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Abstract

Spectral clustering is a flexible clustering
methodology that is applicable to a variety of
data types and has the particular virtue that it
makes few assumptions on cluster shapes. It has
become popular in a variety of application areas,
particularly in computational vision and bioinfor-
matics. The approach appears, however, to be
particularly sensitive to irrelevant and noisy di-
mensions in the data. We thus introduce an ap-
proach that automatically learns the relevant di-
mensions and spectral clustering simultaneously.
We pursue an augmented form of spectral clus-
tering in which an explicit projection operator
is incorporated in the relaxed optimization func-
tional. We optimize this functional over both the
projection and the spectral embedding. Experi-
ments on simulated and real data show that this
approach yields significant improvements in the
performance of spectral clustering.

1 Introduction

Research in unsupervised learning has classically focused
on two main kinds of data analysis problems—dimension
reduction and clustering. Solutions to these problems are
viewed as discovering statistical structure that is hoped to
be useful for a wide range of subsequent analyses. But a
useful statistical structure can have different definitions in
different application domains. A more recent trend is to
develop dimension reduction or clustering methods that di-
rectly aim at assisting in a specific downstream problem,
such as classification or regression. This trend has classical
antecedents (notably, linear discriminant analysis), and it
is exemplified by highly-active areas such as sufficient di-
mension reduction [13] and semi-supervised learning [6].
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The basic idea is that dimension reduction combats the
curse of dimensionality, and success in this battle is read-
ily measured by embedding the problem in a classification
or regression setting. But in many application areas, unsu-
pervised learning is often the end goal, even if it is often
difficult to state such goals quantitatively. For example,
the overall goal may be clustering for purposes of under-
standing or visualization. The curse of dimensionality is
as serious an obstacle to this goal as it is to the goal of
classification, and it is desirable to explore the use of di-
mension reduction in the service not of a downstream su-
pervised learning problem but in the service of the unsu-
pervised learning problem of clustering. While this gen-
eral desideratum has been suggested before in various con-
texts [see, e.g., 11, 12, 10, 7], there has been comparatively
little exploration of specific methods to date.

Our focus is the area of spectral clustering [17, 30] which
uses graph cuts as objective functions for nonlinear data
separation. Spectral clustering algorithms represent data
as a graph where samples are vertices and edge weights
represent the similarity between samples. Data are parti-
tioned by finding a k-way graph cut in two steps: (1) find
a spectral embedding by finding an eigenvector/eigenvalue
decomposition of a Laplacian matrix; and (2) based on the
embedding find a partition via a rounding procedure, which
generally takes the form of a simplified clustering algo-
rithm such as k-means. Spectral clustering has the virtue
that it makes relatively weak assumptions regarding the
shapes of clusters—clusters do not need to be convex or
homogeneous. Moreover, it is applicable to a wide vari-
ety of data types and similarity functions. This flexibility,
however, comes at a cost of lack of robustness; in partic-
ular, it has been observed that spectral clustering is quite
sensitive to the presence of irrelevant and noisy dimensions
in addition to signal-containing dimensions [2]. Of course,
clustering in general is difficult in high-dimensional spaces;
it is known, for example, that in high dimensions the dis-
tances between any two pairs of points are nearly constant
for a wide variety of data distributions and distance func-
tions [5]. Thus, it seems worthwhile to explore explicit
strategies for finding the relevant low-dimensional sub-
space in which clustering structures reside, and we might
expect that such strategies would be particularly beneficial
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for spectral clustering.

Before spectral clustering is applied, one must first com-
pute pair-wise similarities among data points. When some
input features are irrelevant to the clustering task, they act
as noise, distorting the similarities and confounding the
performance of spectral clustering. Figure 1 row 2 shows
an example on how irrelevant and noisy dimensions can
mislead spectral clustering. The desired cluster embedding
is a three ring structure in two relevant dimensions. Adding
a third noisy dimension using a zero-mean Gaussian with
variance o and mixing the dimensions by a random pro-
jection V,.qndom, Data = Data * Vygndom, We get a 3D
scatter-plot as shown in subfigure (2a). Given the data in
subfigure (2a) as the original input. Typical spectral clus-
tering defines its similarity using all these dimensions. In
subfigure (2c), we show the spectral similarity matrix uti-
lized by spectral clustering. Because of the irrelevant and
noisy dimensions, spectral clustering was not able to re-
cover the three ring structure. Our goal in this paper is to
learn the low-dimensional subspace that captures the rele-
vant dimensions for defining the similarity graph to allow
us to discover the underlying cluster structure.

In this paper, we introduce an approach that incorporates
dimensionality reduction into spectral clustering to find the
relevant low-dimensional subspace and clusters simulta-
neously. Another virtue of spectral clustering is that, it
is based on an explicit optimization problem. The spec-
tral embedding step is specified as the optimization of
a tractable relaxation of the original intractable graph-
partition problem. This provides us with a relatively
straightforward way to incorporate dimension reduction
into spectral clustering: We simply introduce a projection
operator as an additional parameter in our problem and op-
timize the tractable optimization functional with respect to
both the embedding and the projection operator. We do this
by optimizing the embedding and the projection sequen-
tially. Assuming a fixed projection, optimizing the embed-
ding is simply an eigenproblem. Interestingly, as we show
in Section 3, the optimization with respect to the projec-
tion and simultaneously learning the spectral cluster em-
bedding has an interpretation as a solution to an unsuper-
vised sufficient dimensionality reduction problem based on
the Hilbert-Schmidt Independence Criterion (HSIC) [14].

There are several relevant threads of research in the litera-
ture. First, it is important to distinguish our approach from
the common practice of using principal component analy-
sis (PCA) as a preprocessing step before clustering [e.g.,
29]. The directions of maximum variance of the data may
have little relation to directions that reveal clustering, and
our goal is precisely to use a clustering-related criterion to
drive the choice of projection. Second, there are a vari-
ety of nonlinear dimension reduction methods—including
kernel PCA [24], locally linear embedding (LLE) [23],
Laplacian eigenmaps [4], and isometric feature mapping
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(ISOMAP) [27]—that implicitly combine aspects of clus-
tering with dimension reduction. Indeed, when using ker-
nels based on radial basis functions, kernel PCA arguably
can be viewed as an implicit clustering method. However,
none of these nonlinear dimension reduction techniques
perform selection and transformation in the original input
feature space. Their assumption is that all of the original in-
put features are relevant and they perform selection in a ker-
nel space or embedding space. Our approach differs from
these in that we learn the relevant low-dimensional sub-
space in the input space. This reflects our goal of reducing
the sensitivity of spectral clustering to noisy input dimen-
sions, and also has advantages for interpretability, which
is often important in unsupervised learning. Note also that
our framework is based on an explicit clustering criterion
and an explicit dimension-reduction operator. Third, like
graph fitting methods [8], we learn a similarity graph. But,
their goal is to learn a graph that can serve as a general pre-
processing step prior to classification, regression or cluster-
ing. In contrast, our work tries to learn a graph by learning
a lower-dimensional subspace specifically for the purpose
of clustering. Fourth, our work has relationships to semi-
supervised metric learning [28], where a distance metric for
clustering is learned, and to the work of [2], which focuses
specifically on learning the weights for spectral clustering;
however, these ideas make use of both labeled and unla-
beled data, while our approach is entirely unsupervised.
Finally, most closely related to our approach are LDA-k-
means [10] and nonlinear adaptive distance metric learning
(NAML) [7]. These algorithms perform data projection and
clustering steps iteratively to enhance cluster quality un-
til convergence. In LDA-k-means, both of these steps are
carried out in the original space to optimize the k-means
objective. The method thus inherits the disadvantages of k-
means, notably the strong assumptions on cluster shapes.
The NAML algorithm performs both the projection and
clustering steps in kernel space, an idea reminiscent of ker-
nel Fisher discriminant analysis (KFDA) [18]. Our method,
on the other hand, performs spectral embedding in kernel
space and data projection in the original space.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review spectral clustering. Section 3 presents
sufficient dimensionality reduction for unsupervised learn-
ing and relates it to spectral clustering. In Section 4, we de-
scribe our dimensionality reduction for spectral clustering
algorithm. Then, we present and discuss our experimental
results on Section 5. Finally, we conclude in Section 6.

2 Background on Spectral Clustering

Spectral clustering can be presented from different points
of view [17]; here, we focus on the graph partitioning view-
point. We are given a set of n data samples, {z1,...,z,},
with each z; a column vector in R%, and we are given
a set of similarities, {k;;}, between all pairs z; and x;,
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Figure 1: (1a), (2a), (3a) and (4a) show the scatter plots of the synthetic datasets 1, 2, 3 and 4 respectively in the original space. (1b),
(2b), (3b) and (4b) show scatter plots of datasets 1, 2, 3 and 4 respectively in the reduced space discovered by our DRSC algorithm.
(1c), (2¢), (3c) and (4c) are the spectral (similarity) matrix of the data. (1d), (2d), (3d) and (4d) are the spectral (similarity) matrix in the

learned reduced space.

where k;; > 0. Let G = {V,E} be a graph, with
V = {v1,...,v,} the set of vertices and E the set of
edges. Each vertex v; in this graph represents a data sam-
ple x;, with the similarities k;; treated as edge weights.
When there is no edge between v; and v, k;; = 0. Let
us represent the similarity matrix as a matrix /& with ele-
ments k;;. This matrix is generally obtained from a ker-
nel function, examples of which are the Gaussian kernel
(k(xi,2;) = exp(— |z — a;]|> /20%)) and the polyno-
mial kernel (k(x;, z;) = (z; - ; + ¢)P).

The goal of spectral clustering is to partition the
data {z1,...,z,} into k disjoint groups or partitions,
Py, ..., P, such that the similarity of the samples be-
tween groups is low, and the similarity of the samples
within groups is high. There are several objective func-
tions that capture this desideratum; in this paper we focus
on the normalized cut objective. The k-way normalized
cut, Ncut(G), is defined as follows: Ncut(Py, ..., Py)
Zle %ﬁ\)m’ where the cut between sets A, B C V,
cut(A, B), is defined as cut(A,B) = >, c4 ., cp Fij»
the degree, d;, of a vertex, v; € V, is defined as d; =
Z;’L:l ki;, the volume of set A C V', vol(\A), is defined as
vol(A) = > ,c 4 di, and V\ A denotes the complement of
A. In this objective function, note that cut(P,, V'\ P.) mea-
sures the between cluster similarity and the within cluster
similarity is captured by the normalizing term vol(P.). The
next step is to rewrite Ncut(G) using an indicator matrix
U of cluster membership of size n by k and to note that
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Ncut(Q) takes the form of a Rayleigh quotient in U. Re-
laxing the indicator matrix to allow its entries to take on
any real value, we obtain a generalized eigenvector prob-
lem. That is, the problem reduces to the following relaxed
N cut minimization:

ming ¢ pnxr  trace(ULTLU) 0
st. UTU =1.
where L is the normalized graph Laplacian, L = I —

D~Y2KD=1/2, I is an identity matrix, D also called the
degree matrix is a diagonal matrix whose diagonal entries
are the degree d;, and U is the spectral embedding ma-
trix. Minimizing the relaxed N cut objective is equivalent
to maximizing the relaxed normalized association Nasso
as follows:

maxy e gnxk trace(UTD—1/2KD—1/2U)

st. UTU =1 @)

From this point onwards, we refer to this maximization
problem as our spectral clustering objective. The solu-
tion is to set U equal to the k eigenvectors correspond-
ing to the largest k£ eigenvalues of the normalized simi-
larity, D~'/2KD~1/2. This yields the spectral embed-
ding. Based on this embedding, the discrete partitioning of
the data is obtained from a “rounding” step. One specific
rounding algorithm, due to [20], is based on renormaliz-
ing each row of U to have unit length and then applying
k-means to the rows of the normalized matrix. We then
assign each z; to the cluster that the row w; is assigned to.
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3 Unsupervised Sufficient Dimensionality
Reduction

Borrowing terminology from regression graphics [16, 15]
and classical statistics, sufficient dimension reduction is di-
mension reduction without loss of information. Sufficient
dimensionality reduction [16, 15, 21, 13] aims at finding a
linear subspace S C X such that S contains as much pre-
dictive information regarding the output variable Y as the
original space X'. We can express this in terms of condi-
tional independence as follows:

Y 1L X|WTXx (3)
where W is the orthogonal projection of X’ onto subspace
S(W) and 1L denotes statistical independence. The sub-
space S(W) is called a dimension reduction subspace. This
statement equivalently says that the conditional distribution
of Y| X is the same as Y|W7T X, which implies that replac-
ing X with W7 X will not lose any predictive information
on Y. There are many such subspaces because if S(W7)
is a dimension reduction subspace, any subspace S which
contains subspace S(Wp), S(W;) C S, will also be a di-
mension reduction subspace. Note too that a dimension
reduction subspace always exists with W equal to the iden-
tity matrix [ serving as a trivial solution. The intersection
of all such subspaces or the smallest dimension reduction
subspace is called the central subspace.

The literature on sufficient dimensionality reduction has fo-
cused on the supervised setting [16, 15, 21, 13]. This paper
addresses finding the central subspace in the unsupervised
setting, and in particular for clustering. In the supervised
case, they have Y to guide the search for the central sub-
space. In the unsupervised case, Y is unknown and must
be learned. To learn Y, we rely on criterion functions; in
our case, we utilize the spectral clustering criterion where
we estimate Y by U in Equation 2.

Recently, kernel measures have been utilized to find the
central subspace [21, 13]. To perform sufficient dimension-
ality reduction, Equation 3, some way of measuring the in-
dependence/dependence between X and Y is needed. Mu-
tual information is an example of a criterion for measuring
dependence, however it requires estimating the joint dis-
tribution between X and Y. The work by [13] and [14]
provide a way to measure dependence among random vari-
ables without explicitly estimating joint distributions. The
basic idea is to map random variables into reproducing ker-
nel Hilbert spaces (RKHSs) such that second-order statis-
tics in the RKHS capture higher-order dependencies in the
original space. One such measure is the Hilbert-Schmidt
Independence Criterion (HSIC) [14]. HSIC is the Hilbert-
Schmidt norm of the cross-covariance operator on two ran-
dom variables. Interestingly, the spectral clustering objec-
tive, Equation 2, can be expressed in terms of the HSIC
measure. This relationship is also noted in [25]. The em-

555

pirical approximation to HSIC(X, U) is:
HSIC(X,U) = (n — 1) *trace(K; HKoH),

where K;, Ko € R"™ ™ are the Kernel gram matrices
Kl,ij = k'l(l'i,l'j), Kg,ij = k‘g(ui,uj) and H is a cen-
tering matrix. For notational convenience, let us assume
that K and K are centered and ignore the scaling factor
(n — 1)72, and use HSIC(X,U) = trace(K;K2). Let
K1 = D Y2KD~'/2 where K is the similarity kernel
with elements, k;; = k(z;, x;), and Ky = UUT. Then,

HSIC(X,U) = trace(D~Y2KD~Y2uuT)

= trace(UT D~Y2K D~'/?U),

which is the spectral clustering objective.

Assuming the labels U are known, we can estimate
the central subspace by optimizing for W that maxi-
mizes the HSIC(WT X,U) dependence between W71 X
and U, where k;; = k(WTx;,WTz;) and WIW =
1. We can thus perform sufficient dimensionality
reduction in the unsupervised setting by finding the
central subspace and U that simultaneously maximize
trace(UTD~Y/2KD~'/2U). We describe this approach
in detail in the next section.

4 Dimension Reduction for Spectral
Clustering

In spectral clustering, the kernel similarity is defined on
all the features. However, some features or directions may
be noisy or irrelevant. Our goal is to project data onto
a linear subspace and subsequently perform spectral clus-
tering on the projected data. Moreover, we wish to cou-
ple these steps so that the projection chosen is an effec-
tive one for clustering as measured by the normalized as-
sociation criterion. We achieve this goal by introducing
a projection operator into the spectral clustering objective.
Specifically, in computing for the similarity matrix K, we
first project to a low-dimensional subspace by calculating
E(WTz;,WTz;), where W € R4*4 is a matrix that trans-
forms z; € R in the original space to a lower dimensional
space q (¢ < d). For example, if using a Gaussian kernel,
the kernel function is defined as

E(WTz;, Wha;) = exp(— HWTaci - I/VTJUjH2 /20%)
“4)
For identifiability reasons, we constrain W to be orthonor-
mal: WTW = I. We then formulate the spectral clustering
objective on the low-dimensional subspace as follows:

trace(UT D~'/2K D=1/21))
Ut =1

maerRn,xk7 WeRdxa
S.t.

kij = E(WTx,, VVT;UJ-)7 ij=1, ...

WIW =1,
(%)
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where K has elements k;; = k(W z;, WTz;) and where
D is the degree matrix d;; = Y, kWTx;, Wha;).

We optimize this objective function using a coordinate as-
cent algorithm:

1. Assuming WV is fixed, optimize for U. With the pro-
jection operator W fixed, we compute the similarity
and degree matrices, K and D, respectively. We set U
equal to the first k eigenvectors (corresponding to the
largest k eigenvalues) of D~1/2K D~1/2,

. Assuming U is fixed, optimize for W. With U fixed,
each row of U is the spectral embedding of each data
instance. We utilize a dimension growth algorithm to
optimize the objective with W. First, we set the di-
mensionality of the subspace to be one, w;. We use
gradient ascent to optimize w;, where w; is initialized
by random projection and normalized to have norm 1.
We, then, increase the dimensionality by one and op-
timize for ws. wo is initialized by random projection,
then projected to the space orthogonal to w;, and fi-
nally normalized to have norm 1. We decompose the
gradient of wy into two parts,

vf = prroj + Vfl_ (6)

V fproj is the projection of V f to the space spanned

by wi and wo, and V f, is the component orthogonal

0 V foroj (Vfproj L Vf1). Vfi is normalized to

have norm 1. We update ws according to the following

equation

W2 new = V 1- '72w2,old + ’val

The step size -y is set by line search satisfying the two
Wolfe conditions. Repeat Equation 7 up to conver-
gence. Because w; and ws are initially set to be or-
thonormal and ws is updated according to the above
equation, wo and w; will remain orthonormal. w; is
optimized in the same way. w; is updated orthogonal
to w1, ws, ..., w;j—1. Once we have the desired num-
ber of dimensions g, we repeat Equation 7 for each
wj, j = 1,..., q until convergence.

)

We repeat these two steps iteratively until convergence. Af-
ter convergence, we obtain the discrete clustering by using
k-means in the embedding space U. Algorithm 1 provides
a summary of our approach, we call Dimension Reduced
Spectral Clustering (DRSC).

Applying DRSC to Gaussian and Polynomial Kernels.
More specifically, we provide here details on how to im-
plement DRSC to two widely used kernels: Gaussian and
polynomial kernels. Different kernels only vary Step 2 of
DRSC.
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Algorithm 1 Dimension Reduced Spectral Clustering
(DRSC)
Input: Data z;, number of clusters k.
Initialize: Set W = I (i.e., use the original input data).
Step 1: Given W, find U.
Calculate kernel similarity matrix /K and normalized
similarity matrix D~'/2K D~1/2, Keep the eigenvectors
with the largest k eigenvalues of the normalized similar-
ity D-Y/2K D~/ to form U.
Step 2: Given U, find .
Optimize W by dimension growth algorithm. Project
data into subspace formed by W.
REPEAT steps 1 and 2 until convergence of the Nasso
value.
k-means step: Form n samples 3; € R* from the rows
of U. Cluster the points y;, i = 1,...,n, using k-means
into k partitions, P, ..., Pg.
Qutput: Partitions Pj,..., P, and the transformation
matrix W.

Gaussian Kernel Case: For Step 2, we assume U is fixed,
optimize for W. With the Gaussian kernel, we can re-write
the objective function as follows:

sz;- WWTAwij
- 202

T
Ui U

maxw )4 7 exp(
st. WIw =1

) ®

where Aw;; is the vector x; — x;, and Az ;WWT Aw;; is
the /2 norm in subspace W. The above objective can be
expressed as

ul trace(WT Az;; Az, W)
maxy ), P xp(— Sridn, ) ©)
st. WIw =1
or

ufu;
maxyy Zij i exp(—
st. WTw =1

w?A,;jwl +w§A17w2+
202

)

(10

where w; is the ith column of W, and A;; is the d by d
semidefinite positive matrix AxijAac;f';. In this step, we
Ty .
“72 is fixed. Note that w’ Aw is a convex func-
iQj
tion. Thus, the summation of w} Aw; is convex. exp(—y)

. . . wi A 3 Awat...y -
is a decreasing function, so exp(— LAY AT g

concave function. Each component w; must be orthogo-
nal to each other to form a subspace. Since W with this
constraint is not a convex set, the optimization problem is
not a convex optimization. We then apply the dimension
growth algorithm described earlier. Using the property of
the exponential function, the objective becomes:

max E ulu; exp(
w — didj
ij

assume

T
_ w1 Aijwl
202

T
_ Wy Aij wao
202

) exp( )

(1)
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With w; fixed, the partial derivative with respect to w is:

uiTu- 1 wl A;iws
- d»d»J ﬁg(wl)exp(fQQT;)Aing (12)
ij ke
_w?A,-jwl

where g(w1) is exp(
Eqn. 7.

). We update wo and w; by

202

Polynomial Kernel Case: For the polynomial ker-
nel, the kernel similarity in the projected subspace is
kWTz;, WTz;) = (I WWTx; + ¢)P. The derivative
of this kernel function with respect to W is

ki —
ZV[; = p(a] WWTa; + )P~ Haya] +xja] )W (13)

W can be optimized by the modified gradient ascent algo-
rithm in a similar way as that of the Gaussian case in Step
2 of DRSC but using this polynomial gradient equation.

Remark: The dimension growth algorithm will converge
to a local optimum.

In the algorithm, we use update Eqn. 7, with v >
satisfying the two Wolfe conditions. (Vf,Vf'(w))
(VIL VL + Vi pros) = (VL VfL) > 0, thus Vf] is
an ascent direction (i.e., it gives f(wnew) > f(wWora)). {,)
is the inner product operator. The algorithm will generate
a sequence of w with f(wy,) > f(wp—1) > f(wn—2)....
The objective function is upper bounded in both steps. In
Step 1, the objective is bounded by k if using k eigen-
vectors. In Step 2, if each element in the kernel simi-
larity matrix is bounded, the objective is bounded. For
the Gaussian kernel, exp(—“’; fzw) < 1. For the poly-
nomial kernel, using Cauchy inequality, (xiTWWij +
o < (AT WWTay| + o) < (WTa||[Whay| + o) <
(li]|x;] + ¢)P. This kernel is then bounded for finite and
positive ¢ and p if each original input x; are finite. Assum-
ing these conditions are held, the algorithm will converge
to a local optimum.

0

Initialization. Our approach is dependent on initial pa-
rameter values. We can simply start by setting the kernel
similarity using all the features Wy = I. Then calcu-
late the embedding U using all the features. If the data
has many possible clustering interpretations as explored in
[22], this initialization will lead to the solution with the
strongest clustering structure.

Computational Complexity. Calculating the similarity
matrix K can be time consuming. We apply incomplete
Cholesky decomposition as suggested in [1] giving us an
approximate similarity matrix K. The complexity of cal-
culating this matrix is O(ns?), where n is the number of
data points, s is the size of the Cholesky factor é, where
K = GGT. We set s such that the approximate error
is less than € = 10~*. Thus, the complexities of the
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eigen-decomposition and derivative computations are now
O(ns?) and O(ns). The complexity of the overall algo-
rithm is O((ns? + nsrd)t), where d is the reduced dimen-
sionality, r is the number of steps in the gradient ascent in
Step 2, and ¢ is the number of overall iterations.

5 Experiments

In this section, we present an empirical evaluation of our
DRSC algorithm on both synthetic and real data. We
compare DRSC against standard k-means (k-means), stan-
dard spectral clustering (SC) [20], PCA followed by spec-
tral clustering (PCA+SC), adaptive Linear Discriminant
Analysis combined with k-means (LDA-k-means) [10] and
weighted kernel k-means combined with kernel Fisher dis-
criminative analysis (WKK-KFD) [18]. Standard k-means
and spectral clustering serve as our baseline algorithms.
PCA+SC applies a dimensionality reduction algorithm,
principal component analysis (PCA) in particular, before
applying spectral clustering. LDA-k-means iteratively ap-
plies k-means and LDA until convergence, where the ini-
tialization is a step of PCA followed by k-means. In
addition, we compare our algorithm to a kernel version
of LDA-k-means, where we combine kernel k-means and
kernel LDA (WKK-KFD). This method iteratively applies
weighted kernel k-means and kernel Fisher discriminative
analysis until convergence. As pointed out in [9], weighted
kernel k-means is equivalent to spectral clustering, if we set
the weight for each data instance according to its degree in
the Laplacian matrix. We employ a Gaussian kernel for
all spectral/kernel-based methods and set the kernel width
by 10-fold cross-validation using the mean-squared error
measure from the k-means step, searching for width values
ranging from the minimum pairwise distance to the maxi-
mum distance of points in the data. For all methods running
k-means, we initialize k-means with 10 random re-starts
and select the solution with the smallest sum-squared error.
We set the convergence threshold ¢ = 10~% in all experi-
ments. To be consistent with LDA, we reduce the dimen-
sionality for all methods to k£ — 1, where k is the number of
clusters. In our dimension growth algorithm, at each time
we add an extra dimension, if the normalized association
value does not increase, we can stop the dimension growth.
However, to be consistent and fair with the other methods,
we simply use £ — 1. Determining the cluster number is
not trivial and remains an open research problem in spectral
clustering. One possible way of selecting k is by checking
the eigen-gap. Again, to be consistent and for ease of com-
parison for all methods, we assume it is known and we set
it equal to the number of class labels for all methods.

The evaluation of clustering algorithms is a thorny prob-
lem. However, a commonly accepted practice in the com-
munity is to compare the results with known labeling. We
measure the performance of our clustering methods based
on the normalized mutual information (NM1) [26] be-
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Figure 2: (1), (2), (3) and (4) are the Nasso values of synthetic datasets 1, 2, 3 and 4 respectively, and (5) is for the real face data
obtained by our DRSC algorithm (black line with circles), LDA-k-means (cyan line with square) and WKK-KFD (magenta line with
plus) in each iteration. k-means (red cross), SC (blue diamond) and PCA + SC (green asterisk) results are also shown.
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Figure 3: N M values discovered by different clustering algorithms as a function of increasing noise levels for synthetic datasets 1,
2, 3 and 4. Red lines with crosses are results for the k-means algorithm. Blue lines with diamonds are results for spectral clustering.
Cyan Lines with squares are results for LDA-k-means. Green lines with asterisks are results of PCA+SC. Magenta lines with pluses are
results for WKK-KFD, and black lines with circles are results for DRSC.

tween the clusters found by these methods with the “true”
class labels. We normalize to the range [0, 1] by defin-
ing NMI(X,Y) MI(X,Y)/\/H(X)H(Y), where
MI(X,Y) denotes the mutual information and where
H(X) and H(Y') denote the entropy of X and Y. Higher
N M I values mean higher agreement with the class labels.

5.1 Synthetic Data

To get a better understanding of our method, we first per-
form experiments on synthetic data. Synthetic datasets
were generated in the following way. First, we embedded
linear or nonlinear structures involving clusters, rings or
hooks in two dimensions. The third dimension was a noise
dimension, drawn from N (0, 0%;). We performed random
projection, Data = Data * Vi gndom, to mix these dimen-
sions, where V.4 ndom 18 a random orthonormal transfor-
mation matrix, VTEndomWandom = 1. Data 1 has three
Gaussian clusters in the two relevant dimensions. Data 2
and 3 are based on three rings and two hooks. Data 4 is
a mixture of linear and nonlinear structures with two com-
pact clusters and one hook.

Figure 1 shows the data in the original feature space (a)
and in the reduced space discovered by our algorithm (b).
The figure also shows the spectral (similarity) matrix of
the data in the original space (c) and in the reduced space
(d). From Figure 1 (a) and (c), we see that while the
data and their spectral (similarity) matrices in the original
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space have some structure, this structure is overwhelmed
by noise. Indeed, at this noise level (o = 7, 5,3.5,0.2 re-
spectively), spectral clustering cannot find the correct parti-
tions. On the other hand, from Figure 1 (b) and (d), we see
that the data and the spectral (similarity) matrix in the re-
duced space discovered by DRSC show strong cluster struc-
tures. Moreover, spectral clustering in the reduced space
can discover the underlying partitions. Figure 2 (1-4) dis-
plays the Nasso value obtained by DRSC and the other
methods as a function of iteration. Non-iterative methods
are shown as just a point at iteration 1. The figure confirms
that DRSC increases the Nasso value in each step. More-
over, DRSC obtained the highest Nasso score compared to
competing methods at convergence. Since synthetic data
1 is linearly separable, LDA-k-means performed as well as
DRSC on this dataset, but performed poorly on the other
data sets.

In Figure 3, we show a comparison of the different methods
in terms of N M I as the noise level o2 is varied. Note that
our proposed DRSC method is the most robust to noise.
LDA-k-means is satisfactory for Synthetic Data 1 where
the clusters are spherical, but fails for the arbitrary-shaped
data. In the presence of noise, k-means fails even for
spherical clusters (Data 1). Because WKK-KFD can cap-
ture clusters with arbitrary shapes, it performed better than
LDA-k-means on Data 2, 3 and 4. It is better than spec-
tral clustering but is much worse than DRSC. This is be-
cause WKK-KFD only reduces the dimension in the em-
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Table 1: N M for Real Data

FACE MACHINE SOUND | HD DIGITS CHART GLASS SATELLITE
k-means 0.71 +0.03 0.61 +0.03 0.60 +0.03 | 0.66 £0.01 | 0.43 +0.03 | 0.41 4+ 0.02
LDA-k-means | 0.76 £ 0.03 0.71 £0.03 0.674+0.02 | 0.75£0.02 | 0.32 +£0.02 | 0.42 + 0.03
SC 0.75 4+ 0.02 0.79 4+ 0.02 0.65 +0.02 | 0.68 £0.02 | 0.36 +0.02 | 0.40 4+ 0.02
PCA+SC 0.75 4+ 0.02 0.81 +0.03 0.734+0.02 | 0.69 £0.03 | 0.33 £ 0.02 | 0.42 4+ 0.02
WKK-KFD 0.81 £0.03 0.80 £ 0.02 0.69 +0.03 | 0.69 £0.02 | 0.32 +0.03 | 0.43 + 0.03
DRSC 0.87+0.03 0.85+0.02 0.79+0.02 | 0.784+0.02 | 0.45+0.02 | 0.460.03

bedding space, whereas our DRSC approach reduces the
subspace dimension in the input space. PCA+SC does not
help spectral clustering much in dealing with noise. Spec-
tral and k-means clustering performed poorly in the pres-
ence of noise; notice that when the noise is large, the N M I
values drop rapidly.

5.2 Real Data

We now test on real data to investigate the performance of
our algorithm. In particular, we test on face images, ma-
chine sounds, digit images, chart, glass data and satellite
data. The face dataset from the UCI KDD archive [3] con-
sists of 640 face images of 20 people taken at varying poses
(straight, left, right, up), expressions (neutral, happy, sad,
angry), eyes (wearing sunglasses or not). Note that identity
is the dominant clustering structure in the data compared to
pose, expression and eyes. The machine sound data is a col-
lection of acoustic signals from accelerometers. The goal
is to classify the sounds into different basic machine types:
pump, fan, motor. We represent each sound signal
by its FFT (Fast Fourier Transform) coefficients, providing
us with 100, 000 coefficients. We select the 1000 highest
values in the frequency domain as our features. The mul-
tiple digit feature dataset [19] consists of features of hand-
written digits (‘0°—°9”) extracted from a collection of Dutch
utility maps. Patterns have been digitized in binary images.
These digits are represented by several feature subsets. In
the experiment, we use the profile correlation feature subset
which contains 216 features for each instance. The chart
dataset [19] contains 600 instances each with 60 features
of six different classes of control charts. The glass dataset
[19] contains 214 instances with 10 features. One feature is
the refractive index and nine features describe the chemical
composition of glass. The satellite dataset [19] consists of
7 kinds of land surfaces. Features are multi-spectral values
of pixels in 3 x 3 neighborhoods in a satellite image.

From Table 1, we observe that compared to competing al-
gorithms, our DRSC algorithm obtained the best cluster-
ing results in terms of NM I (where the best values are
shown in bold font). Similar to the results on synthetic
data, we observe that LDA-k-means in general improves
the performance of k-means. PCA+SC performs similarly
or slightly better than spectral clustering, SC. WKK-KFD

559

is better than SC, but DRSC performs the best in all cases.
DRSC led to better results than WKK-KFD, because WKK-
KFD only reduces the dimension in the embedding space,
whereas our DRSC approach reduces the subspace dimen-
sion in the input space. We take a closer look at the results
for the face data. We observe that spectral clustering dis-
covers a reasonable clustering based on identities. How-
ever, the spectral clustering results show interference from
the pose aspect of the data. Our algorithm, on the other
hand, focuses solely on the identity, which is the strongest
clustering structure in the data. In Figure 2 (5), we show
Nasso values obtained by different algorithms with re-
spect to the number of iterations for the face data. The plot
confirms that our approach increases Nasso in each step.
In addition, the Nasso value at convergence is close to
the number of different persons (20) and the Nasso value
reached is the highest compared to competing methods.

6 Conclusions

Dimension reduction methods are increasingly being re-
fined so as to find subspaces that are useful in the solution
of downstream learning problems, typically classification
and regression. In this paper we have presented a contri-
bution to this line of research in which the downstream tar-
get is itself an unsupervised learning algorithm, specifically
spectral clustering. We have focused on spectral clustering
due to its flexibility, its increasing popularity in applica-
tions and its particular sensitivity to noisy dimensions in
the data. We have developed a dimension reduction tech-
nique for spectral clustering that incorporates a linear pro-
jection operator in the relaxed optimization functional. We
have shown how to perform optimization in this functional
in the spectral embedding and the linear projection. Our
results on synthetic and real data show that our approach
improves the performance of spectral clustering, making it
more robust to noise.
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