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Abstract

The study of online convex optimization in
the bandit setting was initiated by Klein-
berg (2004) and Flaxman et al. (2005). Such
a setting models a decision maker that has
to make decisions in the face of adversari-
ally chosen convex loss functions. Moreover,
the only information the decision maker re-
ceives are the losses. The identities of the
loss functions themselves are not revealed. In
this setting, we reduce the gap between the
best known lower and upper bounds for the
class of smooth convex functions, i.e. convex
functions with a Lipschitz continuous gradi-
ent. Building upon existing work on self-
concordant regularizers and one-point gradi-
ent estimation, we give the first algorithm
whose expected regret is O(T 2/3), ignoring
constant and logarithmic factors.

1 INTRODUCTION

The problem of sequential decision making is of ut-
most importance in disciplines as varied as Artificial
Intelligence, Control Theory, Economics, Operations
Research, and Statistics. In this paper, we are con-
cerned with a situation where a decision maker (or
learner) has to make decisions in the presence of an ad-
versary. After the learner has chosen its action at the
current time step, the adversary responds with a loss
function. We assume that the set of actions available
to the learner is a convex set and the adversary also
chooses convex loss functions. To add to the difficul-
ties of the learner, it is further assumed that the actual
loss function chosen by the adversary is not revealed to
the learner. Instead, the learner simply observes the
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value of the loss function at the point it chose from its
convex action set.

One would ideally like to design learning algorithms
that minimize the cumulative sum, over a total of T
time steps, of the losses incurred by the learner. But
that is already asking for too much, even in the full
information setting where the learner observes the ad-
versary’s loss functions. So, we have to lower our unre-
alistic expectations and search for learning algorithms
that minimize regret. Regret is the difference between
(i) the cumulative loss of the learner, and (ii) the mini-
mum possible loss had the adversary’s sequence of loss
functions been known in advance and the learner could
choose the best fixed decision or action in response to
it.

This formalization of sequential decision making is
known as online convex optimization (or OCO in
short) and got off to a start in a remarkably clear and
elegant paper of Zinkevich (2003). He considered the
full information version and showed that a simple gra-
dient descent strategy for the learner incurs O(

√
T )

regret. The constants hidden in the big-Oh notation
are known and depend on properties such as the Lip-
schitz constant of the loss functions and the diameter
of the learner’s action set. Surprisingly, it was soon
shown by Kleinberg (2004) and Flaxman et al. (2005)
that one could design algorithms with o(T ) regret even
in the “bandit” setting, where only evaluations of the
loss functions, not the loss functions themselves, are
revealed. The algorithm of Flaxman et al. (2005) is
particularly striking in its simplicity and elegance as
it uses point evaluations of convex functions to approx-
imately estimate the gradient. Finally these estimates
are fed to Zinkevich’s algorithm and a clever analysis
shows that we get a non-trivial regret guarantee even
in the bandit setting.

Striking as these first results in bandit OCO were,
they all gave rates whose dependence on T was worse
than

√
T . This immediately leads to the question of

the price of bandit information, to use an appealing
phrase borrowed from Dani et al. (2007). What does
the learner pay, in terms of the regret it incurs, for not
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having the ability to observe the adversary’s loss func-
tions? Does the asymptotic behavior of regret, as T
goes to infinity, change? If not, then do the constants
in the O(

√
T ) full information guarantee change?

If we specialize to the case of online linear optimiza-
tion, i.e. a setting where the adversary plays linear
loss functions, then, again with the element of sur-
prise somewhat characteristic of the work in this area,
there is no “price of bandit information” to be paid
if we only care about the dependence on T . Specif-
ically, a series of papers each building on its prede-
cessors have shown the following two results: (i) it is
possible to design an algorithm that has O(

√
T ) regret

against an adaptive adversary with high probability
Dani et al. (2007), and (ii) if the convex set admits
an efficiently computable self-concordant barrier then
the algorithm of Abernethy et al. (2008) is efficient
and achieves O(

√
T log(T )) expected regret against an

oblivious adversary.

1.1 Our Contributions

Our first contribution is conceptual. We point out
that, as in first-order convex optimization and full in-
formation online convex optimization, the assumptions
made on the convex functions played by the adver-
sary are very important. The class of Lipschitz convex
functions contains several important subclasses: lin-
ear, smooth, strongly convex etc. It is known that the
optimal regret can depend on the particular subclass
chosen. For example, the full-information algorithm of
Hazan et al. (2007) achieves O(log(T )) regret against
adversaries that play strongly convex functions. This
is much better than the Zinkevich guarantee ofO(

√
T ).

On the other hand, it is known that against an adver-
sary that plays smooth functions, no guarantee better
than O(

√
T ) can be given. We argue that research in

bandit OCO needs to similarly chart out the regret
guarantees for the entire territory of important sub-
classes of convex functions. Some results are already
known. For example, Agarwal et al. (2010b) shows
how to achieve O?(T 2/3) regret against strongly con-
vex functions. But many questions, including lower
bounds, remain open.

Our second contribution is algorithmic. We give an
algorithm that achieves O?(T 2/3) regret1 when the ad-
versary plays smooth functions. This is an improve-
ment on the previous regret guarantees of O(T 3/4)
due to Kleinberg (2004). To do this, we use the
self-concordance based algorithm of Abernethy et al.
(2008); Abernethy and Rakhlin (2009) coupled with
the single-point gradient estimation idea of Flaxman

1Our informal O?(·) notation hides constant and loga-
rithmic factors in T . We will give precise statements later.

et al. (2005). To the best of our knowledge this is
the first O?(T 2/3) algorithm for the class of non-linear
convex smooth functions.

2 PRELIMINARIES

Lower bold case letters (e.g., w,x etc.) denote vectors,
wi denotes the i-th component of w, ∂K refers to the
boundary of the set K, Sd refers to the surface of the
unit sphere in d dimensions while Bd refers to the unit
ball in d dimensions. The diameter of a closed con-
vex set, K is given by D = max {‖x− y‖ : x,y ∈ K}.
Unless specified otherwise, ‖·‖ refers to the Euclidean

norm ‖w‖ :=
(∑

i w
2
i

)1/2
, and 〈·, ·〉 denotes the Eu-

clidean dot product 〈x,w〉 =
∑
i xiwi.

2.1 Strong Convexity and Smoothness

The following notions of strong convexity and smooth-
ness are extensively used in the sequel. We remark
that the concepts of strong convexity and smoothness
can be defined w.r.t. an arbitrary norm ‖·‖. However,
for simplicity, we will only work with the standard Eu-
clidean norm in a finite dimensional space Rd.
Definition 1. (Strong Convexity) Suppose K ⊆
Rd. A convex function f : K → R is said to be strongly
convex with respect to ‖ · ‖ on K if there exists a con-
stant ρ > 0 such that f − ρ

2‖ · ‖
2 is convex on K. ρ

is called the modulus of strong convexity of f , and for
brevity we will call f ρ-strongly convex.

Definition 2. (Smoothness) Suppose K ⊆ Rd. Let
f : K → R be differentiable on K. Then f is said to
be smooth (or, alternatively, have Lipschitz continuous
gradient (l.c.g)) with respect to ‖ · ‖ if there exists a
constant H ≥ 0 such that, for all w,w′ ∈ K,

‖∇f(w)−∇f(w′)‖ ≤ H‖w −w′‖ . (1)

For brevity, we will call f H-smooth.

We note the standard fact that if f is H-smooth then
it satisfies a certain second order upper bound at any
point in its domain.

Lemma 1. If a function f is H-smooth then, for all
w,w′ ∈ K,

f(w′) ≤ f(w) + 〈∇f(w),w′ −w〉+
H

2
‖w′ −w‖2 .

(2)

2.2 Self-Concordant Barriers and Local
Norms

The notion of a self-concordant barrier plays a central
role in modern convex optimization, especially in the
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theory of interior point methods (see, e.g., Nemirovski
and Todd (2008)). Let K be a closed convex set. A
function R : K → R is a self-concordant barrier, if: (i)
R tends to infinity near the boundary of K, (ii) both
R and ∇2R are Lipschitz continuous w.r.t. the local
norm defined by R,

‖x‖R,w =
√
〈x,∇2R(w)x〉 (3)

The formal definition is as follows.

Definition 3. (Self-concordant barrier) [Ne-
mirovski and Todd (2008) Definition 2.1] Let
K ⊆ Rd be a closed convex set. A function R :
int(K) → R is called a ν-self-concordant barrier for
K, if

1. R is three times continuously differentiable with
R(wk)→∞ if wk → ∂K, and

2. R satisfies, for all w ∈ int(K),x ∈ Rd,∣∣∇3R(w)[x,x,x]
∣∣ ≤ 2 · ‖x‖3R,w ,

|〈∇R(w),x〉| ≤
√
ν · ‖x‖R,w .

Note that the above definition automatically implies
that R and ∇2R are Lipschitz continuous w.r.t the
local norm with constants

√
ν and 2 respectively (Ne-

mirovski and Todd, 2008).

The following fact will be very useful. If R is a self-
concordant barrier for K, then, for any w ∈ int(K),
the Dikin Ellipsoid centered at w,

{w′ : ‖w′ −w‖R,w ≤ 1}

is entirely contained in K.

2.3 One-point Gradient Estimates

We will use the following idea of Flaxman et al. (2005).
Suppose we have a bounded differentiable function
f : Rd → R whose gradient at some point x needs
to be estimated from a single random point evalua-
tion. Then, choose u uniformly at random from the
surface of the unit sphere Sd and use the estimate

d

δ
· f(x + δu) · u .

The usefulness of this is captured by the following
lemma proved in Flaxman et al. (2005).

Lemma 2. Define f̂(x) = Ev∈Bd [f(x + δv)]. Then,
we have,

∇f̂(x) = Eu∈Sd

[
d

δ
· f(x + δu) · u

]
.

Note that there is a bias-variance trade-off here. The
bias of the estimator vanishes as δ becomes small but
then the variance becomes large. On the other hand,
the variance vanishes as δ increases but then the bias
grows. In our application of this lemma, we will have
to carefully balance the two.

2.4 Bandit Online Convex Optimization and
Regret

We consider the following repeated game of T rounds
played between a player/learner/decision maker and
an adversary. The set of arms/actions/decisions is
a closed bounded convex set K ⊆ Rd. In this pa-
per, an (oblivious) adversary is simply a sequence
f1, f2, . . . , fT of functions chosen from some function
class F ⊆ Fcvx where Fcvx is the class of all differen-
tiable convex functions on K. At round t of the game

• Player plays a (possibly random) yt ∈ K,

• The adversary responds with ft ∈ F ,

• Player gets to see and suffers loss ft(yt) .

This is referred to as bandit online convex optimization
(bandit OCO in short). A related and much better un-
derstood setting is that of full information OCO where
the identity of ft is also revealed at time step t.

We define the regret as:

T∑
t=1

ft(yt)− min
x?∈K

T∑
t=1

ft(x?)

Note that this a random variable as the player might
be using a randomized algorithm. The expected regret
is simply

E

[
T∑
t=1

ft(yt)

]
− min

x?∈K

T∑
t=1

ft(x?)

where the expectation is over the randomness in the
player algorithm. The second term is deterministic
as it is solely a function of the adversary sequence
f1, . . . , fT . Given an interesting subclass F ⊆ Fcvx,
our goal is to design algorithms for the player such the
expected regret is small no matter what the adversary
sequence is (as long as all the functions are chosen from
F).

3 SUBCLASSES OF CONVEX
FUNCTIONS

Whether we are interested in first-order (i.e. gradi-
ent based) methods for convex optimization, stochas-
tic convex optimization, or in (full information) online
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convex optimization, the type of assumptions made on
the underlying class F of convex functions makes a big
difference. The rates of convergence for optimization
accuracy or for cumulative regret depend on proper-
ties, such as the degree of differentiability, measure of
curvature, etc., of the convex functions under consid-
eration.

Recall that Fcvx denotes the class of differentiable con-
vex functions on K. The following four main sub-
classes of Fcvx are often isolated for study:

1. Lipschitz:

Flip(L) = {f ∈ Fcvx : ∀w ∈ K, ‖∇f(w)‖ ≤ L}

2. Smooth:

Fsmth(H) = {f ∈ Fcvx : f is H-smooth}

3. Lipschitz and Strongly Convex:

Slip(L, ρ) = {f ∈ Flip(L) : f is ρ-strongly convex}

4. Smooth and Strongly Convex:

Ssmth(H, ρ) = {f ∈ Fsmth(H) : f is ρ-strongly convex}

We will omit the various constants in the definitions of
the subclasses above if they are obvious from context.

Let us first consider first-order convex optimization,
i.e. we are optimizing a single function f ∈ F but we
can only access the function by asking for its gradient
at arbitrary points in the domain. For a total budget
of T queries, the best optimization accuracy

f(wT )− min
w∈K

f(w)

will typically be some decreasing function of T . Here
wT is the iterate of the optimization algorithm af-
ter T first-order queries. For Flip and Fsmth, opti-

mal first-order methods achieve accuracies of Θ(1/
√
T )

and Θ(1/T 2) respectively. With strong convexity, the
rates become much better. For example, a first-order
method can achieve an accuracy of exp(−Θ(T )) after
T queries.

For full information online convex optimization, the
optimal rate at which the (cumulative) regret scales in
T is known to be Θ(

√
T ) for Flip and Θ(log(T )) for

Slip. Morover, adding smoothness assumptions does
not help here, in contrast to first-order convex opti-
mization. Thus, the optimal rates remain Θ(

√
T ) and

Θ(log(T )) for Fsmth and Ssmth.

We can ask the analogous question for bandit OCO:
what are the optimal regret rates for the four classes
Flip,Fsmth,Slip,Ssmth mentioned above?

The algorithms of Flaxman et al. (2005) and Kleinberg
(2004) achieve O(T 3/4) expected regret for the classes
Flip and Fsmth respectively. So, Kleinberg’s algo-
rithm achieves the same O(T 3/4) regret under stronger
smoothness assumptions. Should we expect a better
rate under the smoothness assumption? We show be-
low that the answer is “yes”. Our Algorithm 1 achieves
O?(T 2/3) expected regret against Fsmth thus improv-
ing upon Kleinberg’s algorithm. Note that the full
information lower bound of Ω(

√
T ) for the class Fsmth

is trivially a lower bound in the bandit setting too.

We note that the subclass Slip has already been con-
sidered before in the bandit OCO setting by Agarwal
et al. (2010b). They show that an algorithm combin-
ing the ideas of Hazan et al. (2007) and Flaxman et al.
(2005) achieves O?(T 2/3) expected regret against Slip.
Unfortunately, no lower bound better that the triv-
ial Ω(log(T )) full information lower bound has so far
appeared in the literature.

4 ALGORITHM FOR SMOOTH
FUNCTIONS

In this section, we present our algorithm along with
its formal regret guarantee. All proofs will be given
later.

Like most bandit algorithms, Algorithm 1 works by
estimating the “missing information” and then passing
on this estimate to a full information algorithm. In
this case, the “missing information” at any time step is
the gradient of the current loss function at the current
point. The underlying full information algorithm is
an algorithm from Abernethy et al. (2008); Abernethy
and Rakhlin (2009) that we will refer to as the AHR
algorithm hereafter.

Algorithm 1: Bandit OCO Algorithm for Smooth
Functions

Parameters: η > 0, δ ∈ [0, 1], R – a
ν-self-concordant barrier for K

Pick x1 ∈ K
for t = 1 to T do

At ←
√

(∇2R(xt))
−1

Draw ut ∼ Sd uniformly at random
yt ← xt + δAtut
Play yt and receive ft(yt) ∈ R
gt ← d

δ · ft(yt) ·A
−1
t ut

xt+1 ← argminx∈K η
∑t
s=1 〈gs,x〉+R(x)

end for

It is easy to verify that we have a bandit algorithm
since the only feedback used is the number ft(yt).
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Note that yt, the player’s move at time t, lies in the
Dikin ellipsoid centered at xt, the point suggested by
the full information algorithm:

‖yt−xt‖2R,xt
=
〈
δAtut, (At)

−2δAtut
〉

= δ2‖ut‖22 ≤ 1 .

Above, we used the fact that A−2t = ∇R(xt). By the
Dikin ellipsoid property, yt ∈ K and we have a valid
algorithms that plays points in the set K on every
round.

The gradient estimate gt is then passed on to the full
information AHR algorithm. In the analysis, we show
that gt is neither too big (in norm) nor too bad an
estimate of the gradient.

Theorem 3. Let the set K have diameter D. Suppose
we run Algorithm 1 against an arbitrary sequence of
functions ft all drawn from Fsmth(H) and bounded by
C. Then, for appropriate choices of the parameters
η, δ, the expected regret is bounded as:

E

[
T∑
t=1

ft(yt)

]
− min

x?∈K

T∑
t=1

ft(x
?)

≤ 3 (Hν log T )
1/3

(CdD)2/3T 2/3

+

(
2C

D
+DH

)√
T

= O
(
T 2/3(log(T ))1/3

)
5 PROOFS

In the proofs, H<t stands for the history of the al-
gorithm in question up to (but not including) time t.
The conditional expectation w.r.t. all the randomness
used by the algorithm previous to step t is denoted by
Et [·] = E [· | H<t].

5.1 Proofs of Theorem 3

Let x? be an arbitrary point in K. Let x̃ be the
point closest to x? that is also at least 1/

√
T dis-

tance away from the boundary ∂K. For such an x̃,
R(x̃) ≤ 2ν log(T ) (see Abernethy and Rakhlin (2009))
and since H-smooth functions bounded by C on a set
of diameter D necessarily have a Lipschitz constant
bounded by

L′ =
2C

D
+DH

we also have |ft(x?) − ft(x̃)| ≤ L′/
√
T . Hence the

regret is bounded as:

E

[
T∑
t=1

ft(yt)

]
−

T∑
t=1

ft(x?) ≤ E

[
T∑
t=1

ft(yt)

]
−

T∑
t=1

ft(x̃)

+ T · L
′
√
T
. (4)

Thus, we focus on the sum on the RHS above. We can
write it as:

(A) E

[
T∑
t=1

ft(yt)− f̂t(yt)

]

(B) + E

[
T∑
t=1

f̂t(yt)− f̂t(xt)

]

(C) − E

[
T∑
t=1

ft(x̃)− f̂t(x̃)

]

(D) + E

[
T∑
t=1

f̂t(xt)− f̂t(x̃)

]

where we define f̂t as the following smoothed version
of the adversary’s function ft:

f̂t(x) = Ev∈Bd [ft(x + δAtv)] .

Note that f̂t is a random function measurable w.r.t.
H<t as it depends on the random matrix At. Also
note that it is well-defined since x + δAtv ∈ K by the
Dikin ellipsoid property. Hence only evaluate ft on K
in the above definition.

We now bound the sums (A) – (D). The first three are
easy to bound. The last term (D) is the main term and
involves an appeal to the analysis of the underlying full
information AHR algorithm.

Bounding (A) This term is simply non-positive
since, by Jensen’s inequality, we have

f̂t(yt) = Evt∈Sd [ft(yt + δAtv)]

≥ ft(Evt∈Sd [yt + δAtvt]) = ft(yt)

Bounding (B) We have,

(B) =

T∑
t=1

E
[
f̂t(xt + δAtut)− f̂t(xt)

]
≤

T∑
t=1

E
[〈
∇f̂t(xt), δAtut

〉
+
H

2
‖δAtut‖2

]

=

T∑
t=1

E
[
δ
〈
∇f̂t(xt), AtEt [ut]

〉]
+
Hδ2

2
E
[
‖Atut‖2

]
≤ HTδ2D2

2
(5)

where D is the diameter of the set K. Here the first
equality follows from the definition of yt from algo-
rithm 1 while the second inequality follows by using
(2), since ft is H-smooth. The second equality is a bit
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subtle and follows by observing that the only random-
ness is due to ut as the definition of At from algorithm
1 clearly makes it deterministic once the history H<t
is fixed. Expectation of ut over the surface of the unit
ball gives 0. Finally (5) follows, since the Dikin ellip-
soid property ensures that yt = xt + Atut lies in the
set K, thus bounding ‖Atut‖ by the diameter of K.

Bounding (C) We have,

(C) ≤ HTδ2D2

2
(6)

because

−ft(x̃) = −f̂t(x̃) + f̂t(x̃)− ft(x̃)

= −f̂t(x̃) + Ev∈Bd [ft(x̃ + δAtv)− ft(x̃)]

≤ −f̂t(x̃) + Ev∈Bd

[
〈∇ft(x̃), δAtv〉+

H

2
‖δAtv‖2

]
≤ −f̂t(x̃) +

Hδ2D2

2
.

The second equality follows from the definition of f̂
while the subsequent inequality follows from (2). The
last inequality follows because Ev∈Bd [v] = 0 and
‖Atv‖ ≤ D.

Bounding (D) The analysis will depend on the fol-
lowing guarantee for the AHR full information algo-
rithm. This result is essentially derived in Abernethy
and Rakhlin (2009).

Lemma 4. Let K be a convex set and R be a self-
concordant barrier on K. Then, for any random se-
quence h1, . . . , hT of convex functions where ht is mea-
surable w.r.t. H<t, if we run the AHR algorithm

xt+1 ← argmin
x∈K

t∑
s=1

η 〈gs,x〉+R(x)

with gradient estimates gt’s such that Et [gt] =
∇ht(xt), we have, for any x̃ ∈ K,

T∑
t=1

E [ht(xt)− ht(x̃)] ≤ η
T∑
t=1

E
[
‖gt‖2t,?

]
+
R(x̃)

η
,

(7)

where ‖ ·‖t,? is the norm dual to the local norm ‖ ·‖t =
‖ · ‖R,xt

, i.e.

‖gt‖2t,? =
〈
gt,
(
∇2R(xt)

)−1
gt

〉
. (8)

Before we can use this lemma with ht = f̂t, we need
to make sure that the gt’s used by Algorithm 1 are
indeed unbiased estimates of the gradients.

Lemma 5. Let f̂t’s be defined as above. Then, we
have,

E [gt | H<t] = ∇f̂t(xt)

for gt as defined in Algorithm 1.

Proof. Condition on H<t. Then ut is an indepen-
dent random variable distributed uniformly on the unit
sphere and hence we have,

E [gt|H<t] = Eu∈Sd

[
d

δ
· ft(xt + δAtu) ·A−1t u

]
= A−1t Eu∈Sd

[
d

δ
· ft(xt + δAtu) · u

]
= A−1t Eu∈Sd

[
d

δ
· Ft(A−1t xt + δu) · u

]
= A−1t ∇F̂t(A−1t xt)

= A−1t At∇f̂t(xt) = ∇f̂(xt) ,

where the third equality holds simply by defining
Ft(x) = ft(Atx). The fourth equality holds by
Lemma 2 where

F̂t(x) = Ev∈Bd [Ft(x + δv)] = Ev∈Bd [ft(Atx + δAtv)] .

The fifth equality holds because differentiating the
above equality gives

∇F̂t(x) = AtEv∈Bd [∇ft(Atx + δAtv] = At∇f̂t(Atx) .

To use the bound in (7), we need to bound the norm
in (8). The next lemma does this.

Lemma 6. Given ‖gt‖t, as defined in (8), we have

‖gt‖2t ≤
(
Cd

δ

)2

(9)

Proof. Using the definition of gt from algorithm 1 we
have

‖gt‖2 =
d2

δ2
(ft(yt)

2
∥∥A−1t ut

∥∥2
t

=
d2

δ2
(ft(yt)

2
〈
A−1t ut,

(
∇2R(xt)

)−1
A−1t ut

〉
=
d2

δ2
(ft(yt)

2u>t A
−1
t A2

tA
−1
t ut

=
d2

δ2
(ft(yt)

2 (∵ ‖ut‖ = 1)

≤
(
Cd

δ

)2
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Now using (7) with ht = f̂t, we get

T∑
t=1

E
[
f̂t(xt)− f̂t(x̃)

]
≤ η

T∑
t=1

(
Cd

δ

)2

+
R(x̃)

η

= ηT

(
Cd

δ

)2

+
2ν log(T )

η

where we used the fact that R(x̃) ≤ 2ν log(T ). Mini-
mizing over η, we have that

T∑
t=1

E
[
f̂t(xt)− f̂t(x̃)

]
≤ 2Cd

δ

√
2νT log(T ) (10)

Putting it together Plugging in (5), (6), and (10)
into (4), we get, for an arbitrary x? ∈ K,

E

[
T∑
t=1

ft(yt)

]
−

T∑
t=1

ft(x?)

≤ HTδ2D2 +
2Cd

δ

√
2νT log(T ) + L′

√
T . (11)

Optimizing now over δ gives Theorem 3.

Note that for linear functions, H = 0. Plugging that
in (11) and setting δ = 1 helps us retrieve the previous
rates of O(

√
T log T ) by Abernethy et al. (2008).

6 DISCUSSION

In this paper we reduced the gap between lower and
upper bounds for bandit OCO against smooth convex
functions. The trivial full information lower bound
is Ω(

√
T ) and the best known upper bound was pre-

viously O(T 3/4). We improve the upper bound to
O?(T 2/3) for the class Fsmth(H) when the convex func-
tions played by the adversary are smooth.

One of the main open questions in bandit OCO is re-
ducing the gap between the Ω(

√
T ) and O(T 3/4) lower

and upper bounds on regret for the most general class
of convex Lipschitz functions, Flip(L). A recent re-
sult by Agarwal et al. (2010a) is that we can obtain
regret guarantees of O(

√
T ) if multi-point feedback

is available, i.e. the player can ask for the function
value at multiple points. This shows that if function
evaluations at multiple points are available, the regret
guarantee has similar dependence on T as in the full
information setting. Perhaps we can hope that there
is again no “price of bandit information” to be paid
in the bandit OCO setting against convex Lipschitz
functions.
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