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Abstract

The support vector machine (SVM) is a
widely used tool for classification. Although
commonly understood as a method of find-
ing the maximum-margin hyperplane, it can
also be formulated as a regularized func-
tion estimation problem, corresponding to
a hinge loss function plus an ℓ2-norm reg-
ulation term. The doubly regularized sup-
port vector machine (DrSVM) is a variant of
the standard SVM, which introduces an ad-
ditional ℓ1-norm regularization term on the
fitted coefficients. The combined ℓ1 and
ℓ2 regularization, termed elastic net penalty,
has the property of achieving simultaneous
variable selection and margin-maximization
within a single framework. However, because
of the nondifferentiability of both the loss
function and the regularization term, there is
no efficient method available to solve DrSVM
for large-scale problems. Here we develop an
efficient algorithm based on the alternating
direction method of multipliers (ADMM) to
solve the optimization problem in DrSVM.
The utility of the method is illustrated using
both simulated and real-world data.

1 INTRODUCTION

Datasets with tens of thousands variables have become
increasingly common in many real-world applications.
For example, in the biomedical domain a microarray
dataset typically contains about 20,000 genes, while a
genotype dataset commonly includes half of a million
SNPs. Regularization terms that encourage sparsity
in coefficients are increasingly being used for simul-
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taneous variable selection and prediction (Tibshirani,
1996; Zou and Hastie, 2005).

A widely used strategy for imposing sparsity on regres-
sion or classification coefficients is to use the ℓ1-norm
regularization. Perhaps the most well-known example
is the least absolute shrinkage and selection operator
(lasso) method for linear regression. The method min-
imizes the usual sum of squared errors while penalizing
the ℓ1 norm of the regression coefficients (Tibshirani,
1996). Due to the nondifferentiability of the ℓ1 norm,
lasso is able to perform continuous shrinkage and auto-
matic variable selection simultaneously. Although the
lasso method has shown success in many situations and
has been generalized for different settings (Zhu et al.,
2003; Lin and Zhang, 2006), it has several limitations.
First, when the dimension of the data (𝑝) is larger
than the number of training samples (𝑛), lasso selects
at most 𝑛 variable before it saturates (Efron et al.,
2004). Second, if there is a group of variables among
which the pairwise correlations are very high, the lasso
tends to select only one variable from the group and
does not care which one is selected.

The elastic net penalty proposed by Zou et al. in Zou
and Hastie (2005) is a convex combination of the lasso
and ridge penalty, which has the characteristics of both
the lasso and ridge regression in the regression setting.
More specifically, the elastic net penalty simultane-
ously does automatic variable selection and continu-
ous shrinkage, and it can select groups of correlated
variables. It is especially useful for “large 𝑝, small 𝑛”
problems, where the “grouped variables” situation is a
particularly important concern and has been addressed
many times in the literature (Hastie et al., 2000, 2003).

The idea of using ℓ1-norm constraints to automati-
cally select variables has also been extended to classi-
fication problems. Zhu et al. (2003) proposed an ℓ1-
norm support vector machine, whereas Wang et al.
(2006) proposed a SVM with the elastic net penalty
term, which they named doubly regularized support
vector machine (DrSVM). By using a mixture of the
ℓ1-norm and the ℓ2-norm penalties, DrSVM is able to
perform automatic variable selection as the ℓ1-norm
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SVM. Additionally, it also encourages highly corre-
lated variables to be selected (or removed) together,
and thus achieves the grouping effect.

Although DrSVM has a number of desirable features,
solving DrSVM is, however, non-trivial because of the
nondifferentiability in both the loss function and the
regularization term. This is especially problematic
for large scale problems. To circumvent this diffi-
culty, Wang et al. (2008) proposed a hybrid huberized
support vector machine (HHSVM), which uses a hu-
berized hinge loss function to approximate the hinge
loss in DrSVM. Because the huberized hinge loss func-
tion is differentiable, HHSVM is easier to solve than
DrSVM. Wang et al. (2008) proposed a path algorithm
to solve the HHSVM problem. However, because the
path algorithm requires tracking disappearance of vari-
ables along a regularization path, it is not easy to im-
plement and still does not handle large-scale data well.

Our main contribution in this paper is to introduce
a new algorithm to directly solve DrSVM without re-
sorting to approximation as in HHSVM. Our method
is based on the alternating direction method of mul-
tipliers (ADMM) (Gabay and Mercier, 1976; Glowin-
ski and Marroco). We demonstrate that the method
is efficient even for large-scale problems with tens of
thousands variables.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a description of the SVMmodel with
elastic net penalty. In Section 3, we derive an iterative
algorithm based on ADMM to solve the optimization
problem in DrSVM and prove its convergence prop-
erty. In Section 4, we benchmark the performance of
the algorithm on both simulated and real-world data.

2 SUPPORT VECTOR MACHINES
WITH ELASTIC NET PENALTY

2.1 SVM as regularized function estimation

Consider the classification of the training data
{(x𝑖, 𝑦𝑖)}𝑛𝑖=1, where x𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝)

𝑇 are the pre-
dictor variables and 𝑦𝑖 ∈ {−1, 1} is the correspond-
ing class label. The support vector machine (SVM)
was originally proposed to find the optimal separat-
ing hyperplane that separates the two classes of data
points with the largest margin (Vapnik, 1998). It can
be equivalently reformulated as an ℓ2-norm penalized
optimization problem:

min
𝛽0,𝛽

1

𝑛

𝑛∑
𝑖=1

(1− 𝑦𝑖(𝛽0 + x𝑇
𝑖 𝛽))+ +

𝜆

2
∥𝛽∥22, (1)

where the loss function (1−⋅)+ := max(1−⋅, 0) is called
the hinge loss, and 𝜆 ≥ 0 is a regularization parameter,

which controls the balance between the ‘loss’ and the
‘penalty’.

By shrinking the magnitude of the coefficients, the ℓ2
norm penalty in (1) reduces the variance of the esti-
mated coefficients, and thus can achieve better pre-
diction accuracy. However, the ℓ2 norm penalty can-
not produce sparse coefficients and hence cannot au-
tomatically perform variable selection. This is a ma-
jor limitation for applying SVM to do classification in
some high-dimensional data, such as gene expression
data from microarrays (Guyon et al., 2002; Mukherjee
et al., 1999), where variable selection is essential for
both achieving better prediction accuracy and provid-
ing reasonable interpretations.

To include variable selection, Zhu et al. (2003) pro-
posed an ℓ1-norm support vector machine,

min
𝛽0,𝛽

1

𝑛

𝑛∑
𝑖=1

(1− 𝑦𝑖(𝛽0 + x𝑇
𝑖 𝛽))+ + 𝜆∥𝛽∥1, (2)

which do variable selection automatically via the ℓ1
penalty. However, it shares similar disadvantages as
the lasso method for ‘large 𝑝, small 𝑛’ problems, such
as selecting at most 𝑛 relevant variables, and disre-
garding group effects. This is not satisfying for some
application problems. In microarray analysis, we al-
most always have 𝑝 ≫ 𝑛. Furthermore, the genes in
the same biological pathway frequently show highly
correlated expression; it is desirable to identify all, in-
stead a subset, of them for both providing biological
interpretations and building prediction models.

One natural way to overcome the limitations outlined
above is to apply the elastic net penalty to the SVM:

min
𝛽0,𝛽

1

𝑛

𝑛∑
𝑖=1

(1−𝑦𝑖(𝛽0+x𝑇
𝑖 𝛽))++𝜆1∥𝛽∥1+ 𝜆2

2
∥𝛽∥22, (3)

where 𝜆1, 𝜆2 ≥ 0 are regularization parameters. The
model was originally proposed by Wang et al. (2006),
and was named doubly regularized SVM (DrSVM).
However, to emphasize the role of elastic net penalty,
we refer to this model (3) as elastic net SVM or simply
ENSVM in the rest of the paper. Due to the properties
of the elastic net penalty, the optimal solution of (3)
will enjoy both the sparse and the grouping effect the
same as the elastic net method in regression.

2.2 RELATED WORK

A similar model has been proposed by Wang et al.
(2008) who have applied the elastic net penalty to the
huberized hinge function and proposed the HHSVM:

min
𝛽0,𝛽

1

𝑛

𝑛∑
𝑖=1

𝜙(𝑦𝑖(𝛽0 + x𝑇
𝑖 𝛽)) + 𝜆1∥𝛽∥1 + 𝜆2

2
∥𝛽∥22, (4)
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where 𝜙 is the huberized hinge loss function:

𝜙(𝑡) =

⎧⎨⎩ 0, for 𝑡 > 1,
(1− 𝑡)2/2𝛿, for 1− 𝛿 < 𝑡 ≤ 1,
1− 𝑡− 𝛿/2, for 𝑡 ≤ 1− 𝛿

(5)

with 𝛿 > 0 being a pre-specified constant. The main
motivation for Wang et al. (2008) to use huberized
hinge loss function (5) is that it is an approximation
of the hinge loss and differentiable everywhere, thereby
making the optimization problem easier to solve while
at the same time preserving the variable selection fea-
ture.

The minimizer of (4) is piecewise linear with respect
to 𝜆1 for a fixed 𝜆2. Based on this observation, Wang
et al. (2008) proposed a path algorithm to solve the
HHSVM problem. The path algorithm keeps track of
four sets as 𝜆1 decreases, and calls an ’event’ happen-
ing if any one of the four sets changes. Between any
two consecutive ’events’, the solutions are linear in 𝜆1,
and after an ’event’ occurs, the derivative of the solu-
tion with respect to 𝜆1 is changed. When each ’event’
happens, the algorithm solves a linear system. If the
dimension of the data 𝑝 is large, solving many large-
scale linear systems will be required to obtain the so-
lution path. Furthermore, those linear equations are
quite different from each other, and there are no special
structures involved. As a result, the path algorithm is
computational very expensive for large 𝑝 problems.

3 ALGORITHM FOR ELASTIC
NET SVM

The alternating direction method of multipliers
(ADMM) developed in the 1970s (Gabay and Mercier,
1976; Glowinski and Marroco) has recently become a
method of choice for solving many large-scale prob-
lems (Candes et al., 2009; Cai et al., 2009; Goldstein
and Osher, 2009). It is equivalent or closely related
to many other algorithms, such as Douglas-Rachford
splitting (Wu and Tai, 2010), split Bregman method
(Goldstein and Osher, 2009) and the method of mul-
tipliers (Rockafellar, 1973).

In this section, we propose an efficient algorithm based
on ADMM to solve ENSVM in (3) by introducing aux-
iliary variables and reformulating the original problem.

3.1 DERIVING ADMM FOR ELASTIC
NET SVM

Because of the two nondifferentiable terms in (3), it
is hard to solve the ENSVM problem directly. In or-
der to derive an ADMM algorithm, we introduce some
auxiliary variables to handle the nondifferentiability of
the hinge loss and ℓ1 norm term.

Let 𝑋 = (𝑥𝑖𝑗)
𝑛,𝑝
𝑖=1,𝑗=1 and 𝑌 be a diagonal matrix

with its diagonal elements to be the vector 𝑦 =
(𝑦1, . . . , 𝑦𝑛)

𝑇 . The unconstrained problem in (3) can
be reformulated into an equivalent constrained prob-
lem

argmin
𝛽,𝛽0

1

𝑛

𝑛∑
𝑖=1

(𝑎𝑖)+ + 𝜆1∥c∥1 + 𝜆2

2
∥𝛽∥22

𝑠.𝑡. a = 1− 𝑌 (𝑋𝛽 + 𝛽01) ,

c = 𝛽, (6)

where a = (𝑎𝑖, . . . , 𝑎𝑛)
𝑇 and 1 is an 𝑛-column vector

of 1s.

Note that the Lagrangian function of (6) is

𝐿 (𝛽, 𝛽0,a, c,u,v)

=
1

𝑛

𝑛∑
𝑖=1

(𝑎𝑖)+ + 𝜆1∥c∥1 + 𝜆2

2
∥𝛽∥22

+ ⟨u,1− 𝑌 (𝑋𝛽 + 𝛽01)− a⟩+ ⟨v, 𝛽 − c⟩ ,(7)
where u ∈ ℝ𝑛 is a dual variable corresponding to the
linear constraint a = 1 − 𝑌 (𝑋𝛽 + 𝛽01), v ∈ ℝ𝑝 is
a dual variable corresponding to the linear constraint
c = 𝛽, ⟨⋅, ⋅⟩ denotes the standard inner product in
Euclidean space. The augmented Lagrangian func-
tion of (6) is similar to (7) except for adding two
terms 𝑢1

2 ∥1 − 𝑌 (𝑋𝛽 + 𝛽01) − a∥22 and 𝑢2

2 ∥𝛽 − c∥22
to penalize the violation of linear constraints a =
1−𝑌 (𝑋𝛽 + 𝛽01) and c = 𝛽, thereby making the func-
tion strictly convex. That is,

ℒ (𝛽, 𝛽0,a, c,u,v)

= 𝐿 (𝛽, 𝛽0,a, c,u,v) +
𝜇1

2
∥1− 𝑌 (𝑋𝛽 + 𝛽01)− a∥22

+
𝜇2

2
∥𝛽 − c∥22, (8)

where 𝜇1 > 0 and 𝜇2 > 0 are two parameters. It is easy
to see that solving (6) is equivalent to finding a saddle
point (𝛽∗, 𝛽∗

0 ,a
∗, c∗,u∗,v∗) of ℒ (𝛽, 𝛽0,a, c,u,v) such

that

ℒ (𝛽∗, 𝛽∗
0 ,a

∗, c∗,u,v) ≤ ℒ (𝛽∗, 𝛽∗
0 ,a

∗, c∗,u∗,v∗)
≤ ℒ (𝛽, 𝛽0,a, c,u

∗,v∗) ,

for all 𝛽, 𝛽0,a, c,u and v.

We solve the saddle point problem through gradient
ascent on the dual problem

max
u,v

𝐸(u,v), (9)

where 𝐸(u,v) = min𝛽,𝛽0,a,c ℒ (𝛽, 𝛽0,a, c,u,v) . Note
that the gradient ∇𝐸(u,v) can be calculated by the
following (Bertsekas, 1982)

∇𝐸(u,v) =

(
1− 𝑌 (𝑋𝛽(u,v) + 𝛽0(u,v)1)− a(u,v)

𝛽(u,v)− c(u,v)

)
,

(10)
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with

(𝛽(u,v), 𝛽0(u,v),a(u,v), c(u,v))

= arg min
𝛽,𝛽0,a,c

ℒ (𝛽, 𝛽0,a, c,u,v) . (11)

Using gradient ascent on the dual problem (9), Eq.
(10) and Eq. (11), we get the method of multipliers
(Rockafellar, 1973) to solve (6)

⎧⎨⎩
(𝛽𝑘+1, 𝛽𝑘+1

0 ,a𝑘+1, c𝑘+1)

= argmin𝛽,𝛽0,a,c ℒ
(
𝛽, 𝛽0,a, c,u

𝑘,v𝑘
)

u𝑘+1 = u𝑘 + 𝜇1(1− 𝑌 (𝑋𝛽𝑘+1 + 𝛽𝑘+1
0 1)− a𝑘+1),

v𝑘+1 = v𝑘 + 𝜇2(𝛽
𝑘+1 − c𝑘+1).

(12)

The efficiency of the iterative algorithm (12) lies
on whether the first equation of (12) can be solved
quickly. The augmented Lagrangian function ℒ still
contains nondifferentiable terms. But different from
the original objective function (3), the hinge loss in-
duced nondifferentiability has now been transferred
from terms involving 1 − 𝑦𝑖(x

𝑇
𝑖 𝛽 + 𝛽0) to terms in-

volving 𝑎𝑖; and ℓ1 induced nondifferentiability has now
been transferred from terms involving 𝛽 to terms in-
volving c. Moreover, the nondifferentiable terms in-
volving a and c are now completely decoupled, and
thus we can solve the first equation of (12) by alter-
nating minimization of (𝛽, 𝛽0),a and c,

⎧⎨⎩
(𝛽𝑘+1, 𝛽𝑘+1

0 ) = argmin𝛽,𝛽0 ℒ
(
𝛽, 𝛽0,a

𝑘, c𝑘,u𝑘,v𝑘
)
,

a𝑘+1 = argmina ℒ
(
𝛽𝑘+1, 𝛽𝑘+1

0 ,a, c𝑘,u𝑘,v𝑘
)
,

c𝑘+1 = argminc ℒ
(
𝛽𝑘+1, 𝛽𝑘+1

0 ,a𝑘+1, c,u𝑘,v𝑘
)
.

(13)
For the method of multipliers, the alternate minimiza-
tion (13) needs to run multiple times until conver-
gence. However, we do not have to completely solve
the first equation of (12) since it is only one step of
the overall iterative algorithm. We use only one al-
ternation, it is called alternating direction method of
multipliers (Gabay and Mercier, 1976). That is, we
use the following iterations to solve (6)

⎧⎨⎩

(𝛽𝑘+1, 𝛽𝑘+1
0 ) = argmin𝛽,𝛽0 ℒ

(
𝛽, 𝛽0,a

𝑘, c𝑘,u𝑘,v𝑘
)
,

a𝑘+1 = argmina ℒ
(
𝛽𝑘+1, 𝛽𝑘+1

0 ,a, c𝑘,u𝑘,v𝑘
)
,

c𝑘+1 = argminc ℒ
(
𝛽𝑘+1, 𝛽𝑘+1

0 ,a𝑘+1, c,u𝑘,v𝑘
)
,

u𝑘+1 = u𝑘 + 𝜇1(1− 𝑌 (𝑋𝛽𝑘+1 + 𝛽𝑘+1
0 1)− a𝑘+1),

v𝑘+1 = v𝑘 + 𝜇2(𝛽
𝑘+1 − c𝑘+1).

(14)

For the first equation in (14), it is equivalent to

(𝛽, 𝛽0) = argmin
𝛽,𝛽0

𝜆2

2
∥𝛽∥22 +

〈
v𝑘, 𝛽 − c𝑘

〉
+
〈
u𝑘,1− 𝑌 (𝑋𝛽 + 𝛽01)− a𝑘

〉
+
𝜇1

2
∥1− 𝑌 (𝑋𝛽 + 𝛽01)− a𝑘∥22

+
𝜇2

2
∥𝛽 − c𝑘∥22.

The objective function in the above minimization
problem is quadratic and differentiable, and thus the
optimal solution can be found by solving a set of linear
equations:(

(𝜆2 + 𝜇2)𝐼 + 𝜇1𝑋
𝑇𝑋 𝜇1𝑋

𝑇1
𝜇11

𝑇𝑋 𝜇1𝑛

)(
𝛽𝑘+1

𝛽𝑘+1
0

)

=

(
𝑋𝑇𝑌 u𝑘 − 𝜇1𝑋

𝑇𝑌 (a𝑘 − 1)− v𝑘 + 𝜇2c
𝑘

1𝑇𝑌 u𝑘 − 𝜇11
𝑇𝑌 (a𝑘 − 1)

)
. (15)

Note that the coefficient matrix in (15) is a (𝑝+1)×(𝑝+
1) matrix, independent of the optimization variables.
For small 𝑝, we can store its inverse in the memory, so
the linear equations can be solved with minimal cost.
For large 𝑝, we use the conjugate gradient algorithm
(CG) to solve it at each iteration efficiently.

The linear system (15) is very special for large 𝑝, small
𝑛 problems in that 𝑋𝑇𝑋 will be a positive low rank
matrix with rank at most 𝑛. Thus the coefficient ma-
trix in (15) is a linear combination of identity matrix
and a positive low rank matrix with rank at most 𝑛+1.
If we use CG to solve the linear system (15), it con-
verges in less than 𝑛+1 steps (Saad, 2003). In our nu-
merical implementation, we found that CG converges
in a few steps much smaller than 𝑛+ 1.

For the second equation in (14), it is equivalent to

a𝑘+1 = argmin
a

1

𝑛

𝑛∑
𝑖=1

(𝑎𝑖)+

+
𝜇1

2
∥1− 𝑌 (𝑋𝛽𝑘+1 + 𝛽𝑘+1

0 1)− a∥22
+⟨u𝑘,1− 𝑌 (𝑋𝛽𝑘+1 + 𝛽𝑘+1

0 1)− a⟩.
(16)

In order to solve (16), we need the following Proposi-
tion (Ye and Xie, 2010).

Proposition 1 Let 𝑠𝜆(𝜔) = argmin𝑥∈ℝ 𝜆𝑥+ + 1
2∥𝑥−

𝜔∥22. Then

𝑠𝜆(𝜔) =

⎧⎨⎩ 𝜔 − 𝜆, 𝜔 > 𝜆
0, 0 ≤ 𝜔 ≤ 𝜆,
𝜔, 𝜔 < 0.
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Note that each 𝑎𝑖 is independent of each other in (16)
and

∥u∥22
2𝜇1

+
𝜇1

2
∥1− 𝑌 (𝑋𝛽𝑘+1 + 𝛽𝑘+1

0 1)− a∥22
+⟨u𝑘,1− 𝑌 (𝑋𝛽𝑘+1 + 𝛽𝑘+1

0 1)− a⟩
=

𝜇1

2
∥a− (1+

u

𝜇1
− 𝑌 (𝑋𝛽𝑘+1 + 𝛽𝑘+1

0 1))∥22.

Together with Proposition 1, we can then update a𝑘+1

in (16) according to

Corollary 1 The update of a𝑘+1 in (16) is equivalent
to

a𝑘+1 = 𝒮 1
𝑛𝜇1

(1+
u𝑘

𝜇1
− 𝑌 (𝑋𝛽𝑘+1 + 𝛽𝑘+1

0 1)), (17)

where

𝒮𝜆(𝜔) = (𝑠𝜆(𝜔1), 𝑠𝜆(𝜔2), . . . , 𝑠𝜆(𝜔𝑛))
𝑇 ,∀𝜔 ∈ ℝ𝑛.

For the third equation in (14), it is equivalent to

c𝑘+1 = argmin
c

𝜆1∥c∥1+⟨v𝑘, 𝛽𝑘+1−c⟩+𝜇2

2
∥𝛽𝑘+1−c∥22.

(18)
Minimization of c in (18) can be done efficiently us-
ing soft thresholding, because the objective function is
quadratic and nondifferentiable terms are completely
separable. Let 𝒯𝜆 be a soft thresholding operator de-
fined on vector space and satisfying

𝒯𝜆(𝜔) = (𝑡𝜆(𝜔1), . . . , 𝑡𝜆(𝜔𝑝)),∀𝜔 ∈ ℝ𝑝, (19)

where

𝑡𝜆(𝜔𝑖) = sgn(𝜔𝑖)max{0, ∣𝜔𝑖∣ − 𝜆}.

Using the soft thresholding operator (19), the optimal
solution of c in (18) can be written as

c𝑘+1 = 𝒯𝜆1
𝜇2

(
v𝑘

𝜇2
+ 𝛽𝑘+1

)
. (20)

Finally, by combining (14), (15), (17) and (20) to-
gether, we obtain the algorithm ADMM for ENSVM
(3) (Algorithm 1). It is a practical algorithm for large
𝑝, small 𝑛 problems and very easy to code.

3.2 Convergence analysis

The convergence property of Algorithm 1 can be de-
rived from the standard convergence theory of the al-
ternating direction method of multipliers (Gabay and
Mercier, 1976; Eckstein and Bertsekas, 1992).

Algorithm 1 ADMM for ENSVM (3)

Initialize 𝛽0, 𝛽0
0 , a

0, c0,u0, and v0.
repeat

1) Update 𝛽𝑘+1, 𝛽𝑘+1
0 by solving the following lin-

ear equation system:(
(𝜆2 + 𝜇2)𝐼 + 𝜇1𝑋

𝑇𝑋 𝜇1𝑋
𝑇1

𝜇11
𝑇𝑋 𝜇1𝑛

)(
𝛽𝑘+1

𝛽𝑘+1
0

)

=

(
𝑋𝑇𝑌 u𝑘 − 𝜇1𝑋

𝑇𝑌 (a𝑘 − 1)− v𝑘 + 𝜇2c
𝑘

1𝑇𝑌 u𝑘 − 𝜇11
𝑇𝑌 (a𝑘 − 1)

)
2) a𝑘+1 = 𝒮 1

𝑛𝜇1

(
1+ u𝑘

𝜇1
− 𝑌 (𝑋𝛽𝑘+1 + 𝛽𝑘+1

0 1)
)

3) c𝑘+1 = 𝒯𝜆1
𝜇2

(
v𝑘

𝜇2
+ 𝛽𝑘+1

)
4) u𝑘+1 = u𝑘+𝜇1(1−𝑌 (𝑋𝛽𝑘+1+𝛽𝑘+1

0 1)−a𝑘+1)
5) v𝑘+1 = v𝑘 + 𝜇2(𝛽

𝑘+1 − c𝑘+1)
until
Convergence

Theorem 1 Suppose there exists at least one solution
(𝛽∗, 𝛽∗

0) of (3). Assume 𝜆1 > 0, 𝜆2 > 0. Then the
following property for Algorithm 1 holds:

lim
𝑘→∞

1

𝑛

𝑛∑
𝑖=1

(1− 𝑦𝑖(x
𝑇
𝑖 𝛽

𝑘 +𝛽𝑘
0 ))++𝜆1∥𝛽𝑘∥1 + 𝜆2

2
∥𝛽𝑘∥22

=
1

𝑛

𝑛∑
𝑖=1

(1− 𝑦𝑖(x
𝑇
𝑖 𝛽

∗ + 𝛽∗
0))+ + 𝜆1∥𝛽∗∥1 + 𝜆2

2
∥𝛽∗∥22.

Furthermore,

lim
𝑘→∞

∥(𝛽𝑘, 𝛽𝑘
0 )− (𝛽∗, 𝛽∗

0)∥ = 0,

whenever (3) has a unique solution.

3.3 Computational cost

The efficiency of Algorithm 1 lies mainly on whether
we can quickly solve the linear equations (15). As we
have described in Section 3.1, the coefficient of the lin-
ear equations (15) has a special structure and thus can
be efficiently solved by the conjugate gradient method
for ‘large 𝑝, small 𝑛’ problems. More specifically, the
computational cost for solving (15) is 𝑂(𝑛2𝑝). The
number of iterations of Algorithm (1) is hard to pre-
dict and it depends on the choice of 𝜇1 and 𝜇2. Ac-
cording to our experience, we only need to iterate a
few hundred iterations to get a reasonable result by
choosing 𝜇1 and 𝜇2 correctly.

Similar to our algorithm for (3), the major computa-
tional cost in each iteration for HHSVM also comes
from solving a linear system. However, the linear sys-
tem in HHSVM has no special structures. It takes at
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least 𝑂(∣𝒜∣2) with ∣𝒜∣ being the number of unknown
variables. Moreover, ∣𝒜∣ can increase at each itera-
tion. Furthermore, for large scale problems, it usually
takes a few thousand steps for the algorithm converges.
That’s why our algorithm for (3) is much faster than
the path algorithm for HHSVM for large scale prob-
lems.

4 NUMERICAL RESULTS

In this section, we use time trials on both simu-
lated data as well as real microarray data to illus-
trate the efficiency of ADMM algorithm for solving
elastic net SVM (ENSVM). To evaluate the perfor-
mance of ADMM for ENSVM, we also compare it with
the stochastic sub-gradient method and the path algo-
rithm for HHSVM. Our algorithm and the stochas-
tic sub-gradient method were implemented in Matlab,
while HHSVM was implemented in R using the R code
provided by the authors in (Wang et al., 2008). All
algorithms were compiled on a windows platform and
time trials were generated on an Intel Core 2 Duo desk-
top PC (E7500, 2.93GHz).

The stopping criteria of Algorithm 1 for ENSVM is
specified as follows. Let Φ(𝛽𝑘, 𝛽𝑘

0 ) = 1
𝑛

∑𝑛
𝑖=1(1 −

𝑦𝑖(x
𝑇
𝑖 𝛽

𝑘 + 𝛽𝑘
0 ))+ + 𝜆1∥𝛽𝑘∥1 + 𝜆2

2 ∥𝛽𝑘∥22. According to
Theorem 1, lim𝑘→∞ Φ(𝛽𝑘, 𝛽𝑘

0 ) = Φ(𝛽∗, 𝛽∗
0). It is rea-

sonable to terminate the algorithm when the relative
change of the energy functional Φ(𝛽, 𝛽0) falls below
certain threshold 𝛿. Furthermore, Algorithm 1 is solv-
ing (6), linear constraints are satisfied when it con-
verges. Therefore, we would expect that 1√

𝑛
∥1 −

𝑌 (𝑋𝛽𝑘 + 𝛽𝑘
01) − a𝑘∥2 ≤ 𝛿 and 1√

𝑝∥𝛽𝑘 − c𝑘∥2 ≤ 𝛿

when we terminate the algorithm. We used 𝛿 = 10−5

in our simulation, i.e., we stop Algorithm 1 whenever

𝑅𝑒𝑙𝐸 :=
∣Φ(𝛽𝑘, 𝛽𝑘

0 )− Φ(𝛽∗, 𝛽∗
0)∣

max{1,Φ(𝛽𝑘, 𝛽𝑘
0 )}

≤ 10−5,

1√
𝑛
∥1− 𝑌 (𝑋𝛽𝑘 + 𝛽𝑘

01)− a𝑘∥2 ≤ 10−5

and
1√
𝑝
∥𝛽𝑘 − c𝑘∥2 ≤ 10−5.

Note that the convergence of Algorithm 1 is guaran-
teed no matter what values of 𝜇1 and 𝜇2 are used as
shown in Theorem 1. However, the speed of the algo-
rithm can be influenced by the choices of 𝜇1 and 𝜇2 as
it would affect the number of iterations involved. In
our implementation, we found empirically that choos-
ing 𝜇1 = 100

𝑛 and 𝜇2 ∈ [25, 100] works well for all the
problems we tested, though the parameter selecting
procedure can certainly be further improved.

4.1 SIMULATION

We consider a binary classification problem in which
the sample data are lying in a 𝑝 dimensional space with
only the first 10 dimensions being relevant for classifi-
cation and the remaining variables being noises. More
specifically, we generate 𝑛 samples with half from +1
and the other half from −1 class. For the samples from

Table 1:
Run times (CPU seconds) of various sizes 𝑝 and 𝑛, different

correlation 𝜌 between the features. Methods are ADMM al-

gorithm for elastic-net SVM (ENSVM), path algorithm for

HHSVM and stochastic sub-gradient method (SSG). The

results for ENSVM and stochastic sub-gradient method are

averaged over 25 runs (using 25 different values of 𝜆1, 𝜆2)

and the ones for HHSVM are averaged over 5 runs (using

5 different values of 𝜆2).

n, p Method 𝜌 = 0 𝜌 = 0.8
n=50 ENSVM 0.41 0.31

HHSVM 3.30 3.19
p=300 SSG 2.35 4.06
n=100 ENSVM 1.19 0.71

HHSVM 21.65 21.01
p=500 SSG 4.34 4.06
n=200 ENSVM 3.60 3.75

HHSVM 405.9 390.1
p=1000 SSG 35.40 26.86
n=300 ENSVM 14.73 16.74

HHSVM 2.07 hours 2.03 hours
p=2000 SSG 123.22 122.84
n=400 ENSVM 48.62 57.15

HHSVM > 6 hours > 6 hours
p=5000 SSG 301.10 290.15
n=500 ENSVM 144.69 170.52

HHSVM - -
p=10000 SSG 785.57 909.92

+1 class, they are i.i.d drawn from a normal distribu-
tion with mean

𝜇+ = (1, . . . , 1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
𝑝−10

)𝑇

and covariance

Σ =

(
Σ∗

10×10 010×(𝑝−10)

0(𝑝−10)×10 𝐼(𝑝−10)×(𝑝−10)

)
,

where the diagonal elements of Σ∗ are 1 and the off-
diagonal elements are all equal to 𝜌. The −1 class has
a similar distribution except that

𝜇− = (−1, . . . ,−1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
(𝑝−10)

)𝑇 .
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So the Bayes optimal classification rule depends on
𝑥1, . . . , 𝑥10, which are highly correlated if 𝜌 is large.
The Bayes error is independent of the dimension 𝑝.
This simulated data were also used in Wang et al.
(2008).
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Figure 1: CPU times of the ADMM method for
ENSVM for the same problem as in Table 1, for dif-
ferent values of 𝑛 and 𝑝. In each case the times are
averaged over 10 runs. (a) 𝑛 is fixed and equals to 300;
(b) 𝑝 is fixed and equals to 2000.

Table 1 shows the average CPU times (seconds) used
by the ADMM algorithm, the path algorithm for
HHSVM, and the stochastic sub-gradient method.
Our algorithm consistently outperforms both the
stochastic sub-gradient method and the path algo-
rithm in all cases we have tested. For the data with
𝑛 = 300, 𝑝 = 2000, the ADMM algorithm is able

to achieve 120-fold speedup than the path algorithm.
The ADMM algorithm is also significantly faster than
the stochastic sub-gradient method, achieving about
5-10 fold speedup in all cases. We should also note
that unlike the ADMM method, the objective function
in the stochastic sub-gradient method can go up and
down, which makes it difficult to design the stopping
criteria for the sub-gradient method.

To evaluate how the performance of our algorithm
scales with the problem size, we plotted the CPU time
that Algorithm 1 took to solve (3) for the data de-
scribed above as a function of 𝑝 and 𝑛. Figure 1 shows
such a curve, where the CPU times are averaged over
10 runs with different data. We note that the CPU
times are roughly linear in both 𝑛 and 𝑝.

We also compared the performance of prediction accu-
racy and variable selection from three different models:
ℓ1-norm SVM (𝐿1 SVM), HHSVM and ENSVM. The
optimal (𝜆1, 𝜆2) pair is chosen from a large grid using
10-fold cross validation. As shown in Table 2 and Ta-
ble 3, HHSVM and ENSVM are similar in prediction
and variable selection accuracy, but both are signifi-
cantly better than ℓ1-norm SVM.

Table 2:
Comparison of test errors. The number of training samples

is 50. The total number of input variables is 300, with

only 10 being relevant for classification. The results are

averages of test errors over 100 repetitions on a 10000 test

set, and the numbers in parentheses are the corresponding

standard errors. 𝜌 = 0 corresponds to the case where the

input variables are independent, while 𝜌 = 0.8 corresponds

to a pairwise correlation of 0.8 between relevant variables.

𝜌 = 0 𝜌 = 0.8
SVM 0.214(0.004) 0.160(0.003)
𝐿1 SVM 0.143(0.007) 0.160(0.002)
HHSVM 0.133(0.005) 0.143(0.001)
ENSVM 0.111(0.002) 0.144(0.001)

Table 3:
Comparison of variable selection. The setup are the same

as those described in Table 2. 𝑞signal is the number of

selected relevant variables, and 𝑞noise is the number of

selected noise variables.

𝜌 = 0 𝜌 = 0.8
𝑞signal 𝑞noise 𝑞signal 𝑞noise

𝐿1 SVM 7.2(0.3) 6.5(1.4) 2.5(0.2) 2.9(1.2)
HHSVM 7.6(0.3) 7.1(1.3) 7.9(0.4) 3.3(2.5)
ENSVM 8.6(0.1) 6.4(0.4) 6.6(0.2) 2.0(0.2)
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4.2 GENE EXPRESSION DATA

A microarray gene expression dataset typically con-
tains the expression values of tens of thousands of mR-
NAs collected from a relatively small number of sam-
ples. The genes sharing the same biological pathways
are often highly correlated in gene expression (Segal
et al.). Because of these two features, it is more desir-
able to apply the elastic net SVM to do variable selec-
tion and classification on the microarray data than the
standard SVM or the ℓ1-SVM (Zou and Hastie, 2005;
Wang et al., 2008).

The data we use is taken from the paper published by
Alon et al. (1999). It contains microarray gene expres-
sion collected from 62 samples (40 colon tumor tissues
and 22 from normal tissues). Each sample consists
the expression values of 𝑝 = 2000 genes. We applied
the elastic net SVM (ENSVM) to select variables (i.e.
genes) that can be used to predict sample labels and
compared its performance to the path algorithm devel-
oped for HHSVM. The results are summarized in Table
4, which shows the computational times spent by dif-
ferent solvers in a ten-fold cross-validation procedure
for different parameters 𝜆1 and 𝜆2. The ADMM al-
gorithm for ENSVM is consistently many times faster
than the path algorithm for HHSVM, with an approx-
imately ten-fold speedup in almost all cases.

Table 4:
Run times (CPU seconds) for different values of the regu-

larization parameters 𝜆1 and 𝜆2. The methods are ADMM

algorithm for ENSVM and path algorithm for HHSVM.

𝜆1 𝜆2 10-CV error ENSVM HHSVM
0.1 0.2 8/62 8.56 108.2
0.1 0.5 8/62 6.30 107.9
0.05 2 8/62 8.76 109.3
0.05 5 7/62 7.12 109.5

We also tested the prediction and the variable selection
functionality of ENSVM with Algorithm 1. Following
the method in Wang et al. (2008), we randomly split
the samples into a training set (27 cancer samples and
15 normal tissues) and a testing set (13 cancer samples
and 7 normal tissues). In training phase, we adopt
10-fold cross validation to tune the parameter 𝜆1, 𝜆2.
This experiment is repeated 100 times. Table 5 shows
the statistics on the testing error and the number of
selected genes, in comparison to the statistics of SVM
and HHSVM. We note that in terms of testing error,
ENSVM is slightly better than HHSVM, which in turn
is better than the standard SVM. In terms of variable
selection, ENSVM tends to select a smaller number of
genes than HHSVM.

Table 5:
Comparison of testing error and variable selection on the

gene expression data. Shown are the averages from 100

repetitions and included in the parenthesis are the standard

deviations.

Test error Number of genes selected

SVM 17.9% (0.69%) All
HHSVM 15.45%(0.59%) 138.37(8.67)
ENSVM 14.95% (0.53%) 87.7 (7.9)

5 CONCLUSION

In this paper, we have derived an efficient algorithm
based on the alternating direction method of multipli-
ers to solve the optimization problem in the elastic net
SVM (ENSVM). We show that the algorithm is sub-
stantially faster than both the sub-gradient method
and the path algorithm used in HHSVM, an approx-
imation of the ENSVM problem (Wang et al., 2006).
We also illustrate the advantage of ENSVM in both
variable selection and prediction accuracy using simu-
lated and real-world data.
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