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Abstract
Online learning and competitive analysis are two widely studied frameworks for online decision-
making settings. Despite the frequent similarity of the problems they study, there are significant
differences in their assumptions, goals and techniques, hindering a unified analysis and richer inter-
play between the two. In this paper, we provide several contributions in this direction. We provide a
single unified algorithm which by parameter tuning, interpolates between optimal regret for learn-
ing from experts (in online learning) and optimal competitive ratio for the metrical task systems
problem (MTS) (in competitive analysis), improving on the results of Blum and Burch (1997). The
algorithm also allows us to obtain new regret bounds against “drifting” experts, which might be
of independent interest. Moreover, our approach allows us to go beyond experts/MTS, obtaining
similar unifying results for structured action sets and “combinatorial experts”, whenever the setting
has a certain matroid structure.
Keywords: Online Learning, Competitive Analysis, Experts, MTS, Matroids

1. Introduction

Online learning, in its decision-theoretic formulation, captures the problem of a decision-maker who
iteratively needs to make decisions in the face of future uncertainty. In each round, the decision-
maker picks a certain action from an action set, and then suffers a cost associated with that action.
The cost vector is not known in advance, and might even be chosen by an adversary with full
knowledge of the decision-maker’s strategy. The performance is typically measured in terms of the
regret, namely the difference between the total accumulated cost and the cost of an arbitrary fixed
policy from some comparison class. Non-trivial algorithms usually attain regret which is sublinear
in the number of rounds.

While online learning is a powerful and compelling framework, with deep connections to statis-
tical learning, it also has some shortcomings. In particular, it is well-recognized that regret against
a fixed policy is often too weak, especially when the environment changes over time and thus no
single policy is always good. This has led to several papers (e.g., Herbster and Warmuth (1998);
Hazan and Seshadhri (2009); Crammer et al. (2010); Rakhlin et al. (2011)) which discuss perfor-
mance with respect to stronger notions of regret, such as adaptive regret or tracking the best expert.
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A related shortcoming of online learning is that it does not capture well problems with states, where
costs depend on the decision-maker’s current configuration as well as on past actions. Consider, for
instance, the problem of allocating jobs to servers in an online fashion. Clearly, the time it takes to
process jobs strongly depends on the system state, such as its overall load, determined by all previ-
ous allocation decisions. The notion of regret does not capture this setting well, since it measures
the regret with respect to a fixed policy, while assuming that at each step this policy faces the exact
same costs.

Thus, one might desire algorithms for a much more ambitious framework, where we need to
compete against arbitrary policies, including an optimal offline policy which has access to future
unknown costs, and where we can model states. Such problems have been intensively studied in
the field of competitive analysis (for a detailed survey, see Borodin and El-Yaniv (1998)). In such a
framework, attaining sublinear regret is hopeless in general. Instead, the main measure used is the
competitive ratio, that bounds the ratio of the total cost of the decision-maker and the total cost of an
optimal offline policy, in a worst-case sense. This usually provides a weaker performance guarantee
than online learning, but with respect to a much stronger optimality criterion.

While problems studied under these two frameworks are often rather similar, there has not been
much research on general connections between the two. The main reason for this situation (other
than social factors stemming from the separate communities studying them) is some crucial differ-
ences in the modeling assumptions. For example, in order to model the notion of state, competi-
tive analysis usually assumes a movement cost of switching between states. In the online learning
framework, this would be equivalent to having an additional cost associated with switching actions
between rounds. Another difference is that in competitive analysis one assumes 1-lookahead, i.e.,
the decision-maker knows the cost vector in the current round. In contrast, online learning has 0-
lookahead, and the decision-maker does not know the cost vector of the current round until making
a decision. Such differences, as stated in Cesa-Bianchi and Lugosi (2006), “have so far prevented
the derivation of a general theory allowing a unified analysis of both types of problems” (p. 3).

We note that one particular setting, known as learning from experts (in the online learning
framework) and metrical task systems (MTS) with a uniform metric (in the competitive analysis
framework), has been jointly studied in Blum and Burch (1997). In particular, the latter paper
showed how certain algorithms, based on tuning some parameters, were able to interpolate between
a reasonable regret bound and a reasonable competitive ratio. The interpolation was performed
using the notion of α-unfair competitive ratio, which forces the policy we compete with to pay α
times more for the movement cost. In the limit, α goes to infinity, and thus the competing policy
becomes essentially static, and the setting becomes reminiscent of online learning.

While these are important and interesting results, they are specific to the setting of experts/MTS.
In modern online learning, learning from experts is now known to be a very special case of much
more general settings, such as “combinatorial experts” (see Chapter 5 in Cesa-Bianchi and Lugosi
(2006)), and online convex optimization. Thus, a natural question is whether unifying analysis and
algorithms exist in such cases as well.

Our Contributions: In this paper, we contribute to this research direction by providing a novel
unified algorithmic approach, based on recent primal-dual LP techniques developed in competitive
analysis (see the survey of Buchbinder and Naor (2009)). First, we show that in the experts/MTS
setting, our algorithm attains both optimal regret and an optimal competitive ratio (unlike the results
in Blum and Burch (1997), which do not obtain optimal competitive ratios), as well as optimal
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results for settings in between, such as shifting and drifting experts. The regret bound for drifting
experts is new, to the best of our knowledge, and might be of independent interest.

Furthermore, we show how our approach can be applied to more general, “structured” learn-
ing/competitive analysis settings, which satisfy matroid constraints. Matroids play an important
role in combinatorial optimization since the pioneering work of Edmonds in the 1960s and they
naturally capture structured action sets such as spanning trees and sparse subsets. In the context
of online convex optimization, our results may be viewed as online learning over the matroid base
polytope. As in the experts/MTS case, we also get regret bounds against actions which shift or drift
a limited amount. Moreover, this can be done in a fine-grained way which respects the problem
structure (e.g. competing with spanning trees where only a bounded number of individual edges
can change over time). Our algorithms are straightforward, and the various performance guarantees
are all obtained just by tuning two parameters.

A key technical feature in our algorithms is that in intermediate steps weights can have negative
values, thus deviating from the standard approach of both approximation and online algorithms, and
multiplicative updates and weight sharing algorithms.

We emphasize that although some of the settings we discuss might also be treatable by more
“conventional” online learning tools, we obtain relevant algorithms naturally from our framework,
rather than requiring a case-by-case construction (which is common for online learning over struc-
tured sets, see Koolen et al. (2010)).

Overall, we hope that our work on combining online learning and competitive analysis provides
a step towards bringing these two rich and mature fields closer together. We also hope that the tools
we develop may lead to practical algorithms which combine the advantages of both worlds. On
one hand, the practical performance and usefulness of online learning, and on the other hand the
robustness to highly dynamic and state-dependent environments of competitive analysis.

Related Work: There are several works related to ours, other than Blum and Burch (1997)
which we have already discussed. However, to the best of our knowledge, none of them attempt
to provide a single algorithmic approach which connects online learning with competitive analysis.
For example, Bansal et al. (2010) show an analysis of experts and the unfair MTS problem, using
a primal-dual approach similar to ours. However, a different algorithm and analysis is applied to
each of the problems, the algorithms are considerably more complex, and do not scale as well to
the more general setting of matroids. Blum et al. (2003) discuss algorithms for decision making
on lists and trees, for both a competitive analysis setting and an online learning setting, and show
how they can be combined using the hedge algorithm (Freund and Schapire (1997)) to provide
simultaneous guarantees. Papers such as Blum et al. (1999) and Abernethy et al. (2010) discuss
competitive-analysis algorithms derived using tools from online learning, e.g., regularization. Other
works attempt to strengthen the standard regret framework of online learning, such as learning with
global cost functions (Even-Dar et al. (2009)) and using more adaptive notions of regret as discussed
above. The matroid settings that we consider partially overlap with those of Koolen et al. (2010),
which were studied in the standard online learning framework. For these settings, we obtain similar
optimal results for online learning, without the need for case-by-case constructions, and again get
an interpolation between online learning and competitive analysis.
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2. Preliminaries: Online Learning and Competitive Analysis

We begin by describing online learning and competitive analysis, as applied to the settings we
consider. To facilitate our unified analysis, we will strive to use the same notation and terminology
for both settings, sometimes using conventions from one to describe the other.

Online learning in the experts setting proceeds in T rounds. We consider a finite action set
E , where |E| = n. In the beginning of each round t, the decision-maker maintains a distribution
vector wt−1 over E (which can be seen as a randomized policy over picking one out of n “experts”
at that round). Then, a cost vector ct is revealed, and the decision-maker incurs the (expected)
cost 〈wt−1, ct〉. Vector ct may be generated in an arbitrary, possibly adversarial way, and we only
assume that each vector’s entry is bounded in [0, 1] (which can be easily relaxed by scaling). The
decision-maker then chooses a new vector wt for the next round. The goal of the decision-maker is
to minimize regret, defined as

T∑
t=1

〈wt−1, ct〉 −
T∑
t=1

〈w∗, ct〉,

where w∗ = arg min{w≥0,‖w‖1=1}{
∑T

t=1〈w, ct〉}. For this bound to be non-trivial, we expect a
regret which grows sublinearly with T . A more ambitious goal studied in the literature (e.g. Herbster
and Warmuth (1998)) is tracking the best expert, or regret against “shifting” experts. In that case,
we wish to minimize

∑T
t=1〈wt−1, ct〉 −

∑T
t=1〈w∗t , ct〉, where w∗0, . . . ,w

∗
T−1 is the best sequence

of distributions which change at most k times (i.e. w∗i 6= w∗i+1 for at most k values of i). In this
paper, we will in fact study a more general framework, which we call “drifting” experts, in which
the regret is against the optimal sequence w∗0, . . . ,w

∗
T−1 such that

∑T
t=1

1
2‖w

∗
t −w∗t−1‖1 ≤ k. This

generalizes shifting experts, since any k-shifting sequence is also a k-drifting sequence. We are not
familiar with existing explicit results in the literature for drifting experts.

In the more general framework that we consider here, rather than just picking single elements
of E , we assume that the decision-maker can pick subsets of E , from a family of subsets I which
has some structure. Such settings were considered in several online learning papers, such as Kalai
and Vempala (2005) and Koolen et al. (2010). For example, consider web advertising, where we
can place exactly s ads on some website at any given timepoint, out of n ads overall. This can be
naturally modeled as an online learning problem, where I is all of E’s subsets of size s, and we want
to compete against the set of best s ads in hindsight. As another example, consider online learning
of spanning trees, which is relevant in the context of communication networks. In that case, E is a
set of edges in a graph, and C is the convex hull of all subsets of edges which form a spanning tree.
The goal in these settings is to minimize regret with respect to the best single element of w ∈ C in
hindsight, namely

T∑
t=1

〈wt−1, ct〉 −min
w∈C

T∑
t=1

〈w, ct〉.

It turns out that the latter two settings, the basic experts setting, as well as many other settings, sat-
isfy a matroid structure. Matroids are extremely useful combinatorial objects1, which are formally
defined as follows, see e.g., Schrijver (2003). Let E be a finite set and let I be a nonempty collection

1. For instance, they play a crucial role in the analysis of greedy algorithms, and have deep connections to submodular
functions which have recently gained popularity in machine learning.
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of subsets of E , called independent sets. M = (E , I) is called a matroid if for every S1 ⊆ S2, if
S2 ∈ I then also S1 ∈ I. Additionally, if S1,S2 ∈ I and |S1| > |S2|, then there exists an element
e ∈ S1 \ S2 such that S2 ∪ {e} ∈ I. The latter property is called the set exchange property. For
S ⊆ E , a subset B of S is called a base of S if B is a maximal independent subset of S. A well
known fact is that for any subset S of E , any two bases of S have the same size, called the rank of
S, denoted by r (S). For example, s-sparse subsets are the bases of an s-uniform matroid, where
r(E) = s, and experts are the special case with s = 1. Spanning trees in a graph G = (V,E) are
bases of a graphic matroid with E = E and I being the collection of all subsets of E that form
a forest, with rank r(E) = |V | − 1. The base polytope of a matroid M is defined as the convex
hull of the incidence vectors of the bases ofM. We refer to this polytope as B(M). The density
of a matroid M, γ (M), is defined as maxS⊆E,S6=∅{|S|/r(S)}. For example, the density of the
s-subsets matroid is n/s. The density of a graphic matroid (spanning trees) in a graph G = (V,E)
is maxS⊆V,|S|>1{|E(S)|/(|S| − 1)}, where E(S) is the set of edges in the subgraph defined by the
vertices of S.

We focus on algorithms which work over bases of matroids, interpolating online learning and
competitive analysis, and obtaining results in intermediate settings such as competing against shift-
ing and drifting targets. For computational efficiency, our algorithms maintain a distribution wt

over E (rather than the possibly-exponentially large I). In competitive analysis, this is known as
a fractional solution. Since all vertices of B(M) are matroid bases, any such fractional solution
always corresponds to a valid distribution over the bases. Hence we may use the fractional solution
to actually sample from a consistent distribution on the bases of the matroid. Such a procedure is
known as rounding. Pipage rounding is an example of a relevant rounding technique which is fast
and easy to implement (see Chekuri and Vondrak (2009) for a description). Since these are known
techniques, which are not the focus of our paper, we omit the implementation details.

We now turn to describe the matroid general setting in the competitive analysis framework. We
first note that the analogue of the experts setting is known as the metrical task system (MTS) problem
on a uniform metric, first formulated in Borodin et al. (1992). MTS abstracts many important online
decision problems, e.g., process migration. In the online setting, the decision-maker sequentially
needs to choose a vector wt in a high-dimensional simplex and incur costs depending on arbitrarily-
chosen cost vectors. However, there are some important differences.

First, the decision-maker pays a movement cost for changing from wt−1 to wt, which equals
1
2‖wt − wt−1‖1, and not only a cost depending on ct (known as the service cost). Second, the
service cost incurred in round t is defined to be 〈wt, ct〉, and not 〈wt−1, ct〉. In other words, the
decision-maker is allowed to first see the cost vector ct, and only then choose the new vector wt and
pay accordingly. This is called 1-lookahead. In contrast, in the experts setting the decision-maker
first pays the cost 〈wt−1, ct〉 and only then chooses a vector wt. This is called 0-lookahead. We
decompose the total cost paid by the decision-maker into the service cost S1 (with 1-lookahead) and
the movement cost M as follows:

S1 =
T∑
t=1

〈wt, ct〉 , M =
T∑
t=1

1

2
‖wt −wt−1‖1.

To motivate these notions, we note that in the context of (say) MTS, one thinks of wt as a distribution
over n possible “states” the algorithm might be in, 1

2‖wt − wt−1‖1 as the cost associated with
changing that state, and ct as specifying the cost of processing a task in each of the n states. Because
of the movement cost, the ability of getting the cost ct in advance does not trivialize the problem.
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To allow comparison to the experts setting, we also define S0 =
∑T

t=1〈wt−1, ct〉 as the service cost
of an algorithm whose action at round t does not depend on ct. The framework naturally extends
to the context of matroids - the decision-maker needs to maintain over time a base in a matroid
M = (E , I).

Another important difference, in comparison to the online learning framework, is the perfor-
mance measure. In competitive analysis the goal is not to compete against the best fixed element in
B(M), but rather against the optimal offline sequence w∗1, . . . ,w

∗
T , which is a solution to

min
∀t=1,...,T | wt∈B(M)

T∑
t=1

〈wt, ct〉+
T∑
t=1

1

2
‖wt −wt−1‖1.

In other words, w∗1, . . . ,w
∗
T is the optimal sequence of the decision-maker’s choices, had she known

all the cost vectors in advance, and could have solved the problem offline. Clearly, this is a much
more ambitious goal than minimizing the regret with respect to a fixed w∗. We let

S∗1 =
T∑
t=1

〈w∗t , ct〉 , M∗ =
T∑
t=1

1

2
‖w∗t −w∗t−1‖1

denote the service cost and the movement cost of this optimal sequence, and let OPT = S∗1 + M∗

denote the total cost. Thus, the competitive ratio is defined as the minimal c ≥ 1, such that for any
sequence of cost vectors,

S1 +M ≤ c · OPT + d,

where d is a constant independent of T . In competitive analysis, c is usually strictly greater than
one, and is independent of T . For example, in the MTS setting the attainable competitive ratio is
known to be O(lnn) (Borodin et al. (1992)).

A crucial refinement of competitive ratio, which we use for providing a unified analysis of
the two settings, is the notion of α-unfair competitive ratio, for α ≥ 1. This notion modifies the
sequence w∗1, . . . ,w

∗
T we compete against. Rather than defining it as the sequence minimizing∑T

t=1〈w∗t , ct〉+
∑T

t=1
1
2‖w

∗
t −w∗t−1‖1, we define it as the sequence which is the solution to:

min
∀t=1,...,T | wt∈B(M)

T∑
t=1

〈wt, ct〉+ α
T∑
t=1

1

2
‖wt −wt−1‖1.

The optimal cost of the above is denoted as OPT(α). In words, the sequence we compete against
pays α times more than the decision-maker for movement. The case α = 1 corresponds to the stan-
dard competitive analysis setting. For α > 1, the setting becomes easier, because it encourages the
competing sequence to move less. In the limit α → ∞, the optimal sequence necessarily satisfies
w∗1 = . . . = w∗T , and the setting becomes reminiscent of online learning where we compare our-
selves against a fixed w∗ (although the 1-lookahead and the movement cost features remain). The
α-unfair competitive ratio has been proposed in Blum et al. (1992), and used to show connections
between online learning and competitive analysis (for experts/MTS) in Blum and Burch (1997).

To facilitate our regret bounds for k-drifting sequences, we let OPTk denote the cost of the best
k-drifting sequence (of valid vectors in B(M)) which minimizes

∑T
t=1〈wt−1, ct〉. It is easy to

show that OPT(α) ≤ OPTk + αk. Another simple observation, based on the boundedness of ct,
is that S0 =

∑T
t=1〈wt−1, ct〉 ≤

∑T
t=1〈wt, ct〉 +

∑T
t=1

1
2‖wt − wt−1‖1 = S1 + M . Combining
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these two, we get the following useful observation which relate the online learning and competitive
analysis settings2:

Observation 1 Suppose we have an algorithm (in the α-unfair setting) whose total cost is at most
cOPT(α) + d, then we have an online learning algorithm with total cost

S0 ≤ S1 +M ≤ cOPT(α) + d ≤ cOPTk + cαk + d. (1)

3. Results

We first present our algorithm (Algorithm 1) and results for the experts/MTS setting. We prove the
following theorem:

Algorithm 1 Experts/MTS Algorithm (learning-style formulation)
Parameters: α ≥ 1,η > 0
Initialize wi,0 = 1

n for all i = 1, . . . , n.
for t = 1, 2, . . . do

Let (c1,t, . . . , cn,t) be the cost vector at time t.
Using binary search, find the smallest value at such that

∑n
i=1wi,t = 1, where

wi,t = max

{
0,

(
wi,t−1 +

1

eηα − 1

)
e−η(ci,t−at) − 1

eηα − 1

}
(2)

end for

Theorem 2 For any α ≥ 1, η > 0, Algorithm 1 attains

S1 ≤ OPT(α) +
ln(n)

η
, M ≤

(
1 +

n

eηα − 1

)
(ηOPT(α) + ln (n)) . (3)

In particular, for α→∞ (regret against a fixed distribution), by Observation 1, we get

S0 ≤ S1 +M ≤ (1 + η)OPT(∞) +
ln(n)

η
+ ln (n) . (4)

By plugging3 α = ln(n)/η and using Observation 1, we also obtain

S0 ≤ (1 + 3η) OPTk +
(k + 1) ln(n)

η
+ 3(k + 1) ln(n). (5)

Let us try to understand the bounds in the theorem. For Equation (3), if we set α = 1 and η =
ln(n) + ln lnn, we get the best known bound for MTS on uniform metrics (Bansal et al. (2010);
Abernethy et al. (2010)). In particular, the bound is better than that obtained by the analysis of Blum
and Burch (1997), who also interpolate between experts and MTS. For Equation (4), if we set η =√

ln(n)
OPT(∞) , then our analysis yields a virtually optimal regret bound of 2

√
OPT(∞) ln(n)+ln(n) for

2. An observation of a similar flavor was also given in Blum and Burch (1997).
3. This value is chosen for simplicity, and is not the tightest possible.
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the experts setting. Moreover, it is not hard to see that when α → ∞, our algorithm reduces to the
canonical multiplicative updates algorithm (see Cesa-Bianchi and Lugosi (2006)). Equation (5) is a
regret bound with respect to the optimal k-drifting sequence. Setting η =

√
(k + 1) ln(n)/3OPTk,

we get an essentially optimal regret of less than 2
√

3(k + 1) ln(n)OPTk + 3(k + 1) ln(n) for this
problem. We emphasize that while there exist previous results for the case of shifting experts, here
we provide an algorithm and analysis for the strictly more general setting of drifting experts4. We
note that although OPT(∞) and OPTk may not be known in advance in order to tune η, one can use
a standard doubling trick to circumvent this (or obtain bounds in which these quantities are replaced
by the number of rounds T (Cesa-Bianchi and Lugosi (2006))).

The general case of a matroidM = (E , I) is handled by Algorithm 2, which works similarly
to Algorithm 1. The algorithm maintains a distribution vector wt ∈ B(M) over the elements of
E . Initially, we pick w0 to be a vector in B(M) such that maxe∈E{ 1

w0,e
} is minimized. By a

simple observation there is always such a base such that maxe∈E{ 1
w0,e
} = γ (M) and this is the

best possible (see Observation 5). In each round, we have an “update” step in which we decrease
the value we,t of each element in the matroid. Note that this can even make the value of we,t
negative. After this step, a sequence of up to n normalization steps is implemented. Before each
normalization step we consider the maximal tight set with respect to our current solution. A set
S ⊆ E is tight if

∑
e∈S we,t = r (S), and it is well known that if S1 and S2 are tight, then so are

S1 ∩ S2 and S1 ∪ S2. In particular, there is a maximal tight set which contains all elements whose
value we,t cannot be increased without violating the matroid constraints. In each normalization step
we therefore pick all elements which are not in a tight set and increase their value, until an additional
element joins a tight set. For s-sparse subsets, checking if an element has joined a tight set can be
easily done in linear time, and for spanning trees a separation oracle for the forest polytope can be
applied (Singh (2008), Theorem 3.8). Generally, the above condition can be checked in polynomial
time by a reduction to submodular function minimization (see Schrijver (2003), Chapter 40). The
sequence of normalization steps ends when all elements become tight.

Algorithm 2 Matroid Algorithm (learning-style formulation)
Parameters: α ≥ 1,η > 0
Find a fractional base w0 ∈ B(M) such that for each e ∈ E , we,0 ≥ 1

γ(M) .
for t = 1, 2, . . . do

Let (c1,t, . . . , cn,t) be the current cost vector.

(Update step): For each e ∈ E , let we,t =
(
we,t−1 + 1

eηα−1

)
e−ηce,t − 1

eηα−1 .
(Normalization step): As long as

∑
e∈E we,t < r(E),

1. Let S be the set of elements that currently do not belong to a tight set.

2. For each e ∈ S update we,t =
(
we,t + 1

eηα−1

)
eηaS,t− 1

eηα−1 ,where aS,t is the smallest
value such that there exists e ∈ S that joins a tight set.

end for

4. There do exist results for regret against drifting targets in the `2 norm Zinkevich (2003). However, these results do
not require a significant change in the algorithm. In contrast, the standard multiplicative updates algorithm can be
shown to fail against `1 drift, so a new algorithm is indeed required.
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The performance guarantee of the algorithm is provided below. We note that aside from a neg-
ligible additive factor, it is a natural generalization of Theorem 2, as the expert setting corresponds
to a matroid with r(E) = 1, γ (M) = n.

Theorem 3 For matroidM = (E , I), and any α ≥ 1, η > 0, Algorithm 2 attains

S1 ≤ OPT(α) +
r(E)

η
ln (γ (M)) +

nα

eηα − 1

M ≤
(

1 +
n− r(E) + 1

eηα − 1

)
(ηOPT(α) + ln (γ (M)))

For α→∞ (regret against a fixed distribution), by Observation 1, we get

S0 ≤ S1 +M ≤ (1 + η)OPT(∞) +
r(E) ln (γ (M))

η
+ ln (γ (M)) . (6)

By plugging α = ln (1 + (n− r(E) + 1) ln(n− r(E) + 1)) /η and using Observation 1,

S0 ≤ (1 + 2η) OPTk +
2(k + r(E)) ln(n− r(E) + 1)

η
+ 3(k + 1) ln(n− r(E) + 1). (7)

For Equation (6), if we set η =
√

r(E) ln(γ(M))
OPT(∞) , then our analysis yields a regret bound of

2
√
r(E) ln(γ (M))OPT(∞) + ln(γ (M)), for the experts setting. For example, for s-sparse sub-

sets, this corresponds to O
(√

s ln(n/s)OPT(∞) + ln(n/s)
)

, and for spanning trees over |E|
edges and |V | vertices, we get O(

√
|V | ln(|E| − |V |+ 1)OPT(∞)) + ln(|E| − |V | + 1). This

corresponds to the results of Koolen et al. (2010), and moreover, our latter result is for spanning
trees over general graphs rather than complete graphs. Equation (7) provides a version for k-
drifting sequence. Setting η =

√
(k + r(E)) ln(n− r(E) + 1)/OPTk, we get regret of less than

4
√

(k + r(E)) ln(n− r(E) + 1)OPTk + 3(k + 1) ln(n − r(E) + 1) for this problem. Since the
drift is measured with respect to the `1 norm over B(M), it naturally captures the structure of the
problem. In particular, the drift is measured with respect to changes in individual elements in the
s-subsets or individual edges in the spanning trees.

4. Proofs and Algorithm Derivation

In this section, we explain how we derive and analyze our algorithms. We focus on the simpler case
of experts/MTS (Algorithm 1 and Theorem 2). The derivation in the matroid case is conceptually
similar but technically more complex, and is provided in appendix A.

The derivation is based on a primal-dual linear programming analysis. It starts from a very
simple LP formulation (Figure 1) of the optimal (offline) α-unfair solution. Note that in order to
charge for α

∑T
t=1

1
2‖wt − wt−1‖1, it suffices to charge only on increasing coordinates. Thus,

we will charge both the optimal solution and our algorithm for increasing variables. Figure 1 also
contains a description of the dual program (D). This program plays a central role in our analysis.
We define D as the value of the dual program. It is well known that D is a lower bound on the value
of any primal solution.
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(P) min
∑T

t=1

∑n
i=1 ci,t · wi,t +

∑T
t=1

∑n
i=1 α · zi,t (D) max

∑T
t=0 at

∀t ≥ 0
∑n

i=1 wi,t = 1 ∀i and t = 0 a0 + bi,1 ≤ 0
∀t ≥ 1 and expert i zi,t ≥ wi,t − wi,t−1 ∀t ≥ 1 and i bi,t+1 ≤ bi,t + ci,t − at
∀t and expert i zi,t, wi,t ≥ 0 ∀t ≥ 1 and i 0 ≤ bi,t ≤ α

Figure 1: The primal and dual LP formulations for the MTS problem.

To analyze Algorithm 1, it will be more convenient to describe it in the following equivalent
form (the equivalence is not hard to show). This form has a more explicit primal-dual structure, and
is the standard form used in the competitive analysis community. This form explicitly contains the
dual variables of (D).

Algorithm 3 Experts/MTS Algorithm (fractional primal-dual formulation)
Parameters: α ≥ 1,η > 0

Initialize wi,0 = 1
n , bi,1 = α− ln( e

ηα+n−1
n

)

η for all i = 1, . . . , n.

During execution, maintain the relation wi,t = max
{

0, e
η(α−bi,t+1)

eηα−1 − 1
eηα−1

}
for t = 1, 2, . . . do

Let (c1,t, . . . , cn,t) be the cost vector at time t.
(Update step): Set bi,t+1 = bi,t + ci,t.
(Normalization step): Using binary search, find the smallest value at, and set bi,t+1 = bi,t+1−
at, such that

∑n
i=1wi,t = 1.

end for

We interpret our algorithm as a primal-dual algorithm that increases dual variables and sets the
primal variables accordingly. We then show that the dual solution constructed by the algorithm is
feasible, and that the cost of our primal solution is bounded by the dual. This will eventually lead
to Equation (3) in Theorem 2. The other bounds in the theorem are simple corollaries obtained by a
direct calculation.

First, without loss of generality, we can assume that at the end of the normalization step bi,t+1 ≤
α. Simple calculations show that for bi,t+1 = α, wi,t = 0. Thus, when bi,t+1 > α, then wi,t+1 < 0
and is therefore set to 0 by the algorithm. If this happens we can run the algorithm with c′i,t < ci,t,
i.e., the smallest value for which wi,t = 0. The algorithm’s behavior is unchanged (and so is its
cost). However, the optimal value of the primal (and so the dual that we compare to) only reduces
by decreasing the value of ci,t to c′i,t.

We next interpret the normalization step as increasing the value of at continuously and setting
the dual variable bi,t+1 = bi,t + ci,t − at. In the following, we analyze the performance using a
primal-dual method.

Primal (P ) is feasible: Clearly, in the beginning wi,0 is a feasible solution. By definition we have
wi,t ≥ 0 by the end of each iteration. In addition,

∑n
i=1wi,t = 1, which implies wi,t ≤ 1.

Dual (D) is feasible: Since initially wi,0 = 1
n , then we can set for each i, bi,1 = α− ln( e

ηα+n−1
n

)

η ,

a0 = −α +
ln( e

ηα+n−1
n

)

η , and we have that the first dual constraint is feasible. The primal solution
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is feasible, thus 0 ≤ wi,t ≤ 1. By the primal dual relation we get: 0 ≤ eη(α−bi,t+1)−1
eηα−1 ≤ 1.

Simplifying, we get 0 ≤ bi,t+1 ≤ α. Finally, the algorithm always keeps the dual constraints with
equality: bi,t+1 = bi,t + ci,t − at.

Primal-dual relation: Let ∆Dt be the change in the cost of the dual solution at time t. We bound
the cost of the algorithm in each iteration by the change in the cost of the dual.

Bounding the movement cost at time t: Let Mt be the movement cost at time t. As we said we
charge our algorithm (and OPT(α)) only for increasing the fractional value of the elements. We get,

Mt =

n∑
i=1

max{0, wi,t − wi,t−1} =

n∑
i=1

max

{
0,

eη(α−bi,t+1) − 1

eηα − 1
− eη(α−bi,t+1+ci,t−at) − 1

eηα − 1

}

≤
n∑
i=1

eη(α−bi,t+1) − 1

eηα − 1
− eη(α−bi,t+1−at) − 1

eηα − 1
=

n∑
i=1

(
wi,t +

1

eηα − 1

)(
1− e−ηat

)
≤

n∑
i=1

(
wi,t +

1

eηα − 1

)
ηat = η

(
1 +

n

eηα − 1

)
∆Dt, (8)

where Inequality (8) follows since for any x, ex − 1 ≥ x. Thus,

M ≤
T∑
t=1

η

(
1 +

n

eηα − 1

)
∆Dt ≤ η

(
1 +

n

eηα − 1

)(
D + α−

ln(e
ηα+n−1

n )

η

)

≤ η

(
1 +

n

eηα − 1

)
D +

(
1 +

n

eηα − 1

)
ln (n) .

Bounding the service cost: Since the solution is feasible at times t and t− 1, we get:

0 =
n∑
i=1

(wi,t−1 − wi,t) =
n∑
i=1

(
eη(α−bi,t+1+ci,t−at) − 1

eηα − 1
− eη(α−bi,t+1) − 1

eηα − 1

)

=
n∑
i=1

(
wi,t +

1

eηα − 1

)(
eη(ci,t−at) − 1

)
≥

n∑
i=1

(
wi,t +

1

eηα − 1

)
η (ci,t − at) , (9)

where Inequality (9) follows since for any x, ex − 1 ≥ x. Rearranging we get:

n∑
i=1

(
wi,t +

1

eηα − 1

)
ci,t ≤

n∑
i=1

(
wi,t +

1

eηα − 1

)
at. (10)
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Note that,

0 =

n∑
i=1

(wi,T − wi,0) =

n∑
i=1

e
η(α−bi,1−

T∑
t=1

ci,t+
T∑
t=1

at)
− 1

eηα − 1
− eη(α−bi,1) − 1

eηα − 1


=

n∑
i=1

(
wi,0 +

1

eηα − 1

)e
η

(
T∑
t=1

at−
T∑
t=1

ci,t

)
− 1


≥

n∑
i=1

(
wi,0 +

1

eηα − 1

)
η

(
T∑
t=1

at −
T∑
t=1

ci,t

)
(11)

= η

(
1

n
+

1

eηα − 1

)( T∑
t=1

n∑
i=1

at −
T∑
t=1

n∑
i=1

ci,t

)
,

where Inequality (11) follows since ex − 1 ≥ x for any x. This implies,

T∑
t=1

n∑
i=1

at ≤
T∑
t=1

n∑
i=1

ci,t. (12)

We can now bound the service cost:

T∑
t=1

〈wt, ct〉 ≤
T∑
t=1

n∑
i=1

ci,t

(
wi,t +

1

eηα − 1

)
− 1

eηα − 1

T∑
t=1

n∑
i=1

at (13)

≤
T∑
t=1

n∑
i=1

atwi,t =
T∑
t=1

at (14)

= D +

(
α−

ln(e
ηα+n−1

n )

η

)
≤ D +

ln(n)

η
,

where Inequality (13) follows by Inequality (12), Inequality (14) follows by Inequality (10).
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(P) min
T∑

t=1

∑
e∈E

ce,t · we,t + α ·
T∑

t=1

∑
e∈E

ze,t (D) max
T∑

t=0

(
r(E)at −

∑
S⊂E

r(S)aS,t

)
∀t ≥ 0 and S ⊂ E

∑
e∈S

we,t ≤ r (S) ∀e ∈ E a0 −
∑
S|e∈S

aS,0 + be,1 ≤ 0

∀t ≥ 0
∑
e∈E

we,t = r (E) ∀t ≥ 1 and e ∈ E be,t+1 ≤ be,t + ce,t − at +
∑
S|e∈S

aS,t

∀t ≥ 1 and e ∈ E ze,t ≥ we,t − we,t−1 ∀t ≥ 1 and e ∈ E be,t ≤ α
∀t and e ∈ E ze,t, we,t ≥ 0 ∀t, e ∈ E ,S ⊂ E be,t, aS,t ≥ 0

Figure 2: The primal and dual LP formulations for the Matroid problem.

Appendix A. Proofs and Algorithm Derivation - the Matroid Case

In this Section we analyze Algorithm 2 that works for the general matroid setting, and prove The-
orem 3. As in the case of experts/MTS (uniform matroid), it is more convenient to analyze our
algorithm in an equivalent form which has an explicit primal-dual structure.

Algorithm 4 Matroid Algorithm (fractional primal-dual formulation)
Parameters: α ≥ 1,η > 0.
During the execution of the algorithm maintain the relation: we,t = f(be,t+1) = eη(α−be,t+1)−1

eηα−1 .
Find a fractional base in the matroid such that for each e: we,0 ≥ 1

γ(M) , and set be,1 accordingly.
for t = 1, 2, . . . do

Let (c1,t, . . . , cn,t) be the current cost vector.
(Update step): Set be,t+1 = be,t + ce,t.
(Normalization step): As long as

∑
e∈E we,t < r(E):

1. Let S be the set of elements that currently do not belong to a tight set.

2. For each e ∈ S update be,t+1 ← be,t+1 − aS,t, where aS,t is the smallest value such that
there exists e ∈ S that joins a tight set.

end for

For our analysis, we need the following properties of matroids.

Claim 4 In any matroid for any set S ⊆ E:

|S|
n− r(E) + 1

≤ r(S). (15)

If r(E \ S) < r(E) then:
|S|

n− r(E) + 1
≤ r(E)− r(E \ S). (16)

Proof If r (E \ S) = r (E),

|S|
n− r(E) + 1

=
|S|

(|S|+ |E \ S|)− r (E \ S) + 1
≤ |S|
|S|+ 1

< 1 ≤ r (S) .
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If r (E \ S) < r (E),

|S|
n− r(E) + 1

=
|S|

|S|+ 1− (r(E)− |E \ S|)
≤ |S|
|S|+ 1− (r(E)− r (E \ S))

≤ r(E)− r (E \ S) ≤ r (S) , (17)

where Inequality (17) follows as (k − 1) / (k − x) ≤ x for any 1 ≤ x ≤ k − 1. Inequality (16) is
proved using a similar argument.

Observation 5 There is always a fractional base in the matroid such that for each e: we,0 ≥ 1
γ(M) .

Proof It is known that any fractional solution in the matroid polytope can be extended (by only
increasing variables) to a matroid base. Thus, we only need to prove that we,0 = 1

γ(M) is in the

matroid polytope. Hence, we should prove that for any S ⊆ E :
∑

e∈S we,0 = |S|
γ(M) ≤ r(S), which

follows from the definition of γ (M).

We now turn to derive Theorem 3. As in the case of Theorem 2, we focus on proving Inequality
(6), as the other bounds in the theorem follow by simple calculations.

We interpret line (2) in the algorithm as increasing the value of at and aS for elements in a tight
set continuously and setting the dual variable be,t+1 = be,t+ce,t−at+

∑
S|e∈S aS . In the following,

we analyze the performance using primal-dual method.

Primal (P ) is feasible: By Observation 5, we,0 is a feasible solution. By induction on the steps,
we prove that the algorithm produces a feasible solution (and wt remains in the domain B(M))
. The update step reduces the value of each we,t. Then, in the normalization step the value of
each we,t can only grow. Since there are at most n elements, after at most n iterations E is tight
and thus the solution is feasible. Note that the algorithm never increases elements in tight sets.
Finally, by the end of the normalization step we get for all e, we,t ≥ 0, otherwise if we,t < 0 then∑

e′∈N\{e}we′,t > r(E) ≥ r(N \ {e}) which violates the matroid constraints.

Dual is feasible: Since initially,we,0 ≥ 1
γ(M) , then we may set for each e, be,1 ≤ α−

ln(
eηα+γ(M)−1

γ(M)
)

η .

Thus, by setting a0 = −α +
ln(

eηα+γ(M)−1
γ(M)

)

η and setting aS,0 = 0 for all S ⊂ E , we have that the
first two dual constraints are feasible. The primal solution is feasible, thus 0 ≤ we,t ≤ 1. By

the primal dual relation we get: 0 ≤ eη(α−be,t+1)−1
eηα−1 ≤ 1. Simplifying we get 0 ≤ be,t+1 ≤ α.

Finally, by the algorithm construction we always keep the dual constraints with equality: be,t+1 =
be,t + ce,t − at +

∑
S|e∈S aS .

Primal-dual relation: Let ∆D be the change in the cost of the dual solution. We bound the cost
of the algorithm in each iteration by the change in the cost of the dual.

Bounding the movement cost at time t: Let Mt be the movement cost at time t. We charge our
algorithm (and OPT(r)) only for increasing the fractional value of the elements. We get,
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Mt =
∑
e∈E

max{0, we,t − we,t−1}

=
∑
e∈E

max

0,
eη(α−be,t+1) − 1

eηα − 1
− e

η

(
α−be,t+1+ce,t−at+

∑
S:e∈S

aS,t

)
− 1

eηα − 1


≤

∑
e∈E

eη(α−be,t+1) − 1

eηα − 1
− e

η

(
α−be,t+1−at+

∑
S:e∈S

aS,t

)
− 1

eηα − 1

=
∑
e∈E

(
we,t +

1

eηα − 1

)1− e
−η
(
at−

∑
S:e∈S

aS,t

)
≤

∑
e∈E

(
we,t +

1

eηα − 1

)
η

(
at −

∑
S:e∈S

aS,t

)
(18)

= η

r (E) at −
∑
S⊂E

r (S) aS,t +

n · at −
∑
S⊂E
|S| · aS,t

eηα − 1

 (19)

≤ η

(
1 +

n− r(E) + 1

eηα − 1

)
∆Dt, (20)

where Inequality (18) follows since for any x, ex − 1 ≥ x. Inequality (19) follows since variable
aS,t is nonzero only if S is a tight subset. Inequality (20) follows since,

n · at −
∑
S⊂E
|S| · aS,t

n− r(E) + 1
≤ r(E)at −

∑
S⊂E

r(S)aS,t,

which follows as,

n

n− r(E) + 1
at −

∑
S⊂E

|S|
n− r(E) + 1

aS,t =
n

n− r(E) + 1

(
at −

∑
S⊂E

aS,t

)
+
∑
S⊂E

|E \ S|
n− r(E) + 1

aS,t

≤ r(E)

(
at −

∑
S⊂E

aS,t

)
+
∑
S⊂E

(r(E)− r(S)) aS,t (21)

= r(E)at −
∑
S⊂E

r(S)aS,t,
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where Inequality (21) is implied by Claim 4, and noticing that at ≥
∑
S⊂E

aS,t for any 0 ≤ t ≤ T as,

at any moment, the algorithm raises at most one variable aS,t along with at. Thus,

M ≤
T∑
t=1

η

(
1 +

n− r(E) + 1

eηα − 1

)
∆Dt

≤ η

(
1 +

n− r(E) + 1

eηα − 1

)D + α−
ln
(
eηα+γ(M)−1

γ(M)

)
η


= η

(
1 +

n− r(E) + 1

eηα − 1

)
D +

(
1 +

n− r(E) + 1

eηα − 1

)
ln

(
γ (M) · eηα

eηα + γ (M)− 1

)
≤ η

(
1 +

n− r(E) + 1

eηα − 1

)
D +

(
1 +

n− r(E) + 1

eηα − 1

)
ln (γ (M))

Bounding the service cost: First note that similarly to the uniform case we have:

0 =
∑
e∈E

(we,t−1 − we,t) =
∑
e∈E

e
η

(
α−be,t+1+ce,t−

(
at−

∑
S|e∈S

aS,t

))
− 1

eηα − 1
− eη(α−be,t+1) − 1

eηα − 1


=

∑
e∈E

(
we,t +

1

eηα − 1

)e
η

(
ce,t−

(
at−

∑
S|e∈S

aS,t

))
− 1


≥

∑
e∈E

(
we,t +

1

eηα − 1

)
η

ce,t −
at − ∑

S|e∈S

aS,t

 , (22)

where Inequality (22) follows since for any x, ex − 1 ≥ x. Rearranging we get:

∑
e∈E

(
we,t +

1

eηα − 1

)
ce,t ≤

∑
e∈E

(
we,t +

1

eηα − 1

)at − ∑
S|e∈S

aS,t

 (23)

In addition, since 0 ≤ be,t ≤ α for all e, t then,

T∑
t=1

at − ∑
S|e∈S

aS,t

 =
T∑
t=1

ce,t + be,1 − be,T ≤
T∑
t=1

ce,t + α (24)

Now we can bound the service cost:
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T∑
t=1

〈wt, ct〉 ≤
T∑
t=1

∑
e∈E

ce,t

(
we,t +

1

eηα − 1

)
− 1

eηα − 1

T∑
t=1

∑
e∈E

at − ∑
S|e∈S

aS,t

+
nα

eηα − 1
(25)

≤
T∑
t=1

∑
e∈E

we,t

at − ∑
S|e∈S

aS,t

+
nα

eηα − 1
(26)

=

T∑
t=1

(
r (E) at −

∑
S⊂E

r (S) aS,t

)
+

nα

eηα − 1

= D −

(
r (E) a0 −

∑
S⊂E

r (S) aS,0

)
+

nα

eηα − 1

= D +
r(E)

η
ln

(
γ (M) · eηα

eηα + γ (M)− 1

)
+

nα

eηα − 1
(27)

≤ D +
r(E)

η
ln (γ (M)) +

nα

eηα − 1
, (28)

where Inequality (25) follows by Inequality (24), Inequality (26) follows by Inequality (23).
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