recent interest
in the kernel machines community (Ong et al.,
2005; Lanckriet et al., 2004). In this paper we bridge
the two distinct methods of density estimation and
kernel machines and show that by appropriately
learning smoothing kernels for the problem of den-
sity estimation one can achieve the desired goal
of learning density estimators that exhibit varying
levels of smoothness in different regions of the space
so that even complex distributions can be modeled
well. With this goal in mind we propose the Convex
Adaptive Kernel Density Estimation method (CAKE)

In this paper we shall concern ourselves with local
rodeo with a uniform density as the baseline density and
KDE as the non-parametric component of the density es-
timator.
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Figure 1: This figure outlines the fundamental difference between the shape of the kernels fitted by different kernel based density estimation methods
by AKDE/VKDE (leftmost), RODEO (middle plot), and CAKE (rightmost plot).

method (Section 3). In CAKE a set of base kernels
K(|K| =m = O(1)) is used to learn smoothing kernels
at different training points by aggregating them in a
convex way. However, the trick is to let these convex
aggregations change from one training point to the
other. The CAKE density estimator can be written

 w- IS k() 6

where « € R"™ >0, Vi =1,...,m : E;n:laij =1,
where hi,..., h,, are bandwidths of the m base ker-
nels and are assumed to be known. The constants o;
are learnt by minimizing the regularized LSCV score
of f. The LSCV (Section 2) of f is a surrogate of
the integrated squared error (ISE) of f and can be
calculated using the training set. Minimizing the reg-
ularized LSCV of the density estimator f reduces to
solving a quadratic programming problem (QP) over
nm variables (Section 3) which can be efficiently solved
using a simple variation of the SMO algorithm. The
unique power of CAKE as a density estimator (see
Figure (1)) stems from the fact that CAKE estimates
densities by placing kernels of different bandwidths
at different training points (like AKDE and VKDE).
In addition, these bandwidths depend on the point
2 where we need to estimate density (like NNKDE).
However, unlike AKDE and RODEO the learning pro-
cess involves minimization of a risk function, which is
the Lo distance between the estimator f and the true
density function f. We also show connections to the
literature on optimal aggregation of estimators (Ne-
mirovski, 2000; Tsybakov, 2003) and demonstrate how
the CAKE is more than a simple convex aggregation
of kernel density estimators.

We analyze the MSE of the CAKE like density estima-
tors (Section (4)) and examine its optimal value and
show that given enough data (as a function of the true
underlying density and the dimensionality) the MSE
of CAKE like estimat%s for the densities in Hélder
class (3, L) is O(n™25+a). We also provide a bound
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on the L; risk of CAKE in terms of empirical L; error
using stability arguments. To our knowledge this is
the first time stability arguments have been used for
density estimation problems (Section (4)).

We empirically compare our density estimator to
RSDE, RODEO, AKDE and VKDE on various syn-
thetic and natural datasets (Section (5)). In order
to evaluate our density estimator on high dimensional
data we use the CAKE density estimator to learn a
smoothing kernel based classifier and compare it to
smoothing kernel based classifiers learnt using other
density estimation methods.

Notation. Vectors are represented in lower case let-
ters and matrices in upper case. We shall use double
indexing for vectors of sizes nm. e.g if v € R™" then
Vpq refers to the (n(p — 1) + ¢)' element of the vector
v. 1, refers to a vector of all 1’s of size n, and 0,,
refers to the vector of all 0’s of size m.

2 L, Error of a Density Estimator and
its Surrogate

We would like to minimize the Lo error of an estima-
tor also known as the integrated squared error (ISE).
One of the prime motivations for choosing ISE as our
objective over other objectives such as likelihood is its
robustness to outliers (Silverman, 1986). Given any
estimator f of the underlying density function the ISE
of the estimator is

ISE(f) = [(f(x) = f(x))* da (6)

Since f2 is independent of f, hence minimizing ISE(f)
is equivalent to minimizing

= [f>de—2[ ff da. (7)

Define f_;(z) to be the density estimate at =
without taking into account the kernel contribu-
tion of the training point x;, so that f_;(x;) =

LSCV(f
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L4 Z%él k (%) We have
JF1

LSCV(f) = [ f* = 2300 f-ila) (8)
Hence LSCV( f) gives a data-dependent estimator of
the ISE. By using a smoothing kernel function say
Gaussian kernel with an unknown bandwidth h, one
can cross-validate for the optimal bandwidth that
gives the smallest value for LSCV. A strong large-
sample justification for using the ISE comes from
Stone’s result (Stone, 1984) which states that asymp-

totically minimizing LSCV(f) is equivalent to mini-
mizing [, (f — f)* dx over all h.

3 Convex Adaptive Kernel Density
Estimation Method

The CAKE estimator uses a set of finite number of
base kernels and fits a kernel at each training point
that is a convex combination of base kernels. How-
ever, this convex combination is allowed to vary from
one training point to the other. Let K be a set of
finite number of smoothing kernels with known band-
widths hq, ..., hy,, where m = O(1) (these bandwidths
could have been pre-learnt using the training dataset
or could have been provided by an oracle). The CAKE
density estimator can be written as

i

The problem now reduces to learning the weights a.
Our aim is to minimize the Lo regularized LSCV of
the density estimator f. Using equations (8,9) we get

n

OEESY
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Define Z € R"™*"™ o ¢ € R"*! ag

Zlij,pl] = / k <x ;]x> k (”” ;l‘””> dz
vlij] = ;i}?( ) (11)

pF#i
Hence from Equation (10-11) minimizing Ly regular-
ized LSCV can be cast as the following optimization

1
n? h;lhfl

Ti — Tp

h;
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problem:

P :min of Za — 20T v + A|o|3
[e3%

(12)

subjectto:Zaijzl Vi=1,...n,a>0 (13)

j=1

where the constraints (13) ensure that Equation (9)
indeed is a legal density estimator. It is easy to see
that Z > 0 and hence the optimization problem (12-
13) is a convex QP over mm variables. In order to
be able to efficiently solve this QP we can reuse
the standard SMO (Keerthi et al., 2001) with the
constraint that both the working set variables should
come from the same “block” ? of the a vector over
which the convexity constraints have been defined.

Relation to aggregation of density estima-
tors. A closely related body of literature is that of
optimal aggregation of estimators in least squares
regression (Nemirovski, 2000; Tsybakov, 2003) where
given m regression estimators the task is to learn
an optimal aggregation of these estimators w.r.t a
certain model defined by the m estimators. Popular
models include convex hull, linear span of the m
estimators and the original set of m estimators. The
focus has been that of designing estimators whose
excess risk w.r.t the optimal aggregation in the model
is small. Analogously Rigollet et al (Rigollet & Tsy-
bakov, 2007) have investigated optimal aggregation
of density estimators. In this work the authors learn
the best linear/convex combinations of given base
density estimators that minimizes the expected ISE.
As an example they consider the case when the m
density estimators are all kernel density estimators
with Gaussian kernels of different bandwidths. Now
if we place additional restrictions on oy;’s so that
Vi, 1 o5 = y; and Z;"Zl v; = 1 then the optimization
problem proposed in Equation (12-13) along with
these new additional restrictions tries to find an
optimal estimator (in the ISE sense) in the convex
hull defined of the density estimators fnﬁl,... fn,m,
where fml, e fmm are the m kernel density estima-
tors defined by the m base kernels with bandwidths
hi,...h;,,. However, without the above mentioned
restrictions on « vector, our model is richer than
the convex aggregation of fn’l,... fn,m, and is in
some sense a “local convex ” aggregation of the these
estimators.

2Here o vector can be seen as having n blocks of size
m each and the convexity constraints in Equation (13) are
only over each block of o vector and not across the blocks.
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4 MSE for CAKE like density
estimators and L; risk of CAKE

We are interested in analyzing the MSE and its opti-
mal value for CAKE like density estimator at a point
20, where MSE(zo) < E[f(z0) — f(20)]2. By CAKE
like density estimators we mean estimators of the type

i=1j=1
where a;; > 0, 3777, a;; = 1 are fixed constants. We
need the followmg definitions (Nemirovski, 2000) and
assumptions.

Definition 1. Let 8, L > 0. The Holder class ¥(0, L)
is defined as the set of all functions f : [0,1]7 — R
which are | = |B] times differentiable and the deriva-
tives satisfy

(14)

D' f(z)[h,...h] = D' f(z")[h,...h|
N——
l times l times
< Llz —'|°7Yh|' va, 2’ € [0,1]%, h € R?

where | 3] is the greatest integer strictly less than (.

Definition 2. Let [ > 1 be an integer. We say that a
kernel k : RY — R? has order 1 if ¥j1,...jq > 0 such
that Z?:l ji <1 we have

/ k(u) du = 1,/
u€eRd u€Rd

If d 1, then the above
Joerk(u) du=1, [ pw/k(u) du=0Vj=1...1

Assumption 1 (Al). The set K has smoothing ker-
nels whose bandwidths h; Vi = 1,...,m satisfy the
constraint ZA = Cjjp Vi1,J2 = 1...
Cjrj, <00 and hj =0 asn—oo0 Vj=1...
Assumption 2 (A2). The true density function f be-
longs to the Holder class X(8, L) and all the base ker-
nels are of order | = || . Also C; & Jra K2(0) df <

00,Co = [, 10]Pk(6) db < oo.

J1,,J2
Ul U2

uédk(u) du=0

condition becomes

m where 0 <
m.

Assumption Al guarantees that as we see more and
more samples the bandwidths all tend to 0 at the same
rate. Assumption A2 is satisfied for most commonly
used smoothing kernels such as a Gaussian, Epanech-
nikov kernels. Our main result is that given a large
enough sample from the distribution, the optimal MSE
of the CAKE like estimator is O(n_%) which is
known to be optimal in a minimax sense for the Holder
class of densities (8, L) (Tsybakov, 2009). The proof
of Lemma (1) is similar to the proofs of Propositions
(1.1, 1.2) in (Tsybakov, 2009). 3

3Due to lack of space we have postponed the full proofs
to the supplementary material.
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Lemma 1. Consider the CAKE like density estima-
tor as shown in Equation (14). Let b(zg) and o*(xo)
denote the bias and variance of CAKE like density es-
timators. Then the estimator f under assumptions

Al, A2 satisfies: o2(xg) < Clpee 0 Z;.”:la’

R )

J
[b(wo)| < Sap 301, L aighl], MSE(xg) < o Ma
where fmaez 1S the mazimum value of the underlying
density and Cy = % (L2 €, = % and || is the

n2\ !
standard Euclidean norm on R?, and M € R¥™X™™ s

defined as
C3h?P 4+ S i=pandj=I
Mij,pl = O TtV 77 )
Cs hj hj otherwise.
Lemma 2. Consider the optimization problem
Pl: min o'Ma
aeRnwnXl
subjectto:Zaij:1Vi=1,...,n a > 0.
j=1
Under assumptions Al, A2 and for n >

no(fmaz, 8,d, L) the optimal wvalue of the objec-
tive is 1L(AM~'AT)"'1,, where A € RW*"m
and the " row of the matriz A is given by
[0y s Oy 1y Opsy .. O )7 Also the optimal
r—1 times nm—r times

value of MSE(xg) O(n_%) is attained when
hj == @(niﬁ)

Proof Sketch. Let P4 be the optimization problem P1
but without the positivity constraints. Lemmas (4-9) in
the supplement establish the equivalence of problems
P1 and P4 under assumption Al, and large enough
n. The solution of problem P/ is derived in Lemma
(10) using Lagrangian. The second part of the proof
requires rewriting the upper bound on MSE as lgBln
for an appropriate matriz B (Lemma (11)), followed
by a spectral analysis in Lemmas (12-15).

Theorem 3. Under assumptions Al, A2 and h; =

O(n~77), Yn > no(fimas B, d, L) the CAKE estima-
tor satisfies

23

[(F(20) = f(@0))?] = O 7557).

sup Epn
L)

sup
zo€ER? fEX(B

Proof. Tt is enough to prove that Vf € X(3,L),x0 €

4 frax < C < oo, for some universal C. Then
the result follows from Lemma (2). Choose bounded
smoothing kernels with h; = 1. Now we have from the
Lemma (1) that

CyL
f <7+/K.I‘ Z dZ< T ——+Kmax < 00.
Since the R.H.S.

choose C' to be the R.H.S. of the above equation.

is independent of f,xg, one can
O
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Our next result is regarding the L risk of CAKE in
terms of its empirical L risk.

Theorem 4. Suppose we are given fized bandwidths
hi,...,hm, and the underlying density function f is
bounded by a constant B. Let cq = (v/2m)%. Then with
probability at least 1 — & over the input training sam-
ples, the CAKE estimatorf given by the problem (12-
13) with Gaussian base kernels satisfies the risk bound

Proof Sketch. The proof proceeds by bounding the
uniform stability of CAKE w.r.t the loss function
|f(z) — f(z)| in Lemma (16). Then applying Theo-
rem (15) we get the desired result.

5 Empirical Results

We implemented all the algorithms in C++ as a
part of the open source machine learning toolbox
MLPACK (Gray et al., 2009) and compared the
estimators on both 1-d and 2-d, synthetic and natural
datasets. Marron and Wand (Marron & Wand,
1992) proposed a set of 15 synthetic distributions
as a testbed. These mixtures have varying levels
of smoothness and modality and serve as an ideal
benchmark for us to compare the different density
estimators. Due to lack of space we shall investigate
the performance of CAKE on four synthetic datasets
sampled from skewed unimodal density (SUD), outlier
density (OD), bimodal density (BD), trimodal density
(TD), and the two famous natural datasets namely
Old Faithful geyser dataset and suicide dataset (Sil-
verman, 1986; Sain, 1994). Full experimental results
can be found in the supplementary material. Suicide
dataset has measurements of duration of hospitaliza-
tion of attempted suicide patients. Two versions of the
Old Faithful dataset are available. The first version
has 107 observations (1-d) measuring the eruption
length, while the second version has 272 observations
(2-d) of both the eruption length as well as the
waiting time between eruptions. We used both these
datasets for 1-dimensional and multi-dimensional
experiments respectively. For our experiments with
1-d distributions we sampled 1600 points for training
and tested the final density estimators on another
800 points sampled from the same distribution.
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To learn the CAKE estimator we used a set of 10
base kernels (all Gaussians) with bandwidths in the
range [%,Bhp] where h, is the plugin bandwidth

R
a2 on d+4
where & is the empirical standard deviation. The
bandwidth parameter h used in AKDE, VKDE
and RSDE, and the regularization parameter A
used in CAKE were all found by cross-validation.
The parameters for local RODEO were chosen as
¢n = log(d),co = range of training data, = 0.9.
These are the settings that were used by Liu et al in
their paper (Liu et al., 2007). Sain (Sain, 1994)
observes that the eruption length of the Old Faithful
dataset has 2 modes of approximately equal height
separated by a smooth valley, while the Suicide
dataset has a unimodal distribution with a long tail.
We report the RMSE of different density estimators
in Table (2), and show plots of the different density
estimators in Figure (2). It is clear from the plots
that RSDE tends to over-smooth the distributions
and RODEO fails to capture multiple modes in a
distribution and gives very rough density estimates in
the tails and valleys. CAKE tends to give smoother
estimates than AKDE but at the same time captures
all the features of the distribution well. VKDE is
generally seen to give noisy density estimates. On
the Suicide dataset all the density estimators except
VKDE show a unimodal structure with a long tail.
However, RODEO shows heavy tails and RSDE
flattens out the main mode. On the other hand
AKDE exaggerates the size of the main mode. The
tail behaviour of AKDE and CAKE are better than
the other estimators. On the Old Faithful dataset
both AKDE and CAKE show a bimodal structure,
with CAKE capturing the property of equal mode
size better than AKDE. RODEO completely smooths
the first mode. RSDE on both these datasets gives
ultra smooth density estimates without showing the
important features of the distribution. As can be
seen from Figure (2) the regularization term helps
learn smoother density estimates. The presence of
the regularization term is especially important in our
problem formulation, because unlike the data-splitting
scheme used in aggregation of estimators (Nemirovski,
2000) the same training sample is being used to
learn the base kernel bandwidths (by calculating
the plug-in bandwidth) and also the final CAKE
density estimator. For multidimensional experiment
the dataset was whitened for computational purposes.
Whitening the dataset is equivalent to working with
the original data with the bandwidth of the kernel
chosen according to the covariance matrix of the
distribution (p.78 of (Silverman, 1986)). On the
multi-dimensional version of the Old Faithful dataset

calculated using the equation h), = (
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Figure 2: Performance of AKDE, RSDE, CAKE and RSDE on synthetic and natural datasets. The Old Faithful (1-d)
models the distribution of eruption lengths of the Old Faithful Geyser. The Suicide dataset models the distribution
of(scaled) length of hospitalization of an attempted suicide patient. The old faithful dataset can be obtained from
www.stat.cmu.edu/ larry/all-of-statistics/=data/faithful.dat. The Suicide dataset can be obtained from (Silverman,
1986).The plots in the last row show the impact of regularization on the smoothness of the CAKE density estimator.
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Figure 3: Performance of density estimators on the multi-dimensional Old Faithful dataset.

Dataset Train/Test size CAKE AKDE Rodeo SVM
Banana 400/4900 86.25 85.4 62.82 88.70
Flare Solar 666,/400 65.0 55.0 3.25 66.50
Twonorm 400/7000 93.27 96.51 50 97.04
Heart 169/99 79.0 45.0 32.00 82.0

Titanic 149/2050 74.12 74.11 17.21 74.12
Ringnorm 400/7000 66.10 50.0 47.63 98.50
German 700/300 74.00 18.00 50.00 79.70

Table 1:

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

CAKE (Figure 3) captures the bimodal nature of the
distribution better than the other density estimators.
RODEO reflects the bi-modality in the distribution
but heavily overestimates the modes.

CAKE as a classifier. Non parametric kernel
classification rule (KCR) (Devroye et al., 1996) learns
a binary classifier that labels a point as +1 if the
kernel contribution to the density of positively labeled
points is larger than those of the negative points
which is In this experiment we use different density
estimators in KCR and compare the accuracies of
the resultant classifier. However, we want to see
via suggestive experiments as to how CAKE works
in high dimensions when compared to other density
estimators. Table (1) suggests good performance of
CAKE over other estimators even though we didn’t
learn estimators specifically designed for classification
task.

6 Conclusions

We proposed a new kernel density estimator called
CAKE which fits kernels at different training points
by learning different convex aggregations of base ker-
nels at different training points. We analyzed CAKE
theoretically and observed empirically it performs bet-
ter than most estimators. It would be interesting to
see if CAKE with univariate kernels without the con-
vexity constraints can be used in non-parametric re-
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UCI datasets. These datasets can be obtained from

gression with group lasso to learn regression functions
that are not necessarily globally sparse but are locally
sparse. In the present form CAKE requires band-
widths hq, ..., hy,. This provides a mechanism for the
user to inject domain knowledge. A nice extension of
our present framework would involve learning differ-
ent bandwidths along different dimensions which can
be seen as learning the basis set as in sparse coding.
Once the bandwidths of the base kernels are learnt we
can then use them in the CAKE framework. On the
theoretical side we have provided a risk bound that de-
pends on an unknown quantity which is the empirical
L, distance between our estimator and the true den-
sity function. If one can give a data-dependent bound
for this quantity then one can use Theorem (4) to pro-
vide a completely data-dependent bound on the L,
distance between the CAKE estimator and the true
density. Extension of our analysis to inhomogenous
density functions such as Besov spaces is another fruit-
ful direction.

Density CAKE Adaptive Variable RODEO RSDE
SUD 0.096 0.083 0.0827 0.098 0.106
OD 0.80 0.85 0.691 0.886 1.70

BD 0.021 0.023 0.197 0.031 0.079
TD 0.141 0.156 0.167 0.145 0.119

Table 2: RMSE values of different density estimators
on various synthetic 1-d distribution.
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