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Abstract

In typical classification problems, high level
concept features provided by a domain expert
are usually available during classifier train-
ing but not during its deployment. We ad-
dress this problem from a multitask learn-
ing (MTL) perspective by treating these fea-
tures as auxiliary learning tasks. Previous
efforts in MTL have mostly assumed that
all tasks have the same input space. How-
ever, auxiliary tasks can have different input
spaces, since their learning targets are dif-
ferent. Thus, to handle cases with heteroge-
neous input, in this paper we present a newly
developed model using heterogeneous auxil-
iary tasks to help main task learning. First,
we formulate a convex optimization problem
for the proposed model, and then, we ana-
lyze its hypothesis class and derive true risk
bounds. Finally, we compare the proposed
model with other relevant methods when ap-
plied to the problem of skin cancer screening
and public datasets. Our results show that
the performance of the proposed method is
highly competitive compared to other rele-
vant methods.

1 Introduction

Nonoperational are those features that are available
during classifier development but not available after
classifier deployment, because individual object anno-
tation is expensive or impossible, due to time con-
straints or lack of expertise (Caruana, 1997). This sit-
uation arises in many biomedical applications where
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Figure 1: An example of the main task and auxiliary
tasks in skin cancer detection based on an Epilumines-
cence microscopy (ELM) image.

automated computer-aided image analysis is needed.
Our application involves skin cancer screening whereby
the main task is to make a decision on whether a given
skin lesion is cancerous or not based on dermoscopy
images. Dermatology experts rely on a set of high
level concepts to characterize a lesion as malignant
(Johr, 2002). For instance, the image in Fig. 1 ex-
hibits several anatomical features highly suggestive of
skin cancer, and for this reason, this lesion, which is
indeed a melanoma, in terms of dermoscopic criteria
is termed as having multicomponent global features.
The local dermoscopic features observed in the image,
namely the irreqular dot/globular structure and the
blue-whithish veil, are both hallmarks of melanoma.
However, for a new test image, a dermatologist may
not be available to identify these high-level anatomical
features, and this poses a major limitation in develop-
ing accurate automated lesion-screening tools (Feder-
man et al., 2002).

In order to use nonoperational features, Caruana
(1997) proposed to view nonoperational features as
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auxiliary tasks during the training phase and demon-
strated that simultaneous learning of main task and
auxiliary tasks can lead to a more accurate model.
Many previous approaches on multi-task learning (Ar-
gyriou et al., 2008; Zhang et al., 2008) assumed that
these tasks are homogeneous, i.e. they all share the
same input space. This is not true in the skin can-
cer screening paradigm, as recognition of different
anatomical features typically needs different low level
features, such as geometry (Zouridakis et al., 2004),
texture (Yuan et al., 2006), and color (Stanley et al.,
2007). One obvious solution here is to combine all
the heterogenous features into one large feature vec-
tor. However, this method does not use the knowl-
edge of the split feature set and it may result in two
potential problems. First, it increases the dimension
of the feature vector for all tasks and probably com-
bines some unrelated features for some tasks. Second,
because multi-task learning methods typically assume
that classifiers from different tasks are similar, it is
likely that for some tasks, certain unrelated features
are forced to impact the final output, especially when
individual task classifier is assumed to be similar to
their average classifier, as in the case in the models
of Evgeniou et al. (2006), Daumé (2007), and Finkel
and Manning (2009). Another solution that relies on
Lemma 2 proposed by Evgeniou et al. (2006), is to
map each of the different input spaces into one com-
mon space. This possible solution has only been de-
scribed briefly by Evgeniou et al. (2006). In general,
it is difficult and not straightforward to choose the
common space or the mappings between spaces with
difference dimensions.

To handle the heterogenous input condition, the pro-
posed method considers task relatedness in the follow-
ing way: we directly model the main task classifier
as a weighted average of the output provided by the
auxiliary task classifiers. It is important to note that
we use the weighted average of the output of the clas-
sifiers, not the average of the classifier’s parameters,
such as, for instance, the weight of each feature in the
linear case (Evgeniou and Pontil, 2004; Evgeniou et
al., 2006; Daumé, 2007; Finkel and Manning, 2009).
This simple idea allows us to perform domain adap-
tation easily regardless of the different forms of the
auxiliary classifiers. The proposed method for mod-
eling task relatedness is closely related to the ensem-
ble learning scenario. Three representative methods
using a similar ensemble idea are the adaptive sup-
port vector machine (A-SVM) (Yang et al., 2007), the
linear programming boosting (LPB) (Demiriz et al.,
2002; Gehler and Nowozin, 2009), and the gating net-
work approach (Bonilla et al., 2007). These ensem-
ble learning methods typically treat the training of
each sub-model and their combination as two separate

689

stages. Our proposed method, however, inspired from
the multiple kernel learning (MKL) (Lanckriet et al.,
2004) and the multi-task kernel approaches (Evgeniou
et al., 2006), can learn the models for auxiliary tasks
and the combined model for the main task together.
Our method also increases the dimension of the feature
space for the main task. However, we use a weighted
average so that the impact of unrelated tasks can be
decreased at the task level. This has an effect similar
to the MKL, group lasso (Yuan and Lin, 2006), and
their p-norm variants (i.e., non-sparse solution will be
obtained when p > 1, in contrast to the original MKL
and group lasso.) (Kloft et al.,, 2009).

To allow the auxiliary classifiers to adapt to the main
task, we add a small term to each auxiliary classifier
in the weighted sum, as that in A-SVM, and to build a
general model, we allow the main task to have its own
features that are different from those used to charac-
terize auxiliary tasks.

Using the notion of task relatedness described above,
and following the generic empirical risk minimization
approach, we formulate a mathematical programming
problem with a regularization term similar to that of
the multiple kernel learning considered by Zien and
Ong (2007) and its p-norm extensions (Kloft et al.,
2009).

The contributions of this paper are: (a) Development
of a convex optimization problem for main task learn-
ing with heterogeneous auxiliary tasks (section 2.3);
(b) Derivation of error bounds for the proposed model
(section 3). The obtained error bounds are informa-
tive. (c) A practical application of our model to skin
cancer screening (section 4); (d) A comparison with
three relevant methods, namely MKL, multi-task ker-
nel (Evgeniou et al., 2006), and LPB (section 4).

2 The Proposed Learning Model

2.1 Symbols and Notations

The most important symbols and notations are listed
in Table 1, while other symbols are introduced in the
text. As is customary, bold-faced letters denote vec-
tors, e.g., d = (di,...,d;,), where the dimension m of
the vector is determined in the specific context. We
use e to represent a column vector of ones and I to de-
note the identity matrix. Generally, for z € XT, where
X1 is a reproducing kernel Hilbert space (RKHS), we
only consider a classifier f(x) of the form f(z) = w’z,
with w € XT. We consider the bias parameter by
mapping x into (x,1). When a classifier has the form
()™, with di € R, wy € X, and each X, is

(m)

(1:1)) can

an RKHS, its decision on an instance ((z')
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be explicitly written as >~ djwf'z!. We use || - ||, to
denote the p-norm in an RKHS and || - || refers to the
2-norm by default.

Table 1: Symbols and Notations

Symbols Meanings

X Feature space of task [,1 <[ < m.

Xm+1 denotes feature space used by the
main task only. Each A} is an RKHS.

X Product space X1 X Xo X ... X Xpy1.

z Feature of the i-th instance of task [,
with 1 <! <m. Whenl=m+1, it
denotes feature of instance ¢ used by the
main task only. For all 1 <l <m+41,
a?i e X

K n X n symmetric positive definite (s.p.d.)
kernel matrix where K (4, j) = (2!, z})

y yl € {—1,1}, label of the i-th instance
from task [.

( )Eznz)n)u 1 Vector (x%,m%,...,mf_h:cﬁ).

2.2 Problem Statement and Task
Relatedness

Assuming that there are m auxiliary tasks and only
one main task (the (m + 1)-th task), our goal is to
choose a decision function h from a given hypothe-
sis class H C {—1,1}%¥, such that h achieves the best
true error rate on the main task. We assume that all
tasks are binary classification problems and the train-
ing data are n independent and identically distributed
(iid.) data instances X; = ((wi)z—;17 (yﬁ);itl),
1 < ¢ < n, drawn from an unknown distribution P
defined on the domain X x {—1,1}™"1. Tt is impor-
tant to notice that the independence assumption here
is for two different ¢’s. Inside the i-th training instance
X;, the xé’s and yé’s, 1 <1< m+ 1, may not be inde-
pendent of each other. This is slightly different from
the setting studied by Evgeniou and Pontil (2004), Ev-
geniou et al. (2006), Daumé (2007), and Finkel and
Manning (2009) where each of the (z!,y!)’s is an i.i.d.
training data, for any ¢ and any [. A testing instance

has the form ((xl)m+1

=1
m+1 Tn the testing instance, (yl)zil

) and our goal is to predict

Y are unknown.

To explicitly represent the task relatedness between
main and auxiliary tasks, let the decision function for
auxiliary task [ be w; € X;. Assuming that the clas-
sifier for the main task can be written as ((d;(w; +
Ul))?;jlq), with w; € Xl, v € A, ||'Um+1H =0, d; >0
for1 <l <m+1, and ||d||g < 1 for some p > 1, where
d denotes the vector (di,da,...,dn11), the related-
ness between the main task and a specific auxiliary
task [ is captured by ||vi||, 1 <1 < m. Obviously, the

690

smaller the ||v;||, the more related the main and the
auxiliary tasks are. In the special case when |v;|| = 0,
1<I<m+1, and ||wm+1] = 0, the prediction value
of the main task classifier for an instance (xl)y:gl be-
comes » -, dlwlTxl, which is just a weighted sum of
output provided by auxiliary task classifiers.

2.3 Mathematical Programming

We formulate a mathematical programming for the
problem of main task learning using heterogeneous
auxiliary tasks as follows:

ZczleleQ

2
L ZdzHUlH

1 m
+§dm+1||wm+1||2 sz +CZ€ i
l 1 i=1 i=1
st yi(w/ du(a) >1-¢, 1<I<m, 1<i<n
d>0, |d|j<1, €£>0,
m—+1
m+1 Z dl wl +UI)T¢Z( )) > 7£Zn+1’
when 1 S i<mn (1)
where 0 is a column vector of zeros and ||vp,41|| = 0.

Inequalities between two vectors are taken element-
wise, and C},1 <1 < m and C are positive user defined
parameters.

To convert P1 into a convex optimization problem,
we can simply replace w; , v; (1 <1 < m+ 1), and
fé (1 <i<nand1l<I!<m)with @;/d;, 0;/d;, and
éll-/dl, respectively. If d; = 0, we define a/d; = oo
when a # 0, and a/d; = 0 when a = 0. Then, we
can use the cutting plane algorithm to solve the con-
vex optimization problem. We omit the detailed steps
here because this is a standard procedure employed in
many MKL optimization algorithms® (Sonnenburg et
al., 2006; Kloft et al., 2009).

One possible concern is that during the optimization if
d; = 0, the corresponding auxiliary task’s error can be
encouraged to be away from 0. To avoid this situation,
we can simply replace the constraint d > 0 with d >
€4, where €4 is a small positive parameter. When ¢; >
0, the optimization method is still the same as the case
of ¢4 = 0. Our experiments, as detailed in section 4,
indicate that setting e; = 10™* works well when p = 2.

In P1 we use the hinge loss for main task error (i.e.,
¢MT1) as that in the classic SVM formulation. For the
error term of auxiliary task (i.e., &, 1 <1 < m), our

"We provide the convex formulation and the semi-

infinite programming in appendix. For completeness, we
provide the full details in our supplementary materials
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analysis in section 3 shows that a risk bound on main
task can be obtained when quadratic loss is used for
auxiliary tasks. The truncated quadratic loss is used
in P1 because we empirically observe that it performs
better than the quadratic loss. For optimization, the
procedure is similar with respect to these three types
of loss functions (hinge loss, quadratic loss, and trun-
cated quadratic loss).

3 Formal Analysis

We provide a risk bound analysis of the proposed
learning model. We use the quadratic loss to replace
the truncated quadratic loss on auxiliary tasks in P1
(i.e., 55 > 0 is removed when 1 < [ < m) for the
purpose of error bound analysis here. We first ana-
lyze the hypothesis class of our model for main task

learning. Given a training set with n ii.d. data,
m+1 m—+1 .

X ={((@) 5 @)y ) 1< i<nf, a B >0, and

user defined positive parameters Cj, with 1 <[ < m,

the hypothesis class H; for the proposed learning

model is defined as

m—41

— Z (dl(wl -‘rvl))TJEl‘

=1
w,v € X, 1 <I<m+1; vy =05
(2a) |d|2 < 1, d > 0; and

1 m
5D diflull? +
=1
(2.b)

% Z Z di(wl'z

=1 i=1

m—+1

Hi(B, X, Cy) = {(xl)l—l

1 1
3 > Cid||wn® + g I wmal*+
=1

(2.0)
yi)? < B}

l

K3

(2)

(2.d)

m—+1

=1 )’
and w; is the [-th auxiliary task classifier with 1 <[ <
m. Here 0 denotes the zero element in the correspond-
ing RKHS. It should be noted that the loss of auxiliary
task (i.e., (2.d)) is viewed as one of the regularization
terms. In the above definition, the term (2.a) restricts
the p-norm of the weight vector to be smaller than
1, similar to that of the non-sparse MKL (Kloft et
al., 2009). Furthermore, the term (2.b) regularizes the
task relatedness (as described in section 2.2), while the
term (2.c) regularizes the norm of classifiers of differ-
ent tasks. We use a weighted sum formulation similar
to the regularization term of the intuitive multiple ker-
nel learning (Zien and Ong, 2007), which was shown to
be the same as the regularization term considered by
Sonnenburg et al. (2006) in the case of MKL. The re-
lation between using this kind of regularization term

where the main task classifier is (dl(wl + vl))
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(i.e., the terms (2.b) and (2.c)) and using the group
lasso regularization (Yuan and Lin, 2006) for MKL is
discussed by Bach (2008). The term (2.d) stipulates
the performance of the auxiliary task classifiers by a
total quadratic error. The quadratic error here is in a
weighted form. If an auxiliary task has a higher im-
pact on the main task (i.e., d; is high), its error will be
penalized more. If d; = 0, there will be no restriction
on the error of the I-th auxiliary task and this is be-
cause w; (the [-th auxiliary task classifier) has no effect
on the main task classifier ((dl (wy + vl));ff) as long
as d; = 0 (recall that our goal is to preform classifica-
tion on the main task). Another motivation to use a
weighted error term (2.d) is that it can easily lead to
a convex optimization problem as described in section
2.3. The parameters C;’s provide a function similar to
the regularization parameter in an SVM. When taking
out all the terms related to w; in (2.c) and (2.d) for a
fixed I, we obtain d; (1 Cy[jwi||? + 3 31 (wf 2l —yh)?),
which is exactly an SVM with the quadratic loss for
the [-th auxiliary task.

Assuming that ||z}[|2 =1, with 1 <1 <m+1,1<4 <
n, for a fixed [,1 <1 < m+1, the n X n kernel matrix
K; with the (,7)-th element (1 < 4,5 < n) equaling
(z, :c§>, has a trace of n. We also need to assume that
each of the &} is an Euclidean space?. The dimension
of X can be different for different /.

We provide true risk bounds for functions from H;
on the main task. We need some notations first.
Let N\;1 < I < m + 1, be the maximum eigen-
value of K; and C(KT) := min (m + 1, ||(A\);2]4).
when p > 1, 1/p+1/¢ = 1. When p = 1 we de-
fine ¢ = co. We let Cypipy := min{C1,Co,...,Cp},
Ey = B/(2Cm)+m(B+m' ?Dn\/2B/Cpin )/ (2n),
and for any E,c > 0,E'(E,c) := E + (4\/4mE/n +
6 ln(c/é)/Qn) (E/Q + Fm/Q). Before stating the
bound, we need the concept of landmark set intro-
duced by Shivaswamy and Jebara (2010). A landmark
set U = {((ui);i—;l, (gi)?:l_l), 1< < n} of size n is
a set of n data drawn i.i.d. from the same distribution
as that of the training set X.

Theorem 1 Fix v > 0, and C; > 0, 1 <1 < m.
Let X be a training set of n i.i.d. data drawn from a

distribution P, and U be a landmark set of size n, for
any h € H1(B, X, Cy) with B > 0:

(i) With probability at least 1 —§ over a random draw

*For the RBF (radial basis function) kernel, its feature

space has an infinite dimension. Using the Taylor expan-
sion, we can approximate it with a polynomial by truncat-
ing the higher order terms.
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of X, we have

m—+1
=1

I;r [y"”rl # sign (h((:cl)

<o

(1/3)E'(E1,8)

n
2E'(E1,8)
n

3
2

In(8/4)
2n
2BC(KT)
YVn

8
+3 + =

42 Ey[T(U, X))

where

= [i(m)?zf

i=1

Nl=

n

> ((uh)

j=1

1

(I

2

+1
2n

m
=1

)<<u;>;z1>T)1<<xz>;zl>]

(i) With probability at least 1 —§ over a random draw
of X, we have

n

l;r{y + #Slgn(h((xl);f{l))} < TTVZ:QW—H—F
5, /B0 m?\/In(4/8)E'(Ey, 8)
2n n V\f
D) 4 WP LS 4/mE(Er,8)
Wn
where &' = maX(O,’y — y:'L+1h(( )"jl'l)) are the

so-called slack variables.

A proof with complete details is provided in our sup-
plementary materials. We follow the path using em-
pirical Rademacher complexity to derive error bounds.
One difficulty is that H; is dependent on the training
data, and hence it is hard to bound H;’s true risk with
its empirical Rademacher complexity directly (Shiv-
aswamy and Jebara, 2010). Our proof follows the ap-
proach developed by Shivaswamy and Jebara (2010)
which used the landmark set to overcome the prob-
lem of data-dependent hypothesis class. The obtained
bound in part (i) of Theorem 1 is dependent on the
training data while that in part (i¢) is independent of
the training data but could be looser than the former.
The asymptotic behavior of the bound in (i7) with re-
spect to the number of training data n is: main task’s
empirical margin error (i.e., &™) + O(1/y/n).

4 Empirical Results

4.1 Skin Cancer Screening

We first demonstrate an application of the proposed
algorithm to skin cancer screening based on Epilumi-
nescence microscopy (ELM) images. Our dataset is
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collected from Interactive CD of Dermoscopy (Ar-
genziano et al., 2000). We have 360 skin lesion im-
ages, in which 270 are benign and 90 are melanoma.
The typical resolution of the images is 500 x 740. We
use manual segmentation (e.g., the red boundary in
Fig. 1) to exclude healthy skin, and this ensures that
comparison of classification performance between algo-
rithms is not affected by incorrect automated detection
of lesions boundaries. Automated lesion segmentation
(Zouridakis et al., 2004) can be viewed as an orthogo-
nal research area to the study here.

4.1.1 Main Task

The main task in skin lesion screening is to detect
melanoma. We use the well known bag-of-features
scheme which is widely used in computer vision to
build a feature vector for each lesion. We first sam-
ple randomly 10,000 16 x 16 patches from each lesion,
and then we compute Haar wavelet coefficients and
color moments on each patch, and build histograms
for wavelet and color moments respectively. We use
a codebook size of 100 for both the wavelet and color
moment features. Hence, the length of the main task
feature vector (i.e., the input space before mapping
into X;,+1 in the analysis above) is 200.

4.1.2 Auxiliary tasks

Auxiliary tasks include the global dermoscopic feature
and three local dermoscopic features. The global der-
moscopic feature has 7 classes as listed in Fig. 1,
but we only classify each lesion as multicomponent or
not multicomponent, since being multicomponent is a
sign of melanoma. We use the local binary patterns
LBP}iY% and LBP3;* proposed by Ojala et al. (2002)
as low level features for the global dermoscopic fea-
ture and the standard deviation and entropy of the his-
tograms built from wavelet and color moments, respec-
tively. Feature vector size here is 48. The three local
dermoscopic features include irregular dot/globular,
irreqular network, and blue-whitish veil. Because of the
weak label of the database (Argenziano et al., 2000),
we know whether certain local pattern exists in the
whole lesion, but we do not know where exactly in the
lesion it is present. To solve this problem, we first per-
form a segmentation inside the lesion by graph cut (5
segments for each lesion). If any of the segmented re-
gion contains a certain local feature, that local feature
is considered as present in the lesion. This is a typical
multi-instance learning (MIL) problem that we convert
into a single instance learning problem by the method
proposed by Li and Yeung (2009) which can then be in-
tergraded into our framework. This MIL method iden-
tifies instance prototypes (IPs) (Maron and Lozano-
Pérez, 1998) for each task based on low level features
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of each segmented region (instance) which are the same
as those of the main task. Different tasks will have dis-
tinct IPs that lead to distinct feature spaces. The final
sizes of the feature vectors for the three local dermo-
scopic patterns are 75, 69, and 130 respectively.

4.1.3 Experimental Settings

We use five-fold cross-validations (CV) on all methods
applied to the dataset. We are only concerned with
performance on the main task, which is the goal of
skin cancer screening. Our dataset is imbalanced and
the accuracy value is not a good measure of classifiers.
Hence, we use the area under the receiver operating
characteristic curve (AUC) of the main task as perfor-
mance measure. In this study we compare the follow-
ing methods.

Simple: Concatenation of all features from all tasks
and training with the main task label using an SVM.

MTK: Multi-task kernel. The general definition of MTK
was proposed by Evgeniou et al. (2006) and our im-
plementation uses a specific type of MTK defined in
Eq. (22) of their paper (RBF kernel is used to re-
place the dot product for non-linear mapping). Their
experiment has demonstrated the effectiveness of this
kind of MTK. All MTK models (Evgeniou and Pon-
til, 2004; Evgeniou et al., 2006; Finkel and Manning,
2009; Daumé, 2007) focused on considering homoge-
nous feature spaces. To adapt MTK to our problem,
we concatenate all heterogenous features here as that
in Simple.

Single (Baseline): A single kernel built from the fea-
ture of the main task (i.e., K,,+1) and training with
the main task label using an SVM.

MKL: Multiple kernel learning, which was used to com-
bine heterogeneous data sources (Lanckriet et al.,
2004). We use the non-sparse multiple kernel learning
(Kloft et al., 2009) and the 2-norm in the constraint
for the weight variables (i.e., ||d||3 < 1). MKL does

not use labels of auxiliary tasks but uses the features
of auxiliary tasks.

LPB: Linear programming boosting (Demiriz et al.,
2002) was not designed in a multi-task setting origi-
nally. However, it is straightforward to generalize LPB
to our problem. We use the v-LPB formulation? from
Gehler and Nowozin (2009), which was shown to be
more effective than MKL in combining heterogeneous
features (Gehler and Nowozin, 2009). In our exper-
iments, v-LPB first trains m + 1 SVMs for m auxil-
iary tasks and the main task with their own features.
Then, v-LPB builds a linear weighted combination of

3We also try to replace the linear programming with a
quadratic programming and observe similar performance.
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the m+ 1 classifiers for the main task. This method is
the closest to the proposed learning framework. The
major difference is that LPB performs learning in two
steps, namely learns each task first, and then based on
the output of the first step, learns the main task. In
our model, learning is performed coherently, namely
all auxiliary tasks and the main task are learned si-
multaneously.

CMHA: our model which concurrently learns main and
heterogeneous auxiliary tasks (CMHA) and p = 2.

In order to see the effect of auxiliary task labels (i.e.,
nonoperational features), we consider replacing all the
auxiliary task labels in CMHA and LPB with the main
task label of the lesion, and still use the features of
auxiliary tasks. For LPB, this is just its original for-
mulation (Gehler and Nowozin, 2009) to combine het-
erogenous features. We call these two methods with-
out auxiliary task labels as CMHA-WOA and LPB-WOA re-
spectively.

We also test MKL and CMHA by setting their weight vari-
ables (i.e., d) to be uniform, which are denoted as
MKL-ave and CMHA-ave respectively.

We use the RBF kernel with a parameter* of 1
(For Simple and MTK we also try values of 1/5 and
1/522 for they concatenate five sets of features and
the total feature length is 522. Best results are re-
ported and this could benefit them in comparison).
We select the regularization parameter for Simple,
Single (Baseline), MKL, and MKL-ave from the set
{1000, 100, 50, 25, 10,0.1} based on their best predic-
tion performance which could benefit these meth-
ods in comparison. The ‘(A,7)’ pair of MTK (Evge-
niou et al., 2006) is searched in {(0.1,0.2,...,0.9) x
(1000, 100,50, 25,10,0.1)} and the result is also re-
ported for its best setting from the final performance.
For all regularization parameters of methods from our
model (P1) and LPB, including ‘C”, ‘C}’, and the ‘v’
in v-LPB (Gehler and Nowozin, 2009), we choose them
based on a validation set (20% of training data) and
the final model is retrained with the whole training
set. We could not afford to test all possible combi-
nations. The ‘1/C}’ in our model (P1) and the ‘C’
of the SVM for the [-th auxiliary task in LPB have
similar functions in regularization® as discussed at the
end of section 3. So, we can use a heuristic method
(Gehler and Nowozin, 2009): selecting those values in-
dividually based on the validation set performance by
training an SVM for the [-th task. For the global pat-
tern, we select ‘1/C;’ from 10* x {2,1.5,1}. For local

“The RBF kernel has the form exp(—v||z — y||?), where

x and y are two vectors, and the parameter refers to .
®Notice that in P1 ‘C;’ is multiplied with ||w;||? and the
‘C’ of a typical SVM is multiplied with the error terms.
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patterns, we use the set 1072 x {1,v/2/2,1/2}. After
selecting parameters for auxiliary tasks, we choose the
‘C” in our model (P1) from 100 x {20, 15,10,5,1} and
the ‘o7 in v-LPB from {0.01,0.1,1,10,100} based on
the validation set result.

4.1.4 Results and Discussions

The baseline (Single) method’s AUC is 74.01% (std:
7.12%). We report the AUC’s of different methods
minus that of the baseline model (Single) and their
standard deviations in Table 2. These results can be

Table 2: AUC’s (%) of Various Methods Minus That
of Baseline (Diff. AUC)

separately.

(e) The difference between the weighted scheme CMHA
and the average scheme CMHA-ave is not significant and
this is similar to MKL (Gehler and Nowozin, 2009).
To see the advantage of CMHA over CMHA-ave, we add
some randomly generated auxiliary tasks and apply
the same experimental setting above to test CMHA and
CMHA-ave. Fig. 2(a) shows that CMHA is more robust
than CMHA-ave in the presence of unrelated tasks. Fig.
2(b) shows the weights (i.e., d) learned by CMHA (aver-
age from the five-fold CV) when there are 5 unrelated
tasks and obviously CMHA can successfully exclude the
unrelated tasks.

Related Tasks

o
3

o
=)

o
=

Weight value

Methods Simple MTK MKL
Diff. AUC(std) —0.39" (3.34) | 2.67" (6.36) 1.73* (3.50)

Methods MKL-ave LPB LPB-WOA
Diff. AUC(std) 3.51* (4.13) 6.17* (6.27) 7.28" (6.70)

Methods CMHA CMHA-ave CMHA-WOA "l CMHA-ave
Diff. AUC(std) 9.42 (5.32) 9.39 (5.70) 6.91* (5.77) == CMHA

o
[N}

Unrelated Tasks

A ‘¢’ sign indicates that the result of the corresponding method is

significantly different from that of CMHA by a paired t-test at the

95% confidence level.
summarized as follows:
(a) Among methods without using auxiliary labels,
Simple performs worse than the two MKL models,
LPB-WOA and CMHA-WOA. When auxiliary labels are
used, MTK performs significantly worse than LPB and
CMHA (at the 95% confidence level by paired t-test).
This shows that ignoring the “natural splitting” of the
feature set (e.g., Simple and MTK), motivated from
different learning targets, is not a very competitive
scheme for this particular dataset.
(b) Both CMHA-WOA and LPB-WOA outperform MKL, and
the reason is similar to that discussed by Gehler and
Nowozin (2009): the Lagrange multiplier is restricted
to be the same for all kernels in MKL but not in
CMHA-WOA and LPB-WOA resulting in more flexible mod-
els.
(c) CMHA provides a statistically significant improve-
ment compared to LPB-WOA which achieves the best
results among methods without using the additional
auxiliary task labels (i.e., nonoperational features).
This shows the effectiveness of using nonoperational
features by our learning framework.
(d) Our method’s performance is comparable to
LPB’s when learning with main label only (a paired
t-test shows that the difference between CMHA-WOA
and LPB-WOA is not significant with a p-value of
0.6208). However, when including nonoperational fea-
tures, CMHA provides an improvement over CMHA-WOA,
while LPB performs worse than LPB-WOA. One plausi-
ble explanation is given by the main difference between
these two schemes: CMHA learns the auxiliary tasks and
main task together, allowing the auxiliary task classi-
fier to adapt to the main task, while LPB learns them
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(a) (b)
Figure 2: Comparing CMHA with CMHA-ave when unre-
lated auxiliary tasks present. (a) AUC vs. number of
unrelated tasks; (b) The weights learned by CMHA (av-
erage from the five-fold CV). 1-5: related tasks; 6-10:
randomly generated unrelated tasks.

4.2 Experiments and Results on Public
Datasets

In this section, we demonstrate that our model is gen-
eral and can be readily applied to other domains. We
use the CAL500 datasetS (Barrington et al., 2008) from
the UCSD multiple kernel learning repository. CAL500
is consisted of 502 songs and each song is annotated
with its genre, emotion, instrument, etc.. We con-
sider two main tasks: predicting whether a song is an-
notated with electronica and alternative respec-
tively. We use the annotation electric guiter (in-
cluding both clean and distorted) as the auxiliary
label. We use the MFCC kernel as feature for main task
and the last.fm kernel as feature for auxiliary task.
Following Barrington et al. (2008), we test our method
CMHA with ten-fold CV and use AUC as the perfor-
mance measure. Barrington et al. (2008) reported re-
sults using MKL on combining four kernels including
the MFCC kernel and the last.fm kernel. To be fair in
comparison, we also apply MKL and LPB (section 4.1.3)
only using these two kernels as that in CMHA. Regu-
larization parameters are chosen as described above.
As the results shown in Table 3, our method can still

SAvailable at http://mkl.ucsd.edu/sites/default/
files/calb00.tgz
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slightly outperform MKL and LPB when generalized to
a new application.

Table 3: AUC’s (%) of Various Methods on Two Music
Genre Recognition Tasks

Methods CMHA MKL LPB (Barrington 2008)
electronica 90.53 | 89.03 | 88.27 86
alternative 81.99 81.83 81.21 81

5 Related Work

Several attempts have been made to integrate het-
erogenous data sources with MKL (Lanckriet et al.,
2004), its p-norm extension (Kloft et al., 2009), and
LPB (Demiriz et al., 2002; Gehler and Nowozin, 2009)
for single task learning. In this study, we combine
and extend these ideas to multi-task learning. In
our model, Lagrange multipliers for different kernels
can be different, unlike those in MKL which are re-
quired to be the same for all kernels. LPB (Demiriz
et al., 2002) also allows different multipliers for dif-
ferent kernels (Gehler and Nowozin, 2009) and has
been shown to achieve superior performance for im-
age classification by combining heterogeneous feature
spaces (Gehler and Nowozin, 2009). Our work, how-
ever, is different from Demiriz et al., (2002) mainly in
two aspects: (a) the bound obtained by Demiriz et al.
(2002) is from covering numbers, while our formulation
is derived from Rademacher complexity; and (b) LPB
optimizes each auxiliary classifier first, and combines
their decisions later, thus resulting in an ensemble of
auxiliary classifiers. Our model (P1), on the other
hand, optimizes the auxiliary classifiers and builds a
weighted combination for the main task simultane-
ously. This also differentiates our model from A-SVM
(Yang et al., 2007) and the gating network approach
(Bonilla et al., 2007). Furthermore, A-SVM focuses on
homogeneous input space and computes the weights
of auxiliary classifiers using unlabeled data and the
gating network approach is designed to utilize task-
specific features that are the same for all data from
one task and are from a homogeneous space across all
tasks.

Modeling task relatedness has attracted lots of in-
terests because it is a critical factor allowing multi-
task learning to outperform single task learning. In
multi-task kernel (Evgeniou and Pontil, 2004; Evge-
niou et al., 2006) and its similar models (Daumé,
2007; Finkel and Manning, 2009) task relatedness
is modeled in the following way: let the main task
classifier be h, the task relatedness is captured by
[h —1/(m +1) 74 w;||. However, in our problem,
the A}’s are different and therefore the average term
1/(m+1) ZZ’:{l wj is ill-defined (recall that w; € A}).
Simply combining all features from all tasks may not
always be a very competitive solution as shown in our
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experiments in contrast to the case of task-specific fea-
tures considered by Bonilla et al. (2007). Evgeniou et
al. (2006) briefly mentioned another solution mapping
all A}’s into one common space, but a practical appli-
cation of this approach is not shown by Evgeniou et
al. (2006). Our model, however, will not suffer from
this heterogeneous input space problem because it only
uses the predictions from the auxiliary classifiers. Ev-
geniou et al. (2006) didn’t consider this simple method
because of a slight difference between their problem
setting and ours: in our motivated application, for any
two tasks [ and r, both (z},y!) and (27, y) are from the
i-th training instance (lesion), while in previous meth-
ods (Evgeniou and Pontil, 2004; Evgeniou et al., 2006;
Finkel and Manning, 2009; Daumé, 2007), (z},4!) and
(«F,yr) are two i.i.d. training instances. Thus, previ-
ous models (Evgeniou and Pontil, 2004; Evgeniou et
al., 2006; Finkel and Manning, 2009; Daumé, 2007)
did not use z! (1 <1 < m) to predict the (m + 1)-
th task while our model uses that to predict the main
task (see Eq. (1)).

The techniques developed by Srebro and Ben-david
(2006), Ying and Campbell (2009), and Cortes et al.
(2009) for error bound analysis of MKL could be ap-
plied to handle the terms (2.b) and (2.c) of H; and
to improve the fourth term in the bounds of Theorem
1(i),(ii). However, the major difficulty in deriving the
error bounds of our model lies on the way to handle
the data-dependent term (2.d) of H;. We relax H;
to a form similar to the function classes considered by
Shivaswamy and Jebara (2010) and then use the land-
mark set method (Shivaswamy and Jebara, 2010) to
deal with data-dependent regularization terms.

6 Conclusions and Future Work

Viewing nonoperational features as auxiliary tasks was
initially proposed by Caruana (1997). Starting from
the simple idea of expressing the main task classifier
as a weighted sum of the prediction values of the aux-
iliary classifiers, we devise a learning framework (with
proven error bounds) that allows the use of nonop-
erational features. When the method is applied to
skin cancer screening we obtain very encouraging re-
sults. One immediate extension of our model is to
incorporate unlabeled data as that in co-training and
multi-view learning. Obtaining shaper error bounds
and hyperparameter selection for our model and LPB
are also interesting future topics.
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APPENDIX-SUPPLEMENTARY
MATERIAL

To convert P1 into a convex optimization problem,
we can simply replace w; , v; (1 <1 < m+ 1), and
¢ (1<i<nandl<I<m)with w@,/d;, 0/d;, and
ff»/dl, respectively. If d; = 0, we define a/d; = co when
a # 0, and a/d; = 0 when a = 0. Omitting the hat
notation in w, v, and é for simplicity, P1 becomes

Z ||71lH2 Z Ci||wi )
wv,EdQ d; l 1 d;
L wmal® | 1~ (€)? - 1
il - C m+ 3
o o +2;; a oXEt) ®
st yi(w/ gi(a}) > di— ¢, 1<I<m; 1<i<n
(4)
m+1
gD (it w)dn(a)) =1 - 1<i<n
=1
(5)
d>0, d]f <1, £>0 (6)

Now it is clear from P2 that the quadratic error
weighted by ‘d’ (see Eq. 2.d) makes it easy to for-
mulate a convex problem. Without the ‘d’ in Eq.
(2.d), the error terms for auxiliary tasks in P2 be-
come (Ef)Q /d? which is not convex. It is also impor-
tant to note that analytically eliminating ‘d’ in P2 is
not so simple as that in MKL (nor its p-norm variant
considered by Micchelli and Pontil (2007)) with the
technique proposed by Rakotomamonjy et al. (2008),
and Micchelli and Pontil (2007), because ‘d’ presents
in both the objective function and the auxiliary task’s
constraint of P2.

Fixing d, we can solve the partial Lagrangian w.r.t.
w, v, and £, and we obtain the semi-infinite program-
ming as follows:

P3 min p s.t. d >0,
d,p

T T T
s, dpe’ e )a
m+41

(Saa)

for all « satisifying 0 < a, and ™" < C

ldll; <1,

and p > (dleT,dQe

where o« is the Lagrange multiplier vector such that

o — ((QZ)EZJ{;))7 and for each [, a! = (( )E?)1)>
and
o = (@) (ko ) ) s

i(amn)’ (m o (ym+1(ym+1)T)> i

T
+ C%(al) (Kl o (yl(ym+1)T)>a7n+1, where

Cr=1/C;+1,for 1 <I<m. Whenl=m+1,

T
Ot = (am+1> (Km+10 (ym+1(ym+1)T>>am+17

[Pk

where “o” denotes the element-wise product between

two matrices.



