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Abstract

Statistical anomaly detection typically fo-
cuses on finding individual point anomalies.
Often the most interesting or unusual things
in a data set are not odd individual points,
but rather larger scale phenomena that only
become apparent when groups of points are
considered. In this paper, we propose gener-
ative models for detecting such group anoma-
lies. We evaluate our methods on synthetic
data as well as astronomical data from the
Sloan Digital Sky Survey. The empirical re-
sults show that the proposed models are ef-
fective in detecting group anomalies.

1 Introduction

Given a data set, anomaly/novelty detection aims at
discovering events that ‘surprise’ us, since they may
have scientific and practical value. We consider the
unsupervised detection problem, in which we do not
know beforehand which data is normal and which is
not. These problems are very common when we have
unexplored large-scale data sets, which are more and
more frequent thanks to the ever-increasing computing
power and ubiquitous data sources.

Most anomaly detection research focuses on finding
unusual data points. Nonetheless, in many applica-
tions we are more interested in finding group anoma-
lies. One type of group anomalies is just a group of in-
dividually anomalous points. A more interesting, and
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often more difficult case is where the individual data
points are normal, but their distribution as a group is
unusual. The contribution of this paper is to propose
methods for detecting both kinds of group anomalies.

Our motivating application is anomaly detection for
astronomical data. Contemporary telescopes, such as
the Sloan Digital Sky Survey (SDSS)1, produce a vast
amount of data. SDSS uses a dedicated telescope to
scan the sky and gather astrometric, photometric, and
spectroscopic data for celestial objects. The task of
finding interesting and scientifically valuable objects
in this large pool is of great importance. Moreover,
unusual clusters of objects are also valuable for sci-
entific research, since objects in a spatial cluster play
important roles in each other’s evolution, and the dis-
tributions of their features gives insight into how they
developed. Similar problems exist in many other do-
mains, such as text and image processing, where ag-
gregated behaviors are of interest.

To solve the group anomaly detection problem, we
start from a standard statistical anomaly detection ap-
proach of creating a generative model for the data,
and then we flag the data that are relatively unlikely
to have been generated by that model. We propose
two hierarchical probabilistic models for this purpose.
We treat each group of instances as a ‘bag-of-things’,
and assume that the points in each group are ex-
changeable. According to the De Finetti ’s theorem
(de Finetti, 1931), the joint distribution of every in-
finitely exchangeable sequence of random variables can
be represented with mixture models, thus we will ap-
ply a hierarchical mixture model to represent the data.
Having estimated the model, we propose two different
scoring functions to detect various anomalies.

The first model is a direct extension of the Latent

1http://www.sdss.org
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Dirichlet Allocation (LDA) model by Blei et al. (2003).
We assume that each individual data point falls into
one of the several topics, and each group is a mixture
of topics. The original LDA applies conditional multi-
nomial distributions for generating observations. This
is not suitable for us when we have real, vector-valued
observations. Hence, we generalize LDA to other para-
metric distributions such as multivariate Gaussians,
which determine the probability of our observations
given the corresponding topics. In the astronomical
example, each topic can be interpreted as a certain
type of galaxy, and each group consists of several types
of galaxies. We expect our method to identify groups
that contain anomalous points, and those whose mem-
bers are normal, but the topic distribution is unusual.

A drawback of the model above is that it uses a Dirich-
let distribution to generate topics distributions. This
Dirichlet is uni-modal peaking at a single topic distri-
bution2, and thus unable to generate multiple normal
topic distributions. In other words, there is essentially
only one normal topic distribution for the whole data
set. This is often too restrictive for real data sets.
To address this problem, we propose a second model
in which the topic distributions come from a pool of
multinomial distributions. This allows multiple types
of normal groups that have different topic distribu-
tions. Efficient learning algorithms are derived for
both models based on variational EM techniques. We
demonstrate the performance of the proposed meth-
ods on synthetic data sets, and show they are able to
identify anomalies that cannot be found by other gen-
erative model based detectors. Empirical results are
also shown for the SDSS astronomical data.

The paper is structured as follows. In Section 2 we
summarize some related work. We formally define the
problem set-up in Section 3. The proposed models and
how we can learn them are described in Section 4. Ex-
perimental results both on simulated problems and on
real astronomical data are shown in Section 5. We fin-
ish with a short discussion and conclusions (Section 6).

2 Related Work

Typically, the notion of ‘anomaly’ depends heavily on
the specific problem, and various algorithms have been
developed for their own purposes. Quite often they
are based only on the simple idea that a data point
is anomalous if it falls in a low density region of the
feature space. For example, Zhao (2009) uses the dis-
tances to nearest neighbors as an anomaly score. Bre-
unig et al. (2000) consider the case of non-uniform den-
sity of the normal data, and propose a local outlier

2For Dirichlet parameters greater than 1. In other cases
restrictions also exist. See Section 5 for examples.

factor for detecting anomalous instances. We can also
explicitly estimate the underlying density function and
use statistical tests to find anomalies. To see a more
comprehensive summary, readers can refer to the re-
cent survey by Chandola et al. (2009).

Detecting group anomalies is not a new problem, but
only a few results have been published on it. One
idea is to represent each group as a point, and then
apply point anomaly detectors for these groups. To
do this, we need to define a set of features for the
groups (Chan and Mahoney, 2005; Keogh et al., 2005).
A problem with this approach is that it relies heavily
on feature engineering, which can be domain specific
and difficult. We believe that directly modeling the
generative process of the data is more natural, and
can help us explore the data sets.

Another approach is to first identify the individual
anomaly points, and then try to find aggregations of
these points. Scan and segmentation methods are of-
ten used for this purpose. On image data, Hazel (2000)
applied a point anomaly detector to find anomalous
pixels, and then segment the image to find the anoma-
lous group of pixels. Das et al. (2008) first detects in-
teresting points, and then find subsets of the data with
a high ratio of anomalous points. Das et al. (2009) pro-
posed a scan statistic-based method to find anomalous
subsets of points. In these approaches the anomalous-
ness of a group is determined by the anomalousness of
its member points, therefore they cannot find anoma-
lous groups that are unusual only at the group level.

3 Formal Problem Definition

In this section we define formally our problem. For
simplicity we will explain the set-up by borrowing
terms from astronomy, but our solution to this prob-
lem can be used anywhere where the observations can
be naturally clustered into groups.

Assume that we have M groups denoted by
G1, . . . ,GM . Each group Gm consists of Nm objects,
denoted by Xm,n ∈ Rf , n = 1, . . . , Nm. These are
our observations, e.g. Xm,n is the f = 1, 000 dimen-
sional spectrum of the nth galaxy in the mth galaxy
group, where these galaxy groups were created based
on the spatial positions of the galaxies. Assume fur-
ther that these Xm,n feature vectors are generated
by a mixture of K Gaussian distributions, that is,
each object (galaxy) Xm,n belongs to one of these K
types, and if we know its type Zm,n ∈ {1, . . . ,K},
then Xm,n ∼ N (βµ

Zm,n
, βΣ

Zm,n
). β = {βµ

k , β
Σ
k }Kk=1 is a

dictionary of the possible mean values and covariance
matrices for the above mentioned Gaussian mixture,
where βµ

k ∈ Rf , and βΣ
k ∈ Rf×f is a positive semi defi-

nite matrix. For example, when K = 3, then we might
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think of these objects as ‘red’, ‘blue’, and ‘emissive’
galaxies, and each group Gm is a set of Nm objects,
each object can be one of the K different types. Intro-
duce the SK = {s ∈ RK |sk ≥ 0,

∑K
k=1 sk = 1} nota-

tion for theK-dimensional probability simplex, and let
χt ∈ SK for all t = 1, . . . , T , and χ = {χ1, . . . , χT } de-
note the set of T possible non-anomalous distributions
(proportions) of the K different objects (red, blue, and
emissive galaxies) in the M groups.

Now we can ask the question whether in group Gm the
distribution of these red, blue, and emissive galaxies
looks normal, that is, they look similar to a distribu-
tion in χ = {χ1, . . . , χT }, or we have found a group,
where this distribution seems far from the distribu-
tions that we can see in the other groups.

In the following sections we will propose two generative
probabilistic models that can help us to answer this
question and detect anomalous groups.

4 The Hierarchical Models

In this section we introduce our generative models that
describe the normal, that is the non-anomalous data,
and then we show how we can detect anomalous groups
using these models. Our proposed models are inspired
by the LDA, however, there are very significant differ-
ences that we will explain later.

4.1 The Uni-Modal Model

The LDA model is a generative probabilistic model
originally proposed for modeling text corpora. First
we briefly review this model, and then explain how
we can extend this discrete model to be able to find
anomalous groups in a data set given by any real
vector-valued feature representation.

In the original LDA model the data set is a text corpus,
that is a collection of M documents. Each document
Gm is a set of Nm words, and each document is repre-
sented by a randommixture over latent topics, which is
characterized by a distribution over words. Formally,
let Dir(π) denote the Dirichlet distribution with pa-
rameter π, and let M(θ) be the multinomial distri-
bution with parameters θ ∈ SK . In the LDA model
given some nonnegative hyperparameters π ∈ RK

+ , we
generate first some θm ∈ SK (m = 1, . . . ,M) from the
Dir(π) distribution (θm ∼ Dir(π)). Having these K
dimensional θm vectors (topic distributions) we gener-
ate Zm,n ∼ M(θm) variables (n = 1, . . . , Nm) indicat-
ing which topic is active out of K when we generate
the wordXm,n ∼ P (·|Zm,n, β). Here β = {β1, . . . , βK}
is a dictionary of K f -dimensional probability vectors
(βk ∈ Sf ), and P (·|Zm,n, β) = M(βZm,n

) is a multino-
mial distribution with parameters βZm,n . While this

model has been shown to be very successful for mod-
eling discrete data, such as text corpora, in its original
form it cannot be used for modeling real, vector-valued
observations. Thus we modify this model slightly. In-
stead of using M(βZm,n) for the observations, we as-
sume βi = {βµ

i , β
Σ
i } to be a mean value (βµ

i ∈ Rf )
and a covariance matrix (βΣ

i ∈ Rf×f ), and our obser-
vations are given by:

Xm,n ∼ P (·|Zm,n, β) = N (βµ
Zm,n

, βΣ
Zm,n

).

We call this model Gaussian-LDA (GLDA).

With GLDA we can model real, vector-valued obser-
vations, but it has a serious problem when we want to
apply it for group anomaly detection. GLDA learns
that each group is a certain mixture of K Gaussian
components, but it also assumes that there is only one
“best” mixture (topic distribution) for all groups, be-
cause Dir(π), the distribution of topic distributions
θ ∈ SK , is uni-modal i.e. it peaks at a single point.
While this is acceptable when used as the prior in
LDA, it is too restrictive when used to model multi-
modal distributions of topic distributions. To address
this issue we extend the GLDA model with the previ-
ously mentioned χ term, the set of the typical topic dis-
tributions (proportions of the Gaussian components).

4.2 The Multi-Modal Model

In this section we introduce the Mixture of Gaussian
Mixture Model (MGMM) model that extends GLDA
with a set of typical topic mixtures/distributions,
and hence can resolve the previously mentioned uni-
modality problem. The graphical representation of
this new model can be seen in Figure 1.
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Figure 1: The MGMM Model

Let again χt ∈ SK for all t = 1, . . . , T , and χ =
{χ1, . . . , χT } denote the set of possible non-anomalous
probability distributions of the K different topics (red,
blue, and emissive galaxies) in the M groups. Let
π ∈ ST denote a distribution vector on the set χ, and
let β = {βµ

k , β
Σ
k }Kk=1 be a dictionary of the possible

mean values and covariance matrices.

The generative process of the MGMM model is de-
scribed in Algorithm 1. Note that this model is differ-
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Algorithm 1 Generative process for MGMM

for m = 1 to M do
• Choose a group type {1, . . . , T} ∋ Ym ∼ M(π)
• Let the topic distribution θm

.
= χYm ∈ SK .

• Choose Nm, the number of points in the group
Gm. (Nm can be random, e.g. sampled from a
Poisson distribution).
for n = 1 to Nm do
• Choose a galaxy type Zm,n ∈ {1, . . . ,K},
Zm,n ∼ M(θm).
• Generate a galaxy feature Xm,n ∈ Rf ,
Xm,n ∼ P (Xm,n|β, Zmn) = N (βµ

Zm,n
, βΣ

Zm,n
).

end for
end for

ent from the other mixture of Gaussian mixture mod-
els introduced by Li (2001), since we require that the
points in the same group should come from a single
Gaussian mixture model.

Our strategy for group anomaly detection is as follows.
Using the training set {Xm,n}, we first learn the hy-
perparameters {π,χ,β} of the model. If a group G
is not compatible with our model, then it will lead to
a small likelihood P (G|π, χ, β) compared to that of
the other groups, and we can detect it as an anoma-
lous group. Unfortunately, direct maximization of the
likelihood function, as in many hierarchical models, is
intractable, thus we resort to variational EM methods
(Jordan, 1999) for inference and learning.

4.3 Inference and Learning

For the sake of brevity, introduce the shorthands
Gm = {Xm,n}Nm

n=1, and Zm = {Zm,n}Nm
n=1. Given the

observations and latent variables, the complete likeli-
hood of a group Gm is as follows.

P (Ym, Zm,Gm|π, χ, β) (1)

= P (Ym|π)
Nm∏
n=1

P (Zm,n|Ym, χ)P (Xm,n|Zm,n, β)

= M (Ym|π)
Nm∏
n=1

M (Zm,n|Ym, χ)P (Xm,n|Zm,n, β)

= πYm

Nm∏
n=1

χ(Ym,Zm,n)N
(
Xm,n|βµ

Zm,n
, βΣ

Zm,n

)
.

In what follows, instead of using

N
(
Xm,n|βµ

Zm,n
, βΣ

Zm,n

)
we will use the more general

P (Xm,n|Zm,n, β) term. The marginal likelihood of

the observations Gm = {Xm,n}Nm
n=1 is

P (Gm|π, χ, β) =
T∑

t=1

πt

Nm∏
n=1

K∑
k=1

χtkP (xmn|zmn, β).

To learn the hyperparameters {π, χ, β} using maxi-
mum likelihood estimation, we want

argmaxπ,χ,β
∏M

m=1
P (Gm|π, χ, β).

The traditional EM method is intractable here, thus
we make use of the variational approach. That is, in-
stead of maximizing the exact likelihood, we will only
maximize a lower bound of it.

Denote the hyperparameters by Θ = {π, χ, β}.
According to the Jensen inequality, for any
{qm(Y, Z)}Mm=1 set of distributions we have that∑M

m=1
logP (Gm|Θ)

≥
M∑

m=1

∫
d(Y, Z)qm(Y, Z) log

P (Y,Z,Gm|Θ)

qm(Y,Z)

=
M∑

m=1

Eqm [logP (Y,Z,Gm|Θ)]− Eqm [log qm(Y, Z)],

3with equality iff qm(Y, Z) = P (Y, Z|Gm,Θ).
This posterior distribution has difficult, intractable
form, thus instead of the direct maximization of∑M

m=1 logP (Gm|Θ), we will solve only the

argmax
Θ,{qm}

M∑
m=1

Eqm [logP (Y, Z,Gm|Θ)]− Eqm [log qm] (2)

problem, where we look for the surrogate distribution
qm in a special parametric form:

q(Ym, Zm|γm, ϕm) = q(Ym|γm)
∏Nm

n=1
q(Zm,n|ϕm,n).

Here γm ∈ ST and ϕm,n ∈ SK are the variational pa-
rameters, and q(Ym|γm) = M(γm), q(Zm,n|ϕm,n) =
M(ϕm,n) are multinomial distributions. Using Eq. (1)
and Eq. (2), we have that the variational learning
problem we need to solve is

argmax{γm},{ϕm},Θ
∑M

m=1
Lm (γm, ϕm,Θ) ,

where Θ = {π, χ, β}, and Lm has the following form:

Lm (γm, ϕm;π, χ, β) =

= Eq[logP (Ym, Zm,Gm|π, χ, β)]− Eq[log q (Ym, Zm)]

= Eq[logP (Ym|π)] +
Nm∑
n=1

Eq[logP (Zm,n|Ym, χ)]

+

Nm∑
n=1

Eq[logP (Xm,n|Zm,n, β)]− Eq[log q (Ym|γm)]

−
Nm∑
n=1

Eq[log q (Zm,n|ϕm,n)].

3Eq denotes the expected value w.r.t. distribution q.
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We need to maximize this Lm function. Here we just
show the end results, the details of the calculations
can be found in the Appendix.

ϕ∗
m,n,k =

exp

(
T∑

t=1
γm,t logχt,k + logP (Xm,n|βk)

)
K∑
j=1

exp

(
T∑

t=1
γm,t logχt,j + logP (Xm,n|βj)

) ,

γ∗
m,t =

exp

(
log πt +

N∑
n=1

K∑
k=1

ϕm,n,k logχt,k

)
T∑

τ=1
exp

(
log πτ +

N∑
n=1

K∑
k=1

ϕm,n,k logχτ,k

) ,

π∗
t =

(
T∑

τ=1

M∑
m=1

γm,τ

)−1 M∑
m=1

γm,t,

χ∗
t,k = (

K∑
j=1

M∑
m=1

γm,t

Nm∑
n=1

ϕm,n,j)
−1

M∑
m=1

γm,t

Nm∑
n=1

ϕm,n,k.

Finally, to calculate β, we need to solve

argmax
βk

M∑
m=1

Nm∑
n=1

K∑
k=1

ϕm,n,k logP (Xm,n|βk).

Specially, when P (Xm,n|βk) = N
(
Xm,n|βµ

k , β
Σ
k

)
,

then learning
(
βµ
k , β

Σ
k

)
is the same as fitting Gaussians

in a mixture of Gaussians model with ϕm,n,k being the
mixture proportions (Mclachlan and Krishnan, 1996).

4.4 Detection Criterions

In this section we discuss how to define scoring func-
tions that can detect group anomalies. Having learned
the parameters Θ, a natural choice is to score a group
by its likelihood under the model. We define the likeli-
hood score of a group G simply as − lnP (G|Θ). This
likelihood score is able to find anomalous groups that
either contain anomalous points or have strange group-
level behaviors i.e. topic distributions.

Despite its generality, the likelihood score focuses more
on the effects of individual points, instead of the
groups’ topic distributions. For example, one single
extreme outlier can inflate the anomaly score of the
whole group to infinity, and hence we find that the
effect of anomalous topic distributions are often over-
shadowed by anomalous points. Moreover, the like-
lihood score might misclassify some cases. For exam-
ple, suppose that the model learned two topics {T1, T2}
that both appear with probability 1/2. Then any group
that consists of m1 topics T1 and m2 topics T2 has the

same likelihood: 1/2
(m1+m2). However, if we observe

a group that only contains topic T1, it is clearly more
anomalous than those that have both topics.

To overcome this difficulty, we propose to score only
the topic distribution in each group: we first infer the
posterior distributions of the topics given the data,
and then compute the expected likelihood of the topic
distributions. Formally, for the MGMM model the
topic score is defined as

EZm [− lnP (Zm|Θ)] = −
∑
Zm

P (Zm|Θ,Gm) lnP (Zm|Θ),

(3)
where lnP (Zm|Θ) = ln

∑
t πtM(Zm|χt) is a mixture

of multinomials. This score finds groups whose topic
variables Zm are not compatible with any of the stereo-
typical topic distributions in χ learned by MGMM. For
GLDA, we can similarly define the topic score as

Eθm [− lnP (θm|Θ)] = −
∫
θm

P (θm|Θ,Gm) lnP (θm|Θ) dθ.

(4)
In practice, we use the topic score to find anomalous
group-level behaviors, and the likelihood score to find
aggregations of anomalous points. We can also use a
weighted combination of the likelihood score and the
topic score depending on the types of anomalies we are
looking for.

To simplify computation, we use the variational distri-
butions qm(·) to replace the corresponding posteriors
P (Zm|Θ,Gm) in (3) and P (θm|Θ,Gm) in (4). The in-
tegrations then can be done by Monte Carlo method
using samples drawn from the approximate posteriors.

4.5 Model Selection

One limitation of the MGMM model is that T and K
need to be assigned by the user. To automatically de-
termine their values, we can use either model scoring
methods such as BIC (Schwarz, 1974), or AIC (Akaike,
1974), or we can resort to nonparametric Bayesian
modeling. In this paper we investigate the first way
for model selection. The definition of BIC score is
given by BIC (X,Θ) = lnL (X,Θ) − 1

2 ln (|X|) |Θ|,
where | · | stands for the number of free parameters.
Similarly, the AIC score is given by AIC (X,Θ) =
lnL (X,Θ) − |Θ|. We can then use these two scor-
ing functions to perform a two dimensional search for
the best T and K values.

5 Numerical Experiments

We show some experimental results to demonstrate
the effectiveness of the proposed GLDA and MGMM
models. We compared them with two other point-wise
detectors: a simple Gaussian mixture model (GMM)
based density estimator, which scores points by their
negative log-density, and theKNN algorithm proposed
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by Zhao (2009), which scores points by their distance
to their nearest neighbors. The anomaly score of a
group from GMM and KNN is the mean anomaly
scores of its member points. For GLDA and MGMM,
we combine the likelihood score and the topic score to
detect both point and group anomalies by first scaling
both scores to fit the range [0, 1] and then add them.

5.1 Synthetic Problems

First, we test the effectiveness of the algorithms on
synthetic data sets. These experiments are designed
particularly to demonstrate the differences between
the models and scoring functions.

We generate the data sets according to the process
described in Algorithm 1. The points are sampled from
three 2-dimensional Gaussian components (i.e. K =
3), whose means are [−1.7,−1], [1.7,−1], [0, 2], and the
covariances are all Σ = 0.2× I2, where I2 denotes the
identity matrix. These components are the ‘topics’,
i.e. the types of the galaxies. Then we design two
normal group types (T = 2), which are specified by
two different sets of mixing weights (χ1, χ2 ∈ S3). We
generated M = 50 groups, and Nm ∼ Poisson(100)
points in each. The resulting points individually are
all normal, w.r.t. other points.

To test the detection performance, we inject two types
of anomalies. The first kind is a group of point
anomalies, which is a group of points sampled from
N ([0, 0], I2) (the anomalous topic). We corrupted one
group with this anomaly. The second kind is the group
anomaly, where the points are individually normal, but
together as a group look anomalous. We construct
these anomalies by using points from the normal top-
ics, but their topic distributions are different from the
normal ones (χ1, χ2).

First, we test the performances on a data set
with a uni-modal distribution of topic distributions,
which has only one normal topic distribution χ =
(0.33, 0.33, 0.33), i.e. there are about the same amount
of points from each topic in a normal group. We
corrupt two more groups with injected group anoma-
lies, whose topic distributions are (0.85, 0.08, 0.07) and
(0.04, 0.48, 0.48), respectively. Thus overall we corrupt
3 groups (one point anomaly, and two group anoma-
lies) out of the M = 50 groups.

The detection results are shown in Figure 2. Each
box contains a group, and we show 12 out of the
50 groups. We draw black boxes for normal groups,
green boxes for groups of point anomalies, and yel-
low/magenta boxes for group anomalies. The points
of the groups are plotted and colored according to the
anomaly scores (darker color indicates higher anomaly
score). The anomaly detection is successful, if the

MGMM

GLDA

GMM

KNN

Figure 2: Detection results of MGMM, GLDA, GMM,
and KNN methods on a data set with a uni-modal
distribution of topic distributions. Inject anomalies
are in the lower-left corner of each plot.

green, yellow, magenta boxes contain dark points, and
the black boxes contain light gray points.

We can see that the group of point anomalies is easily
identified by all methods, but the point-wise detectors
(GMM, KNN) failed to detect the group anomalies,
since these groups contain points that are individually
normal. On the other hand, the proposed MGMM and
GLDA models both examine the topic distributions
of each group, and are able to discover the eccentric
behaviors at the group level.

Next, we show that the uni-modal GLDA is not ef-
fective in more general cases. We create a data set
with a multi-modal distribution of topic distributions.
The two normal group types have topic distributions
χ1 = (0.33, 0.64, 0.03) and χ2 = (0.33, 0.03, 0.64), and
the group type distribution is π = (0.48, 0.52). Ac-
cording to these parameters, a normal group should
either consist mainly of topics 1&2, or mainly of top-
ics 1&3. We corrupt three groups again in the same
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MGMM

GLDA

Figure 3: Detection results of MGMM and GLDA on
a data set with a multi-modal distribution of topic
distributions. The uni-modal GLDA breaks down on
this data set.

way as in the previous experiment. The detection re-
sults are shown in Figure 3. Results from GMM and
KNN are not shown because they failed again on this
task and produced similar results as in Figure 2. The
GLDA model can no longer effectively detect all the
group anomalies because the uni-modal Dirichlet can-
not accommodate multiple normal group types. Lack-
ing of this flexibility, GLDA learned a model (Fig-
ure 4b) that misclassified one group anomaly as nor-
mal. On the other hand, MGMM is able to learn
the true model (Figure 4c) and detect all anomalies,
since its multi-modality admits multiple normal group
types.

(a) (b) (c)

Figure 4: (a): the Dirichlet distribution learned from
the uni-modal data. (b): the Dirichlet learned from
the multi-modal data. Observe that this distribution
is flat and assigns large probability to anomalous topic
distributions in the corner. (c): the shape of the multi-
modal distribution learned by MGMM.

Finally, we demonstrate the effects of the likelihood
score and the topic score in details. Figure 5a shows
the MGMM result on the multi-modal data using only
the likelihood score. The magenta anomaly (third box)
was misclassified because of the effect described in Sec-
tion 4.4. Figure 5b shows the MGMM result on the
uni-modal data using the topic score only: the green

MGMM Likelihood Score

(a)

MGMM Topic Score

(b)

Figure 5: Detection results of MGMM using different
scoring functions. (a): result using the likelihood score
only. (b): result using the topic score only.

anomaly (point anomalies) was missed. The reason
behind this is that the topic score only examines the
topic distribution without point-level details. In this
contrived example, the point anomalies happened to
be in the middle of the normal topics, so MGMM in-
fers that this group consists of equal amount of points
from each topic, which is exactly the normal behavior.
From this, we can see that the topic score only focuses
on the group-level behaviors. Combining it with the
likelihood score, we can detect both types of anoma-
lies.

5.2 Anomaly Detection in Astronomical Data

In this experiment, we use the algorithms on the Sloan
Digital Sky Survey (SDSS) data set to find group
anomalies. SDSS produces a large amount of data for
celestial objects and gives them high-dimensional fea-
ture descriptions. Figure 6 shows one sample object
from SDSS. Here we are interested in the galaxies in
the SDSS. This subset contains about 7× 105 objects
that were identified by the SDSS pipeline as galax-
ies, and each object has a 4000-dimensional spectrum,
which we down-sampled to get a 1000-dimensional fea-
ture vector for each galaxy.

To find the spatial clusters of galaxies, we first con-
struct a neighborhood graph by adding edges between
nearby galaxies (closer than 1 megaparsecs), and then
treat the connected components in the graph as spatial
clusters. This step produces 505 spatial clusters (7530
galaxies), each cluster contains about 10–50 galaxies.
Then we reduced the 1000-dimensional features to 22-
dimensional vectors by PCA to preserve 95% of the
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Figure 6: One object from the SDSS data set. The first
image is the photometric observation, and the second
image is the spectroscopic feature.

variance. This step helps the models get more reliable
estimates of the Gaussians and accelerates the com-
putation. For MGMM and GLDA, the topic score is
used since we only want to find group anomalies. For
all methods, we use BIC to select their parameters K
and T .

We presented the detection results by MGMM on this
data set to the astronomers and received positive feed-
backs. Using the settings as above, the top anomalies
found by MGMM are largely dense clusters of star-
forming galaxies and irregular galaxies. Their exis-
tence is rare and indicates ongoing large scale events.
We are still actively studying the meaning of them and
other anomalies we found.

To be able to get a statistically meaningful compari-
son of the algorithms, we again use artificial anomaly
injections due to the lack of labels. To evaluate the
ability to detect group anomalies, injections are con-
structed using randomly selected galaxies, so that they
look the same as the real data at the point-level, but
their topic distributions were different than those of in
the real groups. We compared the MGMM, GLDA,
and GMM models in this experiment. The perfor-
mances are measured by the average precision (AP)
and area under the ROC curve (AUC) of retrieving
the injected anomalies. In each run we inject 10 such
random anomalies, so that the whole data set con-
tains 515 groups. The results from 30 random runs
are shown in Figure 7.

We can see that MGMM and GLDA both signifi-
cantly outperforms the GMM model, whose perfor-
mance is close to a baseline detector returning uni-
formly random results. AUC performances indicate
that GLDA and MGMM tends to give the anomalies
high scores. Further, the AP of MGMM is much higher
than GLDA, showing that MGMM is able to detect
the top anomalies much earlier. Note that the perfor-
mances have large variances because each time the in-
jections are random and we only injected 2% anomaly
groups w.r.t. the whole data set. However, the im-
provement is significant. For the AP performances,
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Figure 7: Anomaly detection performance on the
SDSS galaxy cluster data.

paired t-tests gives significance values 4.9 × 10−11 for
GLDA vs. GMM and 1.6 × 10−8 for MGMM vs.
GLDA.

6 Discussion and Conclusions

In this paper we investigated how to use hierarchical
probabilistic models for the group anomaly detection
problem. Following the paradigm of topic modeling,
two models are proposed to capture the generative pro-
cess of both the individual points and the groups. The
first model, called Gaussian LDA (GLDA), is effective
for uni-modal group behaviors. Its extended version,
the MGMMmodel, can also handle multi-modal group
behaviors. The use of likelihood in group anomaly
detection has also been investigated. The proposed
scoring functions are able to detect both the point-
level and group-level anomalous behaviors. Our ex-
periments on both synthetic and real data sets show
that the proposed models are effective in characteriz-
ing the data, and detecting anomalies.

Our future plan is to apply full Bayesian treatment
for the current models, so that we can account for the
uncertainty of the parameters, and get better results in
the high-dimensional, small-sample scenarios. We can
also use non-parametric Bayesian techniques, such as
the Hierarchical Dirichlet Process (HDP) by Teh et al.
(2006) to implement automatic complexity control.
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