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Abstract

A popular approach in reinforcement learning is to use a model-based algorithm, i.e., an
algorithm that utilizes a model learner to learn an approximate model to the environment.
It has been shown that such a model-based learner is efficient if the model learner is
efficient in the so-called “knows what it knows” (KWIK) framework. A major limitation
of the standard KWIK framework is that, by its very definition, it covers only the case
when the (model) learner can represent the actual environment with no errors. In this
paper, we study the agnostic KWIK learning model, where we relax this assumption by
allowing nonzero approximation errors. We show that with the new definition an efficient
model learner still leads to an efficient reinforcement learning algorithm. At the same time,
though, we find that learning within the new framework can be substantially slower as
compared to the standard framework, even in the case of simple learning problems.
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1. Introduction

The knows what it knows (KWIK) model of learning (Li et al., 2008) is a framework for
online learning against an adversary. Before learning, the KWIK learner chooses a hypoth-
esis class and the adversary selects a function from this hypothesis class, mapping inputs to
responses. Then, the learner and the adversary interact in a sequential manner: Given the
past interactions, the adversary chooses an input, which is presented to the learner. The
learner can either pass, or produce a prediction of the value one would obtain by applying
the function selected by the adversary to the selected input. When the learner passed and
only in that case, the learner is shown the noise-corrupted true response. All predictions
produced by the learner must be in a close vicinity to the true response (up to a prespecified
tolerance), while the learner’s efficiency is measured by the number of times it passes.

The problem with this framework is that if the hypothesis class is small, it unduly limits
the power of the adversary, while with a larger hypothesis class efficient learning becomes
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problematic. Hence, in this paper we propose an alternative framework that we call the
agnostic KWIK framework, where we allow the adversary to select functions outside of
the hypothesis class, as long the function remains “close” to the hypothesis class, while
simultaneously relaxing the accuracy requirement on the predictions.

New models of learning abound in the learning theory literature, and it is not imme-
diately clear why the KWIK framework makes these specific assumptions on the learning
process. For the extension investigated in the paper, the agnostic KWIK model, even the
name seems paradoxical: “agnostic” means “no knowledge is assumed”, while KWIK is
acronym for “knows what it knows”. Therefore, we begin the paper by motivating the
framework.

1.1. Motivation

The motivation of the KWIK framework is rooted in reinforcement learning (RL). An RL
agent makes sequential decisions in an environment to maximize the long-term cumulated
reward it incurs during the interaction (Sutton and Barto, 1998). The environment is
initially unknown to the agent, so the agent needs to spend some time exploring it. Ex-
ploration, however, is costly as an agent exploring its environment may miss some reward
collecting opportunities. Therefore, an efficient RL agent must spend as little time with
exploration as possible, while ensuring that the best possible policy is still discovered.

Many efficient RL algorithms (Kearns and Singh, 2002; Brafman and Tennenholtz, 2001;
Strehl, 2007; Szita and Lérincz, 2008; Szita and Szepesvéri, 2010) share a common core idea:
(1) they keep track of which parts of the environment are known with high accuracy; (2)
they strive to get to unknown areas and collect experience; (3) in the known parts of the
environment, they are able to plan the path of the agent to go wherever it wants to go, such
as the unknown area or a highly rewarding area. The KWIK learning model of Li et al.
(2008) abstracts the first point of this core mechanism. This explains the requirements of
the framework:

e Accuracy of predictions: a plan based on an approximate model will be usable only
if the approximation is accurate. Specifically, a single large error in the model can
fatally mislead the planning procedure.

e Adversarial setting: the state of the RL agent (and therefore, the queries about the
model) depend on the (unknown) dynamics of the environment in a complex manner.
While the assumption that the environment is fully adversarial gives more power to
the adversary, this assumption makes the analysis easier (while not preventing it).

e Noisy feedback: the rewards and next states are determined by a stochastic environ-
ment, so feedback is necessarily noisy.

The main result of the KWIK framework states that if an algorithm “KWIK-learns” the
parameters of an RL environment then it can be augmented to an efficient reinforcement
learning algorithm (Li, 2009, Chapter 7.1) and (Li et al., 2011a). The result is significant
because it reduces efficient RL to a conceptually simpler problem and unifies a large body
of previous works (Li, 2009; Strehl et al., 2007; Diuk et al., 2008; Strehl and Littman, 2007).
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For finite horizon learning problems, it is even possible to construct model-free efficient RL
algorithms using an appropriate KWIK learner, as shown by Li and Littman (2010).

An important limitation of the KWIK framework is that the environment must be
exactly representable by the learner. Therefore, to make learning feasible, we must assume
that the environment comes from a small class of models (that is, characterized with a small
number of parameters), for example, it is a Markov decision process (MDP) with a small,
finite state space.

However, such a model of the environment is often just an approximation, and in such
cases, not much is known about efficient learning in a KWIK-like framework. The agnostic
KWIK learning framework is aimed to fill this gap. In this new framework the learner tries
to find a good approximation to the true model with a restricted model class.! Of course, we
will not be able to predict the model parameters accurately any more (the expressive power
of our hypothesis class is insufficient), so the accuracy requirement needs to be relaxed.
Our main result is that with this definition the augmentation result of Li et al. (2011a) still
holds: an efficient agnostic KWIK-learning algorithm can be used to construct an efficient
reinforcement learning algorithm even when the environment is outside of the hypothesis
class of the KWIK learner. To our knowledge, this is the first result for reinforcement
learning that allows for a nonzero approximation error.

1.2. The organization of the paper

In the next section (Section 2) we introduce the KWIK framework and its agnostic extension.
In the two sections following Section 2 we investigate simple agnostic KWIK learning prob-
lems. In particular, in Section 3 we investigate learning when the responses are noiseless.
Two problems are considered: As a warm-up we consider learning with finite hypothesis
classes, followed by the investigation of learning when the hypothesis class contains linear
functions with finitely many parameters. In Section 4 we analyze the case when the re-
sponses are noisy. Section 5 contains our main result: the connection between agnostic
KWIK and efficient approximate RL. Our conclusions are drawn in Section 6. Proofs of
technical theorems and lemmas have been moved to the Appendix.

2. From KWIK learning to agnostic KWIK learning

A problem is a 5-tuple G = (X,Y,9,7,]| - ||), where X is the set of inputs, ) C R? is
a measurable set of possible responses, Z : X — P()) is the noise distribution that is
assumed to be zero-mean (P()) denotes the space of probability distributions over ))) and
|| : R* — R, is a semi-norm on R?. A problem class G is a set of problems. When each
problem in a class shares the same domain X, response set ) and same semi-norm || - ||,
for brevity, the semi-norm will be omitted from the problem specifications. If the noise
distribution underlying every G € G is a Dirac-measure, we say that the problem class is
deterministic. For such problem classes, we will also omit to mention the distribution.

1. The real environment is not known to belong to the restricted model class, hence the name “agnostic”.
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The knows what it knows (KWIK) framework Li et al. (2011a) is a model of online
learning where an (online) learner interacts with an environment.? In this context, an
online learner L is required to be able to perform two operations:

e predict: For an input z € X', L must return an answer g € Y U {L}. The answer
1 =1 means that the learner passes.

e update: Upon receiving an input-response pair (z,y) € X x Y, L should update its
internal representation.

At the beginning of learning, the environment secretly selects a problem (X,Y, g%, Z)
from some class and it also selects the inputs z; which are presented to the learner in a
sequential manner. Given an input z;, the learner has the option to pass (say “I don’t
know”), or to make a prediction. An admissible learner is required to make accurate pre-
dictions only. When the learner passes (and only in that case), the environment tells it the
response (or answer) v, which is randomly chosen so that z; = y; — ¢*(z¢) ~ Z(x;) and z
is independent of the past given x;. The learner’s goal is to minimize the number of passes,
while staying admissible. The environment is assumed to choose the problem and the in-
puts adversarially and so we sometimes call the environment the adversary. In the case of
noisy responses, exact, or near-optimal predictions are in general impossible to achieve with
certainty. Correspondingly, we introduce two parameters: the required accuracy ¢ > 0 and
the maximum permitted failure probability ¢.

The KWIK protocol, controlling the interaction between the online learner and the
adversary, is shown as Algorithm 1. Note that in the standard KWIK-framework, before

Algorithm 1 The KWIK protocol (G, ¢€).
1: No =0 {V; is the number of times the learner “passed”.}
2: Adversary picks problem G* = (X, Y, ¢*, Z,|| - ||) € G and (X, ), ] -||) is told learner
3: fort=1,2,...do
4:  Adversary picks query x; € X', which is announced to learner.
5. Learner computes answer ¢ € Y U {L} (predict is called), which is announced to

adversary.
6: Nt = Ny_4
7. if gy =1 then
8: Adversary tells learner y; = ¢*(z+) + 2¢, where 2z ~ Z(-|x)
9: Learner updates itself (update is called)
10: N is incremented by 1
11:  else if [|§; — g*(x1)|| > € then
12: return FAIL

learning, both adversary and learner are given G and e. Further, learner might be given
a confidence parameter 0 < § < 1, whose role will be explained soon. In particular, this
means that the learner can adjust its strategy to (G,€,d). Note also that the environment

2. Our definitions are slightly different from the original ones, mostly for the sake of increased rigour and
to make them better fit our results. Specifically, we explicitly include the noise as part of the concept.

742



AcgNosTiIc KWIK LEARNING

is allowed to pick z; based on any past information available to it up to time ¢.> We note in
passing that if in an application, regardless of the decision of the learner, the response y; is
generated and is communicated to the learner at every step, the learning problem can only
become easier. We call the so-modified protocol, the relaxzed K WIK protocol. If the learner
is reasonable, the extra information will help it, though, this calls for an explicit proof. All
the definitions below extend to the relaxed KWIK protocol.

Definition 2.1 Fiz e > 0 and 0 < § < 1 and a problem class G. A learner L is an
admissible (and bounded) (e,d) KWIK-learner for G if, with probability at least 1 — 6, it
holds that when L and an arbitrary adversary interact following the KWIK protocol, the
protocol does not fail (and the number of passes Ny stays bounded by a finite deterministic
quantity B(G,¢,0)). We call the quantity B(G,€,0) the learner’s KWIK-bound. The problem
class G is (e,0) KWIK-learnable, if there ezists a bounded, admissible (e,0) KWIK-learner
L for G. Further, G is KWIK-learnable, if it is (¢,0) KWIK learnable for any ¢ > 0,
0 <6< 1. If B(G,¢,6) is the learner’s KWIK-bound, we say that G is KWIK-learnable
with KWIK-bound B(G,¢,0).

Note that the learners can be specialized to G, € and 6. However, interesting results concern
general KWIK-learners which are operate for any G from a meta-class of concept-classes C.
For example, the memorization learner of Li (2009) is a bounded, admissible KWIK learner
for any problem class G where the problems in G are deterministic and share the same finite
input space X.

In addition to the above concepts, it is also customary to define the notion of KWIK-
learnability:

Definition 2.2 Let ¢ : G — Ry be a real-valued function. The problem class G is c-
efficiently KWIK-learnable, if, for any e > 0, 0 < § < 1, it is (¢,0) KWIK-learnable by
a learner L whose KWIK-bound B satisfies B(G,€,d) < poly(c(G),1/e,1og(1/6§)) for some
polynomial poly. Further, G is c-efficiently deterministically KWIK-learnable if the above
polynomial is independent of . Finally, G is c-exactly KWIK-learnable if poly(c, 1/¢,1log(1/9))
is independent of 1/e.*

Examples of KWIK-learnable classes can be found in the thesis by Li (2009).

2.1. Agnostic KWIK learning

From now on, we will assume that G is such that all problems in it share the same domain
and response spaces. A crucial assumption of the KWIK framework is that learner gets to
know G at the beginning of learning — the so-called realizability assumption.® To illustrate

3. The choice must be measurable to avoid pathologies.

4. In the definition, contrary to previous work, we intentionally use log(1/4) instead of 1/ because log(1/4)
is more natural in a learning context and a 1/4-bound looks unnecessarily weak.

5. If the learner knows G, it can “realize” any problem chosen by the adversary, hence the name.
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the importance of this assumption take X = N, J = {—1,+1} and let G have two disjoint
deterministic problems (functions) in it. Then, trivially, there is a KWIK-learner which is
bounded and admissible independently of how the two deterministic functions are chosen.
However, for any KWIK-learner who remains uninformed about the choice of G there exists
a class G with two functions that makes the learner fail.

However, in practice the realizibility assumption might be restrictive: The user of a
learning algorithm might give the learner a problem class (the hypothesis class), H C V7%,
that may or may not contain the problem to be learned. In this case one still expects
performance to degrade in a graceful manner as a function of the “distance” between the
problem selected by the adversary and H. In particular, it is reasonable to relax the
accuracy requirements in proportion to this distance. Therefore, in our agnostic KWIK
learning framework we propose to allow prediction errors of size rD + e (instead of €),
where D is the maximum tolerable approximation error.

The formal definitions are as follows. Let

AGH)E  sup  inf ||h— g
(XY,9,2)eg he€H

denote the error of approximating the functions of G by elements of H.

Definition 2.3 Fiz a hypothesis class H over the domain X and response set Y, an ap-
prozimation error bound D > 0, a competitiveness factor r > 0, an accuracy-slack ¢ > 0
and a confidence parameter 0 < § < 1. Let G be a problem class G over (X,Y) that satisfies
A(G,H) < D. Then, alearner L is a (D,r,€,0) agnostic KWIK-learner for the pair (H,G)
if L is an (rD + €,0) KWIK-learner for G.

The other learnability concepts (e.g., (€,0) learnability, learnability, efficiency, etc.) can
also be defined analogously.

3. Learning deterministic problem classes

The results in this section are used to illustrate the definitions, and the role of the various
parameters (such as r). The common property of the learning problems studied here is
that the responses are noise-free. As a warm-up, learning with finite hypothesis classes is
considered. Next, we consider learning with a hypothesis class composed of linear functions.
We will see that in this case KWIK-learning is still possible, but can be exponentially slow
as a function of the dimension of the input space. Note that our learners are deterministic.
Hence, all statements hold either with probability one or probability zero. In particular, a
bounded, admissible KWIK-learner is necessarily a bounded and admissible KWIK-learner
even with the choice of § = 0.

744



AcgNosTiIc KWIK LEARNING

3.1. Learning with a finite hypothesis class

For any d > 0 and y € ), define the d-ball around y as
ey Iy—yl<d}.

def

By(y) =

Algorithm 2 Generic Agnostic Learner for deterministic problem classes.

initialize(D, H) predict ()
F :="H and store D Y= ﬂfe]—‘ Bp(f(z))
if Y # () then
learn(z, y) return an arbitrary g € Y
F=F\{feF : |fx)—yl> D} else
return |

Consider the Generic Agnostic Learner (Algorithm 2) of Littman (the algorithm is pub-
lished by Li (2009), without analysis and for ) C R). Every time a new query x; is received,
the algorithm checks whether there exists some value g; that remaining functions agree at
¢ up to the accuracy D. If such a value exists, the learner predicts ¢, otherwise it passes.
When the learner passes it learns the response y;, based on which it can exclude at least
one concept. This results in the following statement:

Theorem 3.1 Let (X,)) be arbitrary sets, r = 2, ¢ = 0, D > 0, H a finite hypothesis
class over (X,Y), G a deterministic problem class over (X,)) with A(G,H) < D. Then,
the Generic Agnostic Learner is an agnostic (D, r,e) KWIK-learner for (H,G) with KWIK-
bound |H| — 1.

The factor r = 2 in the above theorem is the best possible as long as X" is infinite:

Theorem 3.2 Fiz any D > 0 and an infinite domain X. Then, there exists a finite
response set Y C R, a two-element hypothesis class H and a deterministic problem class G,
both over (X,Y), that satisfy A(G,H) < D such that there is no bounded agnostic (D,r,0)
KWIK-learner for (H,G) with competitiveness factor 0 < r < 2.

Because of this result, in what follows, we will restrict out attention to » = 2. Note
that the KWIK-bound we got is identical to the (worst-case) bound that is available when
D = 0, that is, seemingly there is no price associated to D > 0 in terms of the KWIK-
bound. However, the worst-case approach taken here leads to overly conservative bounds
as the structure of a hypothesis space may allow much better bounds (this is discussed in
Section 5.5.2 of Li (2009)). In the next section we study linear hypothesis classes for which
the above bound would be vacuous.

3.2. Learning with linear hypotheses

Sometimes Algorithm 2 is applicable even when the hypothesis class A is infinite: First,
the set of remaining hypotheses F = H(x1,y1,...,Tn, yn) after n passes can be “implicitly
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represented” by storing the list (z1, y1,. .., Zn, yn) of pairs received after the n passes. Then,
the algorithm remains applicable as long as there is some procedure for checking whether
Y =(N;er Bp(f(z)) is empty (and finding an element of Y, if it is non-empty). It remains
to see then if the procedure is efficient and if the learner stays bounded (that the procedure
stays admissible for r > 2 follows from its definition).

In this section we consider the case when the functions in the hypothesis class are linear
in the inputs. More specifically, let & = [~Xmax, Xmax]? for some d € {1,2,...} = N,
Y=R,||I=1], M > 0 and choose H to be the set of bounded-parameter linear functions:
Denote by fy : X — R the linear function fy(z) =6z, 2 € X. Then,

Himar) = {fo : 0 € R [|0]| . < M}

Then, F = %(ml,yl,...,xn,yn) = {f@ NS Rd,—M <0; < M,yj - D < f@(wj) <y +
D,1<i<d,1<j<n} since for any (z;,y;) pair the hypotheses not excluded must satisfy
|fo(z) —y| < D. Now, Y = [y~,y"], where y~ = ming,cr fy(z) and y* = maxys,cr fo(z)
and both y~ and y™ can be efficiently computed using linear programming. The resulting
algorithm is called the deterministic linear agnostic learner (Algorithm 3). In the algorithm,
we also allow for a slack € > 0.

Algorithm 3 Deterministic Linear Agnostic Learner
initialize(Xyax, M, D, €)

C :=1{0: -M < 6 < M, Vi e predict(z)
+ . T

{1,...,d}} y* 1= maxgec 0" x {solve LP}

Y y~ := mingec 67 x {solve LP}
learn(z, y) T if y* —y~ <2(D +¢) then
C:=Cn{l:y—D<0'z<y+ D} return (y*t +y~)/2

else
return |

The following theorem shows that for e > 0 this algorithm is a bounded, admissible
agnostic KWIK learner:

Theorem 3.3 Let Xpax > 0, X = [~ Xmawo, Xmax]® Y = R, M,D,e > 0, r = 2, H =
Hiin(vy- Then, for any G deterministic problem class over (X,Y) with A(G,H) < D, it
holds that the deterministic linear agnostic learner is an agnostic (D,r,e) KWIK-learner

for (H,G) with the KWIK-bound 2d! (% + 1)d.

The theorem cannot hold with € = 0, as shown by the following result:
Theorem 3.4 Let X,Y, D,r,’H be as in Theorem 3.3. Then, there exists a problem class G
that satisfies A(G,H) < D such that there is no bounded, agnostic (D,r,0) KWIK-learner
for (H.9).

In Theorem 3.3 the KWIK-bound scales exponentially with d. The next result shows
that this is the best possible scaling behavior:
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Theorem 3.5 Fix X',Y, D, H, e as in Theorem 3.3 and let r > 2. Then, there exists some
problem class G so that any algorithm that agnostic (D,r,e) KWIK learns (H,G) will pass
at least 2971 times.

Whether the scaling behavior of the bound of Theorem 3.3 as a function of € can be
improved remains for future work. Note that for D = 0 we get an algorithm close to
Algorithm 13 of Li (2009), the difference being that Algorithm 13 never predicts unless the
new input lies in the span of past training vectors. Nevertheless, for D = 0 and any € > 0
(including € = 0), our algorithm is also an e KWIK-learner with KWIK-bound d. Thus, we
see that the price of non-realizibility is quite high.

4. Learning in bounded noise

As opposed to the previous section, in this section we consider the case when the responses
are noisy. We first consider the case of learning with finite hypothesis classes and then we
briefly outline a simple discretization-based approach to the case when the hypothesis class
is infinite. We further assume that )V C R and the range of the noise in the responses is
bounded by K.

4.1. The case of finite hypothesis classes

Let the finite hypothesis class given to the learner be H and fix some D > 0. Let g* be the
function underlying the problem chosen by the adversary from some class G which satisfies
A(G,H) < D. Assuming that the noise in the responses is bounded to lie in [— K, K] for
some K > 0, an application of the Hoeffding-Azuma inequality gives that for any € > 0 and
any fixed function f € H such that ||f — ¢*|| < D (such functions exists, by our assumption
connecting G and H), 0 < § < 1, with probability 1 — 4, it holds that

<D+K1/210g<2><D+6, (1)
m o

where m = m(e,d) > 0 is chosen large enough so that the second inequality is satisfied and
where ((zg,yx); k= 1,2,...) is the list of training examples available to the algorithm (the
application of Hoeffding-Azuma is not entirely immediate, for the details see Lemma A.1).
One idea then is to eliminate those functions f from #H which fail to satisfy (1) after
m examples have been seen. The problem is that this rule is based on an average. A
clever adversary, who wants to prevent the elimination of some function f € H could then
provide many examples (x, yx) such that yi is close to f (x), thus shifting the average to
a small value. Therefore, we propose an alternate strategy which is based on the pairwise
comparison of hypothesis.

% > (@) — un}
k=1

The idea is that if f, f" are far from each other, say at € X it holds that |f(x)— f'(x)| >
2(D+¢), then if the adversary feeds x enough number of times, we can eliminate at least one
of f and f’. The following definition will become handy: for two numbers y,y’ € R, we define
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y <y by y+2(D +¢€) <y'. We index the elements of H from 1 to N: H = {f1,...,fn}
The algorithm that we propose is shown as Algorithm 4.

Algorithm 4 Pairwise Elimination-based Agnostic Learner
initialize(D, H, €)
N:=H|,I:={1,...,N}
nZa] = 07 87/7] = 07\V//L7j E I

2 2(N-1
m:= f%logi( 5 )1

learn(zx, y)

for all i, j € I such that fi(z) < f;(z) do
Ngj =N+ 1
sij = sij+ (fi(z) + f3(2))/2 =y
if Nz =m then

predict(r) if 5; ; <0 then
Y :=(Nier Bo+e(fi(z)) I:=1T1\{i}
if Y # () then else
return an arbitrary §j € Y T =T\ {i
s =TI\ {j}
return L

The following theorem holds true for this algorithm:

Theorem 4.1 Let H be a finite hypothesis class over (X,R), D, e >0,0<6<1,r=2.
Then, for any G problem class such that the noise in the responses lies in [—K, K] and
A(G,H) < D it holds that the pairwise elimination based agnostic learner is an agnostic

(D,r,e,0) KWIK-learner for (H,G) with KWIK-bound (([2%2 log ww —1)N+1)(N -
2702
1)=0 (ng log %).

4.2. The case of infinite hypothesis classes

Note that by introducing an appropriate discretization, the algorithm can also be applied to
problems when the hypothesis set is infinite. In particular, given e > 0, if there exists N > 0
and Hy C H with n functions such that for any function f € H there exists some function
f € Hy such that ||f — f/||cc < €/2 then if we run the above algorithm with Hy and €/2
(instead of €) then from A(G,H) < D it follows that A(G,Hy) < D + ¢/2. Therefore, by
the above theorem, the pairwise elimination based agnostic learner with Hy will be 2D + ¢

accurate and will pass at most O (K iév : log %) times, outside of an event of probability at

most . Therefore, it is a (D,r,€,0) agnostic KWIK-learner for (#,G). In the case of a
linear hypothesis class with a d-dimensional input, N = ©((1/€)?) and thus the number of
passes in the bound scales with (1/€)2%+2. We see that as compared to the noise-free case,
we lose a factor of two in the exponent. The approach just described is general, but the
complexity explodes with the dimension. It remains to be seen if there exists alternative,
more efficient algorithms.
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5. Reinforcement learning with KWIK-learning

In reinforcement learning an agent is interacting with its environment by executing actions
and observing states and rewards of the environment, the goal being to collect as much
reward as possible. Here we consider the case when the state transitions are Markovian.
An agent unfamiliar with its environment must spend some time exploring the environment,
or it may miss essential information and loose a lot reward in the long run. However, with
time the agent must reduce exploration, or it will fail to collect reward. The basic question
is how to find the right balance between exploration and exploitation.

The KWIK-Rmax construction of Li et al. (2011a) shows that if efficient KWIK-learning
is possible for some environment models then efficient reinforcement learning is possible for
the same class. The purpose of this section is to show that this result readily extends to
the agnostic case in a sensible manner, justifying the choice of the agnostic learning model
proposed.

5.1. Markovian Decision Processes and efficient learning agents

In this section we introduce a minimal formal framework for studying the efficiency of
reinforcement learning algorithms when they are used to learn to control Markovian Decision
Processes (MDPs). For further information on learning in MDPs the reader is referred to
the book of Szepesvari (2010) and the references therein.

Technically, an MDP M is a triple (S, A, P), where S is the set of states, A is the set of
actions, both are non-empty, Borel-spaces; and P, determining the evolution of the decision
process, is a transition probability map from S x A to S x R.® In particular, an agent inter-
acting with an environment described by an MDP receives at time step the state s; € S of
the environment, decides about the action a; € A to take based on the information available
to it and then executes the action in the environment. As a result the environment moves
the state and generates the reward associated with the transition: (r¢, si41) ~ P(¢]s¢, ar).
The process then repeats. An algorithm (which may use randomness) for computing an
action based on past information is called a (non-stationary) policy. The value of a policy 7
in state s is the expected total discounted reward, or expected return when the interaction
starts at state s. Formally,

V™(s) =E

o
thﬁ ) (T2, Se41) ~ P(e[se, ar), ap ~ m(-[s0, a0, 70, $1,a1,71, ..., 8),t > 0,80 = 5
t=0

An optimal policy 7* is such that in every state s € S, V™ (s) is the best possible value:
V™ (s) = V*(s) & sup, V™(s). Here, V* is the so-called optimal value function and V™ is

6. We call P a transition probability map between measurable spaces (E1,&1) and (E2, &) if (i) P(:|e2)
is a probability measure on (E1, &) for any es € E» and (it) the function P(B|-) is measurable on E3
for any B € &;. In what follows, to minimize clutter, we omit technical assumptions needed to establish
e.g. the existence of measurable optimal stationary policies. See e.g. Theorem 6.11.11 in the book by
Puterman (2005) for a compact result and the references in this book. All results presented hold for
finite MDPs without any further assumptions.
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called the value function of policy 7. In finite discounted MDPs an optimal policy always
exists. We also need the optimal action-value function Q* : S x A — R; Q*(s,a) is defined
as the total expected discounted reward assuming that the interaction starts at state s, the
first action is a and in the subsequent timesteps an optimal policy is followed. We will write
Vs Var, @iy when there is a need to emphasize that these object are specific to the MDP
M.

A learning agent’s goal is to act “near-optimally” in every finite MDP while having little
a priori information about the MDP. In particular, given a finite MDP M = (S, A, P), the
learning agent A is told S, A, a bound on the rewards and their expected value, a discount
factor 0 < v < 1. Then, A starts interacting with an environment described by M. Note
that a learning agent is slightly more general then a policy: A policy is MDP-specific (by
definition), while a learning agent must be able to act in any (finite) MDP. We can also
view learning as the learning agent choosing an appropriate (non-stationary) policy to follow
based on the a priori information received. We also identify an agent A with its “learning
algorithm” and will also say “algorithm A”.

One possible goal for a learning agent is to minimize the number of timesteps when the
future value collected from the state just visited is worse than the optimal value less some
value € > 0. Following Kakade (2003) and Strehl and Littman (2005), we formalize this as
follows:

Definition 5.1 (e-mistake count) Let € > 0 be a prescribed accuracy. Assume that a
learning agent A interacts with an MDP M and let (st,at,rt)i>0 be the resulting S x A x R-
valued stochastic process. Define the expected future return of A at time step t > 0 as

[e.9]

Z Yorits

s=0

A
‘/;7M_]E 50,Q0,70,51,A1, 71y, St

Agent A is said to make an e-mistake at time step if V;“‘}w < Vi(s¢) — € and we will use
NJ\“‘}Ie to denote the number of e-mistakes agent A makes in M :

A
NM6 ZH{ M<VM s¢)—€}

The competence of an algorithm A is measured by Ny; A 7 Formally, an algorithm A is called
PAC-MDP if for any € > 0, 0 < 6 < 1, MDP M, NA“‘} can be bounded with probability
1 — 0 with a polynomial of the form poly(\S] |Al, 1/, log(l/é) 1/(1 — 7)), assuming that
the rewards belong to [0,1] interval. For MDPs with infinite state and action spaces, |S|
and |A| should be replaced by an appropriate “complexity” measure.

7. An alternative, closely related way for measuring competence is to count the number of timesteps when
Qi (xe,ar) < Vip(xe) — e Nﬁ e = 2ie0 @1, (st,ar)< vy, (s)—e} - 1f the learning agent does not randomize,

Qi (se,at) > V}“f}u follows from the definitions. It follows then that Ny e < Nt 1, holds almost surely.
For further, alternative notions of efficient learning consult Fiechter (1994); Auer et al. (2008).
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From a static, non-learning, computational viewpoint, the stochasticity of the rewards
does not play a role. Hence, by slightly abusing notation, we will also call a 4-tuple
(S, A, P,R) an MDP, where P is a transition probability map from S x A to S, and
R : S5 x A — R is the immediate expected reward function underlying P. A policy ©
which chooses the actions based on the last state only in a fixed manner is called a station-
ary (Markov) policy.® Such a policy can and will be identified with a transition probability
map from S to A. In particular, we will use 7(:|s) to denote the probability distribution
over A designated by 7w at s € S.

5.2. A general theorem on efficient RL

In this section we show a general result on constructing efficient reinforcement learning
algorithms. The result states that if a policy i) keeps track whether state-action pairs are
“known”, 4i) ensures that the model parameters corresponding to “known” pairs are indeed
known with reasonable accuracy, i) makes an effort to get to unknown areas, then it will
be efficient as soon as the number of times it happens that the currently visited state-action
pair is not “known” is small.

Theorems of this style have appeared in Strehl et al. (2006, 2009); Li (2009); Li et al.
(2011b,a). These results in fact generalize the proof of Kakade (2003) which shows that
RMAX is efficient. The closest in spirit to the result below is Theorem 10 by Strehl et al.
2009 (originally appeared as Proposition 1 of Strehl et al. (2006) and then repeated as
Theorem 4 by Li et al. 2011b). The differences between the result below and this theorem
are mostly at the cosmetic level, although the particular form below makes our theorem
particularly easy to apply to the model-based setting of the next section and it also allows
imperfect (even stochastic) planners.’ However, the main reason we included this result
is to give a fully rigorous proof, which avoids the inaccuracies and ambiguities of previous
proofs.!? Also, we slightly improve the previous bounds: we remove a 1/(1 — ~)-factor.

Let Y = M(S) x R, where M(S) is the space of finite signed-measures. We define

def

the norm || - [[y : ¥ — Ry as follows: For any P € M(S), r € R, let [|(P,r)|y, = || +
Y I P|| 7y Vinax, where Vipax > 0 will be chosen to be a common upper bound on the value
functions in a class of MDPs of interest and |||/, is the total-variation norm of finite
signed measures (| P|l;, = [P|(S)). Define the distance of MDPs M; = (S, A, P1, R1),
My = (S, A, P2, Ry) sharing S and A by

d(Mi,Mz) = sup ||(Pi(-]s,a) = Pa(-|s,a),r1(s,a) = ra(s,a))y -
(s,a)eSxA

8. A policy is Markov if the distribution assigned to a history depends only on the last state of the history.
In what follows, by a stationary policy we will always mean a stationary Markov policy.
9. Imperfect planners are also allowed in Walsh et al. (2010).

10. Some of the differences in our proof follow from our slightly changed assumptions. However, the proof
of Lemma 5.3 is new. In place of our argument, earlier works either did not present a proof or used an
argument which did not allow serial correlations and thus, strictly speaking, cannot be applied in the
setting considered here.
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Theorem 5.1 Consider agent A interacting with an MDP M = (S, A, P). Let (s1,a1,71,S2,a2,72, ..

be the trajectory that results when A interacts with M and let F; = o(s1,a1,71,...,5;) be
the o-field corresponding to the history at time t. Let G C ) be a measurable event of the
probability space that holds the random variables (st, at,7¢)i>1. Assume that there exist a
sequence of state-action sets (K¢)i>1, Ky € S x A, a sequence of models (Mt)tzl, and a
sequence of stationary policies (m;)i>1 such that for some eplan, €models Vimax > 0 and for any
t > 1 the following hold:

(a) the expected immediate rewards underlying M and (My)s>1 are bounded by (1 —~)Vinax;
(b) Ky, M,, 7, are Fy-measurable;
(c) ar = m(st) (the action at time t is selected by m);

(d) Vj\’; (s¢) > V]\’z (8t) — eplan (the policy m; is at least eplan-optimal at s; in model Mt);
t t

(e) for any (s,a) € K,

emodel-accurate for “known” state-action pairs);

‘Mt(s,a) — M(s,a)”y < emodel holds true on G (the model is

(f) for any (s,a) ¢ K, any stationary policy 7, Viax < QY (s,a) (in “unknown” states,
t
the model is optimistic, but not overly so); and

(9) if (st,a¢) € Ky then my1(si+1) = me(si+1) (old policy used as long as visiting known
state-action pairs).

Let B be a deterministic upper bound on the number of times it happens that (s;,a;) & Ky
on G: Y72, L (sa0gie,ay < Blygy. Then, for any 0 < § <1 there exists an event F' = F
such that P(Fs) > 1 — 6 and on F NG, the number of 5emodel/(1 — ¥) + €plan-mistakes

is bounded by Dmax1=7)L {B + (V2B + 3)4/log (%) + 6log (%) }, where L = max(1, [(1 —

€model

) og(Vinax (1 — ) /€model) 1) -

We will need two lemmas for the proof, which we state first. The first lemma is a standard
result which follows from simple contraction arguments:

Lemma 5.2 (Simulation Lemma) For any two MDPs M; and My sharing the same
state-action set Sx A and any stationary policy w over (S, A), it holds that HVJ(/}I - Vin HOO <
d(My, Mz) /(1 —7).

The next lemma compares the number of times the bias underlying an infinite sequence
of coin flips can exceed a certain threshold € given that the biases are sequentially chosen
and that the number of heads in the infinite coin flip sequence assumes some bound m. The
proof is based on the idea underlying Markov’s inequality and a stopping time construction
used in conjunction with a Bernstein-like inequality due to Freedman (1975).
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Lemma 5.3 Let 0 < € < 1, m € N be deterministic constants, (Fi)¢>1 be some filtration
and let (A¢)i>1 be an (Fiy1)i>1-adapted sequence of indicator variables. Let

ay = E [At|]:t}

and let G be an event such that on G the inequality > ;2 Ay < m holds almost surely. Then,
for any 0 < § < 1 with probability 1 — §, either G¢ holds, or

- 1
Z]I{atge} <= {m + \/2mlog (1) + 3\/log (1) +6log ((15)} .
=1

With this, we are ready to give the proof of Theorem 5.1:

Proof We need to show that with an appropriate choice of F', and for € & Semodel/ (1 —
7v) + €plan, the inequality N]\“‘}’E < W {B + (V2B + 3)4/log (%) + 6log (g)} holds
on FNG.

Let etrune = €model /(1—7) be the allowed truncation-error. Note that with this notation,
L = max(1, (ﬁ log Xr‘ﬁ}) The quantity L is known as the so-called egypc-horizon: if

Vi (s; L) denotes the expected L-step return of m in M when the decision process starts at
s then |V (s) — Vi (s; L)| < etrunc-

Fix ¢t > 1 and let E; be the event that in the next L steps, the agent “escapes” the
known set:

L-1

Er = {(st4iraer4) & Koy} - (2)

1=0

The plan for the proof is as follows: We first show that whenever p; = P (E;|F;) is small,
in particular, when

€trunc
< 3
b = Wi (3)

then, on G, the agent does not make an e-mistake at time ¢. Then, based on Lemma 5.3
we will give a high-probability bound on the number of timesteps when (3) fails to hold.

Turning to the first step, assume that (3) holds. We want to show that the agent does not
make an e-mistake on G, i.e., on this event, V;“‘]‘V[ > Vi (sy) —e. Let Ty be the non-stationary
policy of M induced by A at time step ¢t. Then, ‘Q"]‘V[ = Vj\’;}t (s¢) > V]@t(st; L) — etrunc by
the choice of L. Let M; be the model which agrees with M on I, while it agrees with M,
outside of Kj;.

Claim 5.4 We have V]\C}t (sy; L) > Vj\’;[tt(st; L) — 2Viaxpt, with probability one.

The proof, which is given in the appendix, uses that the immediate rewards for both M
and M; are bounded by (1 —7)Vpax (i-e., condition (a)), the measurability condition (b) and
the condition that there is no policy update while visiting known states (i.e., condition (g)).

753



SZITA SZEPESVARI

Now, by the definition of L, Vm (sg; L) > Vm (st) — €trunc, While by the Simulation
Lemma (Lemma 5.2) and (e), on G it holds that V”‘ (s¢) > Vz\? (S¢) — emodel/(1 — 7).
t
y (d), V]g[t (st) = V7 (st) — €plan- Let 7 be an optlmal stationary policy in M. We have
t t
V]‘Zt (875) Z V]\z;[t (St).

Now, let M; be the MDP which is identical to M, for state-action pairs in K;, while
outside of K; it is identical to M. We claim that the following holds true:

Claim 5.5 On G, it holds that VXZ (s¢) > V]\l}:(st).

The proof, which is again given in the appendix, uses the optimism condition (condi-
tion (f)), condition (a).

By the Simulation Lemma and (e), on G, it holds that V]\Z (st) > VI (8t)—emodel/(1—7).
Chaining the inequalities obtained, we get that, on G, the inequality V;“‘}V[ > Vi (s¢) —

(2p¢ Viax +4€trunc + €plan) holds. Thus, when (3) holds, on G, we also have V;‘}VI > Vi (se)—
(5€trunc + €plan) = VA}* (s¢) — €, which concludes the proof of the first step.

Let us now turn to the second step of the proof. By the first step, on G, >, ]I{VtAM<V —a <
Z?il H{pt<8§rl1:./c}. Let Tnon—opt = Ztoil H{pt>etrunc/(2vmax)}' In order to bound Tnon-opta we
write it as the sum of L terms as follows

L—-1 o

IlOIl opt — Z Z {ij+'L+1 >etrunc/(2vmdx)} : (4)

=0 7=0

-
We will apply Lemma 5.3 to each of the resulting L terms separately. To do so, fix 0 <
i < L —1 and choose the sequence of random variables (A;)¢>o to be (H{EtLJriJrl})tzO’ while
let the corresponding sequence of o-fields be (Firyit1)e>0. Further, choose € of Lemma 5.3
as € = egunc/(2Vimax). By condition (b), Ay is F(441)14i41-measurable, since Eypii11 €
F(t+1)L+i+1- The upper bound m on the sum > Ay is obtained from

o0 o0 o0
ZH{EJ‘L+¢+1} = ZH{Et} < ZH{(xt,atxZKt} )
=0 t=1 =1

where the last inequality follows from the definition of E; (cf. (2)). By assumption, on G,
the last expression is bounded by B. Therefore, on G, Z;’io I Ejpyisr} = B also holds and
Lemma 5.3 gives that with probability 1 — §/L, either G¢ holds or

Téél-optsw"“"{mﬁmog L)+ 3y/log (£) +610g(§)},

€trunc

Combining this with (4) gives that, with probability 1 — 4, either G¢ holds or
2Vimax L

€trunc

Tnon—opt <

{B+ (V2B + 3)4/log (%) + 6log (%)} )
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thus, finishing the proof. |

5.3. The KWIK-Rmax construction

In this section we consider the KWIK-RMAX algorithm of Li et al. (2011a) (see, also Li et al.
(2011b)). This algorithm is identical to the RMAX algorithm of Brafman and Tennenholtz
(2000), except that the model learning and planning components of RMAX are replaced
by general components. This way one gets a whole family of algorithms, depending on
what model learner and planner is used. In addition to unifying a large number of previous
works which considered different model learners and planners (for a list of these, see the
introduction of this article), this allowed Li et al. to improve the previously known efficiency
bounds, too (see, Chapter 7 of Li (2009) and Li et al. (2011a)).

Here, the exact same algorithm is considered, but we derive a more general result:
We show that if the model learning algorithm is an agnostic KWIK-learner enjoying some
KWIK-bound and a “good” planner is used then the resulting instance of KWIK-RMAax
will be efficient even when the MDP considered is outside of the hypothesis class that the
KWIK-learner uses. In essence, our analysis shows how approximation errors propagate
in a reinforcement learning context. In the special case of realizable learning, our result
reproduces the result of Li et al. (2011a) (our bound is slightly better in terms of its
dependence on the discount factor 7).

The KWIK-RMAX algorithm is shown as Algorithm 5. The algorithm takes as input
two “objects”, a learner (MDPLearner) and a planner (Planner). The learner’s job is to
learn an approximation to the MDP that KWIK-RMAX interacts with. The learned model
is fed to the planner. The planner is assumed to interact with models by querying next
state distributions and immediate rewards at select certain state-action pairs. The predict
method of a model is assumed to return the returned values for the planner. The planner
itself could use these in many ways — the details of the planning mechanism are not of
our concern here (our result allows for both deterministic and stochastic planners). An
important aspect of the algorithm is that the model learned is not actually fed directly to
the planner, but it is fed to a wrapper. In fact, since a KWIK learner might pass in any
round, it is the job of the wrapper to produce a next-state distribution, reward pair in all
cases. This can be done in many different ways. However, the main idea here is to return a
next-state distribution and a reward, which makes an “unknown” state-action pair highly
desirable. One implementation of this is shown in the right-hand side of algorithm listing 5.
The KWIK-RMAX algorithm itself repeatedly calls the planner (with the optimistically
wrapped model learned by the KWIK learner), executes the returned action and upon
observing the next state and reward, if the KWIK learner passed, it feeds the learner with
the observed values. Note that for the analysis it is critical that the learner is not fed with
information when it did not pass, contradicting one’s intuition.

Our main result, stated below, says that if MDPLearner is an agnostic KWIK-learner
and the planner is near-optimal then KWIK-RMAX will be an efficient RL algorithm. In
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Algorithm 5 The KWIK-Rmax Algorithm and the Optimistic Wrapper
KWIK-Rmax(MDPLearner, Planner)
MDPLearner.initialize(. . .)

{Optimistic Wrapper}

Planner.initialize(. . .) Opt(MDPLearner).predict(s, a)
Observe s1 if MDPLearner.predict(s,a) =1 then
fort:=1,2,... do return (d5(), (1 — ) Viax)

a; = Planner.plan(OpT(MDPLearner), s;) else

Execute a; and observe s¢41, ¢ return MDPLearner.predict(s, a)

if MDPLearner.predict(s, a;) =L then
MDPLearner.learn((s¢, at), (0s,.1,7¢))

order to state this result formally, first we need to define what we mean by KWIK-learning
in the context of MDPs.

As before, we fix the set of states (S) and actions (A) and Viyax > 0, an upper bound
on the value functions for the MDPs of interest. Remember that J = M (S) x R and the
norm ||-||;, defined by [[(P, )|y, = [r| + Y[ Pllpy Vinax (P € M(S), r € R). The space Y
will be the output space for the predictors. Learning an MDP model means learning the
immediate expected rewards and transition probabilities when the inputs are state-action
pairs. That is, we let X = 5 x A and encode an MDP as a mapping g : X — ), where for
x = (s,a) € X, g(s,a) = (P,r), where P is the next-state distribution over S and r € R
is the associated expected immediate reward. What is left in specifying an MDP problem
instance (X,Y, g, 7Z,||-||) is the noise component Z. In the R® component of ), the noise
is completely determined by g, while, for the reward component the noise distribution is
arbitrary, except that the noisy reward is restricted to be bounded by (1 —7)Vipax. A subset
of all g : X — Y functions will be called an MDP hypothesis space. Now, we are ready to
state our main result.

Theorem 5.6 Fix a state space S and an action space A, which are assumed to be non-
empty Borel spaces. Let X,) be as described above, H be an MDP hypothesis set, G be
a set of MDP problem instances, both over X,Y. Assume that A(G,H) < D. Assume
that Vimax > 0 is such that (1 — v)Viax @s an upper bound on the immediate rewards
of the MDPs determined by members of H and G. Fiz e > 0,r > 1, 0 < § < 1/2.
Assume that MDPLearner is an agnostic (D,r,e) KWIK-learner for (H,G) with KWIK-
bound B(0). Assume further that we are given a Planner which is epjanner-accurate. Con-
sider the instance of the KWIK-RMAX algorithm which uses MDPLearner and Planner,
interacting with some MDP M from G. Let € = 5(%::6) + eplanner- Then, with prob-
ability 1 — 20, the number of € -mistakes, Naro, made by KWIK-RMAX is bounded by

w {B((S) + (1/2B(0) + 3)4/log (%) + 61og (£) }, where L = max(1, [(1—7) ! log(Vinax(1—
)/ (rD +€))1).
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6. Discussion

In the first part of the paper we formalized and explored the agnostic KWIK framework (first
mentioned in Li (2009)), and presented several simple agnostic KWIK learning algorithms
for finite hypothesis classes with and without noise, and for deterministic linear hypothesis
classes. In the second part of the paper we showed that an agnostic KWIK-learner leads to
an efficient reinforcement learning, even when the environment is outside of the hypothesis
class that the KWIK-learner uses. To our knowledge, this is the first result that proves
any kind of efficiency for an RL algorithm in the agnostic setting. Our bound also saves a
factor of 1/(1 — ) compared to previous bounds. Unfortunately, our (limited) exploration
of agnostic KWIK-learning indicated that efficient agnostic KWIK-learning might be im-
possible for some of the most interesting (simple) hypothesis classes. These negative results
do not imply that efficient agnostic reinforcement learning is impossible, but indicate that
the problem itself requires further work.
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Appendix A. Proofs
A.1. Proofs for Section 3

Theorem 3.1 Let (X,)) be arbitrary sets, r = 2, ¢ = 0, D > 0, H a finite hypothesis
class over (X,Y), G a deterministic problem class over (X,)) with A(G,H) < D. Then,
the Generic Agnostic Learner is an agnostic (D, r,e) KWIK-learner for (H,G) with K WIK-
bound |H| — 1.

Proof Suppose that the adversary chose problem G = (X,)),g,0). Since A(G,H) < D
and H is finite, there exists a function f* € H such that |[f* — gl = A(G,H) < D.
Consequently, f* will be never excluded from F: for any z and y = g(x), || f*(z) —y|| < D.

Let us now show that every time the learner makes a prediction, the prediction is 2D-
accurate. Indeed, if ¢ is the prediction of the learner, ||g —y|| < ||lg — f*(2)|| + |/*(z) — y||-
Now, by the definition of § and because f* is never excluded, ||§ — f*(x)|| < D. Further, by
the choice of f* and because y = g(x), we also have ||f*(z) — y|| < D, altogether showing
that the prediction error is upper bounded by 2D.

It remains to show that the learner cannot pass more than |H| — 1 times. This follows,
because after each pass, the learner excludes at least one hypothesis. To see why note
that Y = () means that for every y € Y there is some f € F such that ¢ & Bp(f(z)).
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Specifically, this also holds for y = g(z) and thus there is a function f € F such that
||f(x) —y|| > D. By definition, this function will be eliminated in the update. As the
learner eliminates at least one hypothesis from F when passing, and f* is never eliminated
from F, the number of passes is at most |H| — 1. [ |

Theorem 3.2 Fiz any D > 0 and an infinite domain X. Then, there exists a finite
response set Y C R, a two-element hypothesis class H and a deterministic problem class G,
both over (X,)), that satisfy A(G,H) < D such that there is no bounded agnostic (D,r,0)
KWIK-learner for (H,G) with competitiveness factor 0 < r < 2.

Proof Fix D > 0. Let X be an infinite set, z1,z2,... be a sequence of distinct elements
in X, Y ={-2D,—D,0,D,2D} and H be a two-element set containing fip = D and
f—-p = —D. For n € N, define the functions

() +2D, ifx=x,;
€Tr) =
In,£D 0, otherwise

and let G be the set of these functions. Clearly, A(G,H) = D. Before picking a hypothesis,
the adversary simulates its interaction with the learner. At step t of the simulation, the
adversary asks query x;. If the learner passes with probability 1, then A answers 0. Suppose
now that there is some ¢ when the learner makes some prediction g; with probability p > 0.
Without loss of generality we may assume that P (g, > 0) > p/2. At this point, the adversary
stops the simulation and picks g; —p. During the learning process, L passes to any z; with
i < t and gets feedback 0. At time step t, however, with probability p/2,

Ut — gt,—p(zt) > 0+ 2D,

so the learner fails. On the other hand, if the learner always passes then it is not bounded. B

Theorem 3.3 Let Xpayx > 0, X = [~ Xma, Xmax]® Y = R, M,D,e > 0, r = 2, H =
Hiin(vry- Then, for any G deterministic problem class over (X,Y) with A(G,H) < D, it
holds that the deterministic linear agnostic learner is an agnostic (D,r,e) KWIK-learner

for (H,G) with the KWIK-bound 2d! (MXmax 4 1),

Proof First of all, we need to show that the calculations of the algorithm are meaningful.
Specifically, solutions y* and y~ to the linear programs need to be finite. This will hold
because O(C') is bounded and non-empty during any point of the learning. Boundedness
holds because ©(C) C {6 : ||0]|,, < M}. We assumed that there is a hypothesis fp- so
that || fo — g*|l.c < D, and the KWIK protocol sends training samples (z,y) such that
y = g*(z). Therefore, D > |fo(x) — g*(x)| = |(6*)Tx — y|, so 0" satisfies all constraints in
C, making ©(C) nonempty.
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Secondly, the following calculation shows that if a prediction is made, it is correct:

U — yt_yt/Q—l—yt/Q g(xe)
<D+ety /24y /2—g(z)
=D+e+ (y; — f (1)) + (f*(w) — g(wt))
<D+e+0+D,

and similarly,

Ot —ye = vl 2+ y; /2 — g(ar)
>yt /24yt /2 — (D +e) —g(xy)
= —D — e+ (g — f*(x)) + (F*(xe) — g(1)
>-D—-e+0-D,

so |9 — yt| < 2D + €, as required.

Finally, we prove the upper-bound on the number of Ls. Let X’ Lef [— Xmax—€/M, Xax+
¢/M)? be a slightly increased version of X. Let Hy be the set of z € X’ for which the learner
makes a prediction, that is, y*(z) —y~ (z) < 2D(1+¢). The set Hy, is convex, following from
the convexity of the constraints and the convexity of the max operator (and the concavity
of min). If the adversary asks some = ¢ Hy, then x gets added to the known set, together
with some of its neighborhood B(x) & {2’ € X’ : ||’ — /|1 < ¢/M}. This follows from the
calculation below: let 2’ € B(x), then for any 0 € ©(Cy41),

072’ < 672+ 0] le’ — 2l < 67z + ¢, s0

max 672’ < max 6Tz +e, that is,
0€0(Cr+1) 0€0(Crt1)

y (@) <yF(a) +
y (z

With similar reasomng, y (o)) > )—6 In step k+1, the constraint y—D < 872 < y+D
was added for z, so y*(z) —y~ (z ) < 2D. Consequently, y*(z') —y~(2') < 2(D +¢), so the
learner knows a’.

The set Hy is convex, ¢ Hj, and B(x) is symmetric to z. So for any 2/ € B(z),
at most one of 2/ and x + (z — 2) can be € B(x), that is, at least half of the volume of
B(x) is outside Hy. Hy U B(z) C Hp4q, so Vol(HkH) > Vol(Hy) + Vol(B(z))/2. The
volume of B(x) is (26/M)d/d‘ so Vol(Hy) > k22D O the other hand, Hp C X/, so

2d!
Vol(Hy,) < (2Xmax + 2¢/M)?, which yields an upper bound on k:

MXomax 1)d ‘

k‘§2d!<
€

Theorem 3.4 Let X, Y, D,r,H be as in Theorem 3.3. Then, there exists a problem class G
that satisfies A(G,H) < D such that there is no bounded, agnostic (D,r,0) KWIK-learner
for (H,G).
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Proof For any learner L, we will construct a problem class G, a strategy for the adversary
so that L will either make a mistake larger than 2D with nonzero probability, or passes
infinitely many times. The construction will be similar to the previous one.

Without loss of generality, let X = [0,2] and let ) = R with the absolute loss norm.
Let (x1,x2,...) be a strictly increasing sequence of numbers with 1 < 2y < 2, t € N. For
convenience, define o = 1. For n € N, let

( ) def :l:D(]. + x$ 1) ifx > [L‘n,1 5
7:t w = " .
In 0 fx <z,

and let G be the set of these functions. For this set of problems, A(G,H) < D: for any
concept, there exists a function f € Hyy(ps) that is at most at distance D from the chosen
concept. Specifically, for g, , fo with 6 = D/z,_; is satisfactory:

Hgn,Jr - fD/afnﬂ Hoo = nax {Igglixl |Gn,+(2) — fD/xn,1($)|§ xggri); |Gn,+(2) — fD/xn1(x)}

:max{ max |0 — b z|; max |D(1+ ’ ) — D :E|} =D.
r<xp_1 Tn—1 T>Tp—1 Tn—1 Tn—1

We prove the statement by contradiction. Assume that there exists a bounded, agnostic
learner for the above problem. The adversary proceeds similarly to the adversary of The-
orem 3.2: it finds out the first index ¢ where the learner would make a prediction with
nonzero probability (provided that it receives feedback 0 only). Unless the learner passes
infinitely many times, such a t exists. If the first prediction is nonnegative with at least 1/2
chance, the adversary picks g; _, otherwise it picks g; +. In the first case,

Tn

Ut — gt,—(z¢) > 04+ D(1 +

) > 2D,

Tp—1
with nonzero probability, and similarly, ¢+ — g —(z:) < —2D for the second case, showing
that a bounded learner will make a mistake larger than 2D with positive probability. W

Theorem 3.5 Fix X,Y, D, H, e as in Theorem 3.3 and let r > 2. Then, there exists some
problem class G so that any algorithm that agnostic (D,r,e) KWIK learns (H,G) will pass
at least 291 times.

Proof X =[-2,2], Y = R with the absolute loss norm, fix some 1 > D > 0. The adversary
asks the 2971 vertices of the hypercube {-1, —|—1}d that have positive first coordinates. It
is easy to see that the adversary can pick the values on the vertices independently, and if
the learner predicts anything with nonzero probability then the adversary can make the
protocol fail. The proof is completely analogous to the previous one. |
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A.2. Proofs for Section 4

The following lemma, which follows from an application of the Hoeffding-Azuma inequality
and a careful argumentation with “skipping processes”, will be our basic tool. The novelty
of the lemma is that we allow for the possibility of unbounded stopping times, otherwise
the lemma would directly follow from Theorem 2.3 in Chapter VII of Doob (1953) and the
Hoeffding-Azuma inequality. (It is very well possible that the lemma exists in the literature,
however, we could not find it.)

Lemma A.1 Let F = (Fi)e>1 be a filtration and let (€:, Zt)¢>1 be a sequence of {0,1} x R-
valued random variables such that €; is Fy_1-measurable, Z; is Fy-measurable, E [Z;|Fi_1] =
0 and Z, € [A, A+ K] for some deterministic quantities A, K € R. Let m > 0 and let
7 =min{t > 1: 22:1 €s = m}, where we take T = oo when Y oo, €; < m. Then, for any
0 <0 <1, with probability 1 — ¢,

Nz, < Ky log (1> (5)
2 2 5

Remark A.1 (Analysis of the sum in (5)) Let (£2,.A) be the probability space holding
the random variables and the filtration F, and let Sy, =Y ) &Z; (n=0,1,..., the empty
sum being zero). The sum S on the left-hand side of (5) is well-defined almost everywhere
on § as it has at most m terms no matter whether T(w) < oo or 7(w) = oo. It also holds true

that the sum S is an integrable random variable. To see why, consider SL def lim,,—y 00 Sean-
We claim that the random variable S, is well-defined, integrable and S, = S holds almost
surely. First, notice that (S:an)n>1 15 a martingale (this follows, e.g., from the Corollary on
p.341 to Theorem 9.3.4 of Chung 2001). Next, note that (Syan)n>1 is L'-bounded (by the
condition on Zy and because Srnn has at most m terms, we have E[|Sran|] < m(|A] + K))
and therefore it is also uniformly integrable. Hence, Theorem 9.4.6 of Chung 2001 gives
that S’ is a well-defined, integrable random variable. Finally, a simple case analysis shows
that S’ = S holds almost surely.

Proof Let S, = Syan, where S, = > )", €Z;, n > 0. Define Noo = NU {c0}. By
Remark A.1, S = S/ a.s., where S is the sum on the right-hand side of (5) and S, =
limy,—00 S7an, Theorem 9.4.6 of Chung 2001 mentioned in the remark not only gives that
S is integrable, but it also gives that (S/,, Fn)nen., is a martingale, i.e., S/ is a “closure”
of (8!, Fp)nen. Let 7, = min{k > 1 : S5 & =i}, i=1,...,m (as before, minf) = oc).
Note that 7,, = 7 and 7; < 7341, ¢ =1,...,m — 1. Note that just like S;, S;, is also well-
defined by Remark A.1. Consider the process (S7 , Fr,)i=1,..,m, Where S, (w) o S;i(w) (w)
and F, is the o-algebra of pre-7; events. By the optional sampling theorem of Doob (see,
e.g., Theorem 9.3.5 of Chung 2001), (S'Ti, Fr)i=1,..m is a martingale. Let us now apply the
Hoeffding-Azuma inequality to this martingale. In order to be able to do this, we need to

show that the increments, X; = S;L_H — S’n_ lie in some bounded set for : = 0,...,m — 1,
where we define S; = 0. When 7,41 = o0, S’Ti+1 = S/, = 5. Now, if 7, = oo, we also
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have S; = S., = S, while if 7; < oo, we have S = S;, = S;.. Thus, in both cases,
Xi =0 € [A, A+ K] (that zero is in this interval follows because (Z;) is a martingale

increment). When 7,41 < oo, we also have 7; < oo and thus S7,, | = Sr,,, and also S7, = Sy,
and so ST, — S = €., Zr,,, and so X; € [A, A+ K] by our assumption on (Z;). Thus, we

have shown that X; € [A, A + K| almost surely. The application of the Hoeffding-Azuma
inequality to (S;”fn)izl,...,m gives then the desired result. [ |

Remark A.2 Note that the proof does not carry through for the case when we replace the
assumption on the range of Z; by the assumptions that |Z;| < B a.s. and Z; € [Ay, Ay + K]
for some Ay, Fi_1-measurable random variable and a deterministic constant K > 0. The
problem is twofold: (Ar,)i=1,...m might not be well-defined and even if it is, all we can say
is that €, Zr,., € [Ar 1, Aryyy + K, but Ap,_ | is not necessarily Fr,-measurable.

In the proof of Theorem 4.1 we will need the one-dimensional version of Helly’s theorem,
which we nevertheless state for the d-dimensional Euclidean spaces:

Theorem A.2 (Helly’s Theorem) Let d,N € N, N > d, Cy,...,Cy C R? be convex
subsets of R%. If the intersection of any d + 1 of these sets is nonempty, then NY_,C; # 0.

With these preparations, we are ready to prove Theorem 4.1.

Theorem 4.1 Let H be a finite hypothesis class over (X,R), D, e >0,0<6 <1, r=2.
Then, for any G problem class such that the noise in the responses lies in [—K, K] and
A(G,H) < D it holds that the pairwise elimination based agnostic learner is an agnostic

(D,r,€,8) KWIK-learner for (H,G) with KWIK-bound (([25* 1og 2801 — 1)N 4 1)(NV -
2 T2
1)=0 (Keév log %)

Proof Fix H, G, D, €, § as in the theorem statement. Let ¢g* : X — R be the function
underlying the problem chosen by the adversary. Let ¢* be the index of a function f; € ‘H
that satisfies || fi* — ¢%||cc < D. By our assumption on G and H, i* is well-defined.

Let E be the (error) event when i* is eliminated by the algorithm. We will show that
P(FE) < ¢ as from this, the rest follows easily: Indeed, on the complementer of E, i.e., on
E€, by the definition of predict, the algorithm makes 2D + e-accurate predictions since if
for some input x € X, Y = (;c; Bpte(fi(x)) # 0 then for any g € Y, |§ — fi-(x)] < D + €
(since ¢* € I) and thus

19— g(x)| <9 — fir ()| + | fix () — g(z)]| < 2D + €.

Also, every time the algorithm passes, at least one of the counters n;; is incremented.
Indeed, if upon receiving input x the algorithm did not pass then (;c; Bp4e(fi(z)) = 0.
Therefore, |I| > 1 and it follows from Helly’s theorem (Theorem A.2) that there exists two
distinct indices 4, j € I such that Bp(fi(z)) N Bpte(fj(z)) = 0. For this pair (, j), either
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n;; or nj; is incremented. When some counter n; ; reaches the value m, at least one of ¢
and j is excluded. Therefore, there can be at most (m — 1) N(N — 1) calls to learn with no
exclusions. Further, there can only be N — 1 exclusions (since on E°¢ the index i* does not
get excluded). Thus, on E¢, there can be no more than (m — 1)N(N — 1) + (N — 1) calls
to learn. Plugging in the value of m gives the KWIK-bound.

Thus, it remains to show that the probability of E is small, i.e., that P (E) < §. To prove
this we need some more notation. Let G = (X, ), ¢*, Z) be the problem and let (z¢);>1 be
the sequence of covariates (z; € X') chosen by the adversary. To simplify the presentation,
we introduce for each t > 1 a response, y; = g(x¢) + 2. Let Fy = o(x1,y1,---,Tt, Yt)-
By assumption, the noise satisfies z; ~ Z(z;) and, in particular, z; lies in [—K, K|, and
E [z¢| F¢—1,x¢] = 0. Let m; be the indicator of whether the learner has passed when presented
with the input z;: m = 1 if the learner passed (and thus y; is available for learning)
and m; = 0, otherwise. For i,5 € {1,...,N}, t > 1 let egz’]) = i}, (@) <f; @)y and let

7(03) = min{n > 1 : oy wtei”” = m} be the time when the counter n; ; reaches m and
thus either 7 or j gets eliminated by the algorithm (if it was not eliminated before). Here
we let 7(%9) = 0o when prad] e, ) < m. Note that i* gets eliminated only if one of (")
or 704" is finite for some j # i*, 1 < j < N. Thus,

E = (B0 {0 < oo}) U U (BN {707 < oo}). (6)

We show that for j # i*, both E N {7("9) < 0o} and E N {70%) < oo} happen with small
probability.

Fix j # i* and consider EN{7r("7) < oo}. To simplify the notation introduce 7 = (")
and ¢ = eff ]) Let F be the event F' = {d> /| me(fir(ze) + fi(xe)) < 2D (4 meeye}-
Then EN {709 < 0o} = EN{r < o0} C FN{r < 0o} holds because by the definition of

the learn procedure, if 7* gets eliminated at time 7 due to n;«; reaching m then it must
hold that

ZﬁtEt(fi*(ﬂﬂt) + fi(xr)) < 2Z7Tt€tyt- (7)
t=1 t=1

Define G = {>_7_, me1z > K+/2mlog(2(N —1)/6)}. We claim that

FNn{r<oo} CGEN{T < o0}. (8)
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To prove this, assume that (7) holds and 7 < oo. Then,

.
Zﬂtet?«‘t Zﬂtﬁt ye — 9" (z1))
t=1

> Zme {fz* Ty ;‘f] (x) g*(xt)} (because of (7))
=z Z meee {fi(20) + (D +€) — g"(2)} (definition of ¢, = ¢!**))

> {Z Wtﬁt} € (because fi+(x¢) > g"(2¢) — D)
t=1

= me (definition of 7 and 7 < 00)

> K\/Qm log (2(N5_1)> (definition of m),

finishing the proof of (8). By Lemma A.1, P(G) < §/(2(N — 1)) and thus we also have
(E N {0 < oo}) 2(N6_1)

With an entirely similar argument we can show that P (E N {70 < 00}) < 8/(2(N —1))
holds, too. Therefore, by the decomposition (6), P (E) < 4, finishing the proof. |

Appendix B. Proofs for Section 5

Before turning to the proof of Lemma 5.3, we state Freedman’s version of Bernstein’s
inequality (see, Freedman 1975, Theorem 1.6).

Theorem B.1 Let F = (Fi)r>0 be a filtration and consider a sequence of F-adapted ran-
dom variables (Xp)g>1. Assume that E [ Xy|Fr—1] <0 and Xy, < R a.s. fork=1,2,3,....
Let the kth partial sum of (Xg)k>1 be Sk and let Vk2 be the total conditional variance up
to time k: Sy = Zle X;, V= Zle Var [X?|F;—1]. Let T be a (not necessarily finite)
stopping time w.r.t. F. Then, for allt >0, v € R,

/2
P(Srrzt7 V‘I'2 S'Uz and7_<oo) SeXp{_vQ_i_(RtB} .

In the literature the above theorem is sometimes stated for finite stopping times only (or
for the specific case when 7 = k for some k). In fact, inequality 1.5(a) in Freedman’s paper,
from which the above theorem follows, is presented for finite stopping times only. However,
the form of Theorem 1.6 of Freedman (1975) is actually equivalent to Theorem B.1. The
next result follows from Theorem B.1 by a simple “inversion” argument and is given here
because it will suit our needs better:
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Corollary B.2 Let F, (Xi)k>1, (Sk)k>1, (Vi2)k>1, R and 7 be as in Theorem B.1. Then,
foranyv € R, 0 < § <1, it holds that

]P’(ST > 21)2ln<(15> +2fln<(15> , V2 <P cmd7'<oo> <9.

Let us now turn to the proof of Lemma 5.3:

Lemma 5.3 Let 0 < € < 1, m € N be deterministic constants, (F)¢>1 be some filtration
and let (Ag)i>1 be an (Fiy1)i>1-adapted sequence of indicator variables. Let

as = E [At|]:t}

and let G be an event such that on G the inequality Y oo Ay < m holds almost surely. Then,
for any 0 < § <1 with probability 1 — §, either G¢ holds, or

- 1
ZH{GtZE} = . {m + \/27” log (5) + 3\/10g (1) + 61log ((15)} )
t=1

It is interesting to compare the result of this lemma to what happens when (a;);>1 is
a deterministic sequence, and A; is Bernoulli with parameter a;, independently chosen of
all the other random variables. Clearly, in this case if >, Ay < m holds almost surely,
we will also have Y 72, a; < m. In contrast to this, in the sequential setting of the above
lemma there exists (A, a;) satisfying the conditions of the lemma such that for any B > 0,
with positive probability, Y 1, a; > B (note that in both cases, E [>";7, a;] = E[> 72, As]).
Since D, ar > 3 Iig,>aat > €Y, I, >¢, in the setting of independent Bernoulli trials, we
get that almost surely, >, I1q,>¢) < %Zt Ay < m/e. Thus, we see that the dependent and
independent cases are quite different and the above lemma can be seen as quantifying the
price of choosing a; in a sequential manner.

Proof Define Sn == Z?Zl(at - At), Sp — Z?:l Qg, VnQ == Z?:l Var [at - At|ft] ==
Yoy at(l—ap), 3n =320 Iiq, >, for n = 1,2,...,00. Note that V2 < s, holds for any n
and V.2 is the total conditional variance associated with the martingale (S, F+1)n>0 (the
empty sum is defined to be zero).

Fix 0 <6 < 1. Let f = f(m,d) be a real number to be chosen later. We will define this
number such that on some event Fj, whose probability is at least 1 — §, we will have that

Seo > f implies that Z A >m. 9)
t=1

Once we prove this, it follows by our assumption on » ;2 A; that on Fs NG, we must have
500 < f. Now, using Iy, > € < Ipg,>aat, we get that €5, < Y70 Ty, >aqat < sp,. Therefore,
on FsNG, 86 < e sy < e ' f. Plugging in the value of f will then finish the proof.
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The event Fy is chosen as follows: Let 7 be the first index n when s, > f holds and let
7 = oo when there is no such index. Using Corollary B.2, we get that the probability of the
event

E = {STZ \/2(f+1)10g(%)+§10g(%), V3§f+1,7<oo}

is at most 6: P(E) < §. Note that V2 < s, < f + 1 holds almost surely, where
the last inequality follows from the definition of 7 and because a; € [0,1]. Therefore,
the second condition can be dropped in the definition of E without changing it: F =
{ST > \/Q(f +1)log (%) + %log (%) ,T < oo}. Take Fs = E°. Thus, P(Fs) > 1—¢ and on
Fs, we have

Sr < \/2(f+1)log(%)+%log(%) or 7 = 00

which is equivalent to

ZAt>sT—\/2(f+1)10g(%)—%10g(%) orT=00. (10)
t=1

Let us now show that on Fjy, (9) holds. Consider an outcome w € Fy and assume that we
also have so(w) > f (to avoid clutter, we suppress w in what follows). Because of so > f,
it follows that 7 < co and s, > f. Therefore, from (10) and from y 7 ; A; < > 72, A, we
get that

ZAt>(f+1)—\/2(f—|—1)log(%)—%log(%)—1. (11)

Now, define f = f(m,d) to be a number such that

(f +1) = /2(f + 1) log (%) — Zlog (}) —1 = m. (12)

Such a number exists because the left hand side, as a function of f, is unbounded. In fact, a
simple calculation shows that, with the definitions ¢ = /21log(1/d) and L = 2/31og(1/0)+1,
choosing f so that (f + 1)1/2 is larger than (¢ + /c + 4(m + L))/2 makes (12) hold true.
Some calculation shows that f < m + /2mlog(1/6) + 3+/log(1/8) + 6log(1/5). Chaining
the inequality (11) with the inequality (12), we get that on Fs, (9) indeed holds, thus,
finishing the proof.

Claim 5.4 We have V]C,t (sg; L) > V]\%(st; L) — 2Viyaxpt, with probability one.

Proof Let Z = (S x A) be the space of trajectories of length L which is viewed as a
measurable space with the product o-algebra (for S, A finite, this is just the discrete o-
algebra). Let 77 be an arbitrary F;-measurable policy, M; = (S, A, Pyr,, Ry, ) be an MDP,

766



AcgNosTiIc KWIK LEARNING

where Py, and Ry, are F;-measurable. Let F} My,79 be the measure induced by M; and 77
on the space of L-step trajectories Z, and the initial state distribution that is concentrated
at the single state s; (i.e., the initial state distribution used in the definition of F} My,79
is the Dirac-measure ds,(-)). Note that F} a7, ro is a random measure, which is itself ;-
measurable. Let Ry, : Z2 — R be the mapping that assigns M;-returns to the trajectories
in Z:

L-1

Rt (50,00, ., 51-1,a5-1) = > _ 7 Ry (56, a5) (13)
i=0

Now, consider the measures Fj sz and Ft7 Wy 7 (these are Fi-measurable thanks to
condition (b)). An important property of these measures is that they agree when restricted
to Zg,:

FtvM,ﬁ't Zx = Ft,Mt,ﬁ‘t ‘ZK} . (14)

t

This property will play a crucial role in proving the desired inequality. T'wo further identities
that we will need are the following: Let Zx, = K} be the set of L-step trajectories that
stay within K;. Then, we have

P = /H{zgth}dFt,M,frt(Z) (15)
= /H{zQZKt}dFt,M,m (2). (16)
Clearly, these two equations are equivalent to the following ones:
1—p = /H{zeZKt}dFt,Mﬁt(z) (17)
_ / Leezm, ) AFontm (2) (18)

Therefore, it will suffice to prove that these latter equations hold true.

To show (17), first notice that 1 —p, = E [H{Eg}|-7:t} and Iypey = HZ-L:_O1 L (sprsansi)eKe}-
Therefore, E [H{Eg}|-7:t} = I]I{zGZKt}dFt’M’ﬁ-t (z), which shows that (17) indeed holds.

Let us now turn to the proof of (18). By (14), [Ii.ez, ydF v (2) = [ Lzeze 1AF, i1, 7, (2)-

Thanks to condition (g), along those trajectories that stay in Ky, the policy followed does
not change. This implies that

dFt,Mtﬁt ‘ZKt = dFif,Mtﬂrt ‘Z : (19)

Ky

Therefore, we also have [Ii.cz, ydF, y, 7,(2) = [Lizez,,}dF, iz, x,(2), finishing the proof
of (18).

Let us continue with the lower bound on V7 (s; L). Then, Vit (s;; L) = [ Ras(2)dF; arz,(2),
where Rjs(z) is the return assigned by model M to trajectory z € Z (cf. (13)). Now, break
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the integral into two parts using the decomposition Z = Zg, U* Zf,. For the integral
over Zg, use that [Rps(z)| < Vinax (which holds by condition (a)) and then (15) to get

Vit (s;; L) > Jz1e, Rt (2)dFy a1 7, (2) = Vinaxpr- By (14) and (19),

RM(Z)dFtyMyﬁ't (Z) = RMt (Z)dFt7Mt77rt (Z) = V;_\ZS (St; L) - RMt (Z)dFt,MtﬂTt (Z) :

ZK, ZK, z5,

Using again Ry, (2) < Vimax (Which follows from condition (a)) and then (16) and chaining
the previous equalities and inequalities, we get V! (s¢; L) > Vj\’—z (s¢; L) — 2ptVinax, which is
the inequality that was to be proven. |

We need some preparations before we give the proof of Claim 5.5. The next lemma also
follows from a simple contraction argument (the proof is omitted). The lemma uses the
partial ordering of functions: f1 < fo if fi(x) < fa(z) holds for all z € Dom( f1) = Dom( f2).
Also, an operator is isotone if it preserves the ordering of its arguments.

Lemma B.3 (Comparison Lemma) Let B be a Banach-space of real-valued functions
over some domain D. Let Ty,T, : B — B be contractions and let f{, f5 € B be their
respective (unique) fized-points. Assume that Th is isotone. Then, if T1f5 < Taofy = f3
then f; < f3.

In the proof below, we also need the concept of Bellman operators. Let M = (S, A, P, R) be
an MDP and let 7 be a stationary policy over (S, A). The Bellman operator 17, : RS*A
RS*A underlying M and 7 is defined by

(TyQ)(s,a) = R(s,a) + ’)//Q(s',a) dr(als')dP(s|s, a), (s,a) € S x A.

As it is well known, 717, is a contraction with respect to the maximum norm and if Q7F,
denotes the unique fixed point of T, [ Q7,(s,a)dw(als) = V{(s) holds for all s € S (in fact,
Q7,(s,a) is the so-called action-value function underlying 7, i.e., Q7,(s, a) is the expected
total discounted return if the decision process is started at state s, the first action is ¢ and
the subsequent actions are chosen by 7).

Claim 5.5 On G, it holds that VA’Z (s¢) > Vﬁ:(st).

Proof Instead of the claimed inequality, we prove the stronger inequality QE > QE .
t t

To prove this, we apply the Comparison Lemma (Lemma B.3). Choose B as the Banach-

space of bounded, real-valued functions over S x A with the supremum norm |||, and

consider two operators T]\’;; , T]Ti : B — B. Operator T]\’;; is the policy evaluation operator
t t

corresponding to 7* on M;: TJ\T; Q(s,a) = Ry (s,a) +v [ Q(s',a) dn*(als")dPy (5']s, a),
t

while TATZ is the Vipax-truncated policy evaluation operator corresponding to 7* on M,:
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TJT‘EZQ(S,CL) =1I [RMt(s,a) +7 [ Q(s,a) dw(a\s’)dPMt(sﬂs,a)}, where I : R — R is the
projection to [—Vinax, Viax|, i-e., II(x) = max(min(z, Vinax), —Vmax). Clearly, Q;\r;t is the
fixed point of QE , while QFM:; is the fixed point of Q};t, the latter of which follows be-

< Viax, thanks to condition (a). It is also clear that both operators are

cause HQ“f
M|l oo
contractions. Take any (s,a) € S x A. We claim that T]’\TZtQXZIt(s,a) > TJTZQQTJ(L(S’&)' Let
us first show that this inequality holds when (s,a) € K;. In this case, [TF Q7 (s,a)| <
t t
757,(8:@)| + YVimax < Vinax, because, by construction 7y (s,a) = ry;, (s,a) and by condi-

tion (a) |7y, (s,a)] < (1 —7)Viax. Therefore, the projection has no effect. Using that
on the set K; the models M; and M, coincide, we get that T%Qﬁt(s, a) = Tg;@gt(s,a).
Now, consider the case when (s,a) ¢ K;. In this case, TF Q7 (s,a) = QF, (s,a) 2 Vinax >
t t t
T 1\72 QX;; (s,a), where the first inequality follows from condition (f), while the second follows
t
because T]’\Z Q(s,a) is restricted to the interval [—Vijax, Vinax|. This finishes the verification

of the conditions of the Comparison Lemma. Therefore, the lemma gives that QE > Q};y
t
which is the inequality that we wished to prove. |

Theorem 5.6 Fix a state space S and an action space A, which are assumed to be non-
empty Borel spaces. Let XY be as described above, H be an MDP hypothesis set, G be
a set of MDP problem instances, both over X,Y. Assume that A(G,H) < D. Assume
that Vipax > 0 is such that (1 — v)Viax is an upper bound on the immediate rewards
of the MDPs determined by members of H and G. Fiz e > 0,r > 1, 0 < § < 1/2.
Assume that MDPLearner is an agnostic (D,r,e) KWIK-learner for (H,G) with KWIK-
bound B(0). Assume further that we are given a Planner which is epjanner-accurate. Con-
sider the instance of the KWIK-RMAX algorithm which uses MDPLearner and Planner,
interacting with some MDP M from G. Let € = 5(rD+e) + eplanner- Then, with prob-

I—ry
ability 1 — 20, the number of € -mistakes, Nare, made by KWIK-RMAX is bounded by

w {B(é) + (v/2B(6) + 3)4/log (%) + 6log (%) }, where L = max(1, [(1—v) ! log(Vipax(1—
7)/(rD +€))]).

Proof We apply Theorem 5.1 to the agent KWIK-RMAX that uses MDPLearner and
Planner. Fix 0 < 6 < 1. The event G is constructed as follows: MDPLearner interacts
with an “environment” according to the KWIK protocol. Consider the event on which it
holds that the number of timesteps when MDPLearner passes is bounded by B(¢), while
the learner’s prediction errors (on the same event) is always below rD + €. By assumption,
this event has probability at least 1 —J. Call this event G. Now, the sequence (Ky)¢>1 is
simply determined as follows. Let g; : S x A — Y U {L} be the function underlying the
predictions made by MDPLearner in step ¢. Then, K; = {(s,a) € S x A : gi(s,a) #L}.
Further, let M; be the model returned by the optimistic wrapper and let the policy m; be
the policy that Planner would “compute” at time ¢ (i.e., 7(+|s) is the distribution of actions
returned by Planner if state s is fed to it). Let us verify the conditions of Theorem 5.1. The

769



SZITA SZEPESVARI

bound on the expected immediate rewards (condition (a)) holds by assumption, just like the
measurability condition (b) and that the action selected at time ¢ is sampled from 7 (+|s;)
(condition (c)). The condition on the accuracy of the planner (condition (d)) was assumed
as a condition of this theorem. The accuracy condition (e) holds with epoger = 7D + €
on G by the choice of G, while the optimism condition (f) is met because of the use of
the optimistic wrapper (in fact, because of this wrapper, Q;{Zt(s, a) = Vmax holds for any
(s,a) € K;). Also, condition (g) is met because the learn method of MDPLearner is not
called when (s¢,a;) € Ky, hence in that case gi+1 = g and thus my; = 7. Finally, on G,
B = B(6) bounds the number of times (s¢, a;) € K; happens. Therefore, by the conclusion
of Theorem 5.1, with probability at least 1 — 26, the number of 5emodel/(1 — ) + €plan-

mistakes is bounded by Wman(1-p)L {B + (V2B + 3)4/log (%) + 6log (g)}, where L =

€model

max(1, [(1 — 7) " log(Vinax(1 — 7)/€model) ). Plugging in the value eyoqe = 7D + € gives
the final bound. [
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