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Abstract
This paper studies the problem of estimating the probability of symbols that have occurred very
rarely, in samples drawn independently from an unknown, possibly infinite, discrete distribution. In
particular, we study the multiplicative consistency of estimators, defined as the ratio of the estimate
to the true quantity converging to one. We first show that the classical Good-Turing estimator is
not universally consistent in this sense, despite enjoying favorable additive properties. We then use
Karamata’s theory of regular variation to prove that regularly varying heavy tails are sufficient for
consistency. At the core of this result is a multiplicative concentration that we establish both by
extending the McAllester-Ortiz additive concentration for the missing mass to all rare probabilities
and by exploiting regular variation. We also derive a family of estimators which, in addition to
being consistent, address some of the shortcomings of the Good-Turing estimator. For example,
they perform smoothing implicitly and have the absolute discounting structure of many heuristic
algorithms. This also establishes a discrete parallel to extreme value theory, and many of the
techniques therein can be adapted to the framework that we set forth.
Keywords: Rare events, probability estimation, Good-Turing, consistency, concentration

1. Introduction

In modern statistical applications, one is often showered with such large amounts of data that in-
voking the descriptor “rare” seems misguided. Yet, despite the increasing volumes, critical patterns
and events have often very little, if any, representation. This is not unreasonable, given that such
variables are critical precisely because they are rare. We then have to raise the natural question:
when can we infer something meaningful in such contexts?

Motivated particularly by problems of computational language modeling, we are interested in
the following archetypal problem. LetX1, · · · , Xn be an observation sequence of random variables
drawn independently (i.i.d.) from an unknown distribution P = (p1, p2, · · · ) over a countable
alphabet of symbols, which we denote by the positive integers. An alternative description is in
terms of boxes (or urns) and balls, where each sample corresponds to the label of the box which
a throw of a ball lands in, randomly with probability P. In language modeling, sub-words, words,
and syntactic structures are but a few of the wide array of possible characterizations of natural
language. Although an i.i.d. model may seem too simple to address the complexity of this domain,
it remains a core construction upon which more sophistication can be built. For example, n-gram
models combine correlation among various hierarchies with a basic learning process that is based
on conditional independence within each hierarchy.
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We are interested in using the observations to perform probability estimation. For events occur-
ring frequently, this is a task handled easily by the maximum likelihood estimator, i.e. the empirical
probability. However, this works questionably, if at all, for infrequent events. In particular, it is
desirable not to assign zero probability to symbols that are never seen in the training data, since
that would sabotage any technique that uses the learned model to evaluate the likelihood of test in-
stances which happen to contain a new symbol. Therefore, our focus is on obtaining estimators for
qualitatively rare events. One concrete class of such events are the subsets Bn,r of symbols which
have appeared exactly r times in the observation. For “rare” to be a valid qualifier, we think of r
as much smaller than the sample size n. The case r = 0, for example, corresponds to the subset of
symbols which do not appear in the observation. Define the rare probabilities as:

Mn,r := P{Bn,r}.

In particular, Mn,0 denotes the missing mass, the probability of unseen outcomes. We call the
estimation of Mn,r the Good-Turing estimation problem, in reference to the pioneering work of
Good (1953), who gives due credit to Turing. Their solution to this estimation problem, the Good-
Turing estimator, is:

Gn,r :=
(r + 1)Kn,r+1

n
, (1)

where Kn,r := |Bn,r| is the number of distinct symbols appearing exactly r times in the sample,
i.e. the number of boxes containing exactly r balls. The study of Kn,r for every r, and of the total
number of distinct symbols in the sample Kn :=

∑
r≥1Kn,r, is known as the occupancy problem.

Why have we not used the obvious estimator, the empirical probability of Bn,r, which would be
rKn,r
n in contrast to (1)? For the case r = 0, it is evident that this degenerates to the trivial 0-

estimator, and one would expect to do better. But in general, Good showed that (1) guarantees a
bias of no more than 1/n universally, i.e. regardless of the underlying distribution. This is not true
for the empirical estimator.

Many other statistical properties of this estimator, and in particular for the missing mass, have
been studied beyond the bias results, such as its asymptotic normality, Esty (1983), its admissi-
bility with respect to mean squared error only with finite support and inadmissibility otherwise,
and being a minimum variance unbiased estimator of E[Mn−1,r] (both by Cohen and Sackrowitz
(1990)). More recently McAllester and Schapire (2000) also showed that Gn,0 concentrates above
Mn,0. More properties and alternative algorithms may be found in the survey of Gandolfi and Sastri
(2004). Most of these results put no assumption on the underlying distribution, therefore giving
great generality. Without underlying assumptions, however, worst case distributions can severely
hamper what one can say about our ability to estimate rare probabilities. In particular, most conver-
gence results, including those just listed, are often in additive form, that is one is concerned with
characterizing the behavior of the difference between the estimated and true probability values. For
a fixed discrete distribution, rare probabilities all decay to zero, and one would expect a more mean-
ingful characterization to be in multiplicative form. What we mean by this is that the natural mode
of convergence is for ratios to converge to one, probabilistically. So, in this paper, we call an estima-
tor M̂n,r of Mn,r consistent, if M̂n,r/Mn,r → 1, where the convergence can be either in probability
or almost surely, over the observation sequence.

We first show that, without restricting the class of distributions, the Good-Turing estimator is
not consistent. We then use Karamata’s theory of regular variation to give a general description of
heavy-tailed discrete distributions, and show that this is a sufficient condition for the consistency
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of the Good-Turing estimator. We do so by extending the McAllester and Ortiz (2003) additive
concentration results for the missing mass to all of the rare probabilities, and then using the regular
variation property to show multiplicative concentration. Additionally, we construct new families of
estimators that address some of the other shortcomings of the Good-Turing estimator. For example,
they perform smoothing implicitly. This framework is a close parallel to extreme value theory
(Beirlant et al. (2004)), which has been successfully employed to estimate rare probabilities in
continuous settings. With the insight provided by this paper, many of the techniques therein can be
adapted to our discrete setting.

Rare probability estimation, especially in the context of language modeling, has been exten-
sively investigated. Simple approaches, such as Laplace or add-one estimators and their variants
have been compared to Good-Turing estimators, as in Gale and Sampson (1995), highlighting the
latter’s superiority albeit at the expense of volatility and necessity to smooth out. Some of the
most successful approaches to n-gram modeling and learning have been the algorithm proposed by
Kneser and Ney (1995) and its variants, as studied in the influential survey of Chen and Goodman
(1998). These are inspired by Good-Turing, but incorporate it in a general hierarchical smoothing
scheme, using back-off or interpolation between n-gram levels. We do not address this hierarchical
smoothing here, but shed light on a smoothing technique used within each level, called “absolute dis-
counting”. This appears naturally in the estimators that we propose, where we furthermore identify
the “discount” precisely as the regular variation index. This correspondence between Kneser-Ney
algorithms and heavy tails has also been pointed out on the Bayesian front by Teh (2006). Extend-
ing early work by MacKay and Peto (1995), who only focused on light-tailed priors, Teh uses the
two-parameter Poisson-Dirichlet process, proposed by Pitman and Yor (1997), as prior. Instances of
this random measure have indeed regularly varying heavy tails, almost surely (Gnedin et al. (2007)).
In this paper, however, we do not model or parameterize the entire distribution. We focus rather on
describing the tail alone, which is sufficient for both characterizing the behavior of the rare prob-
abilities and consistently estimating them. Lastly, in light of the duality between compression and
probability estimation, the problem of rare probability estimation also appears in the information
theory community, especially when handling very large alphabets. In particular, in their pioneering
work, Orlitsky et al. (2004) show that universal compression of sequences is possible over arbitrar-
ily large alphabets, provided one drops the identity of symbols, while preserving their order. In this
context, the Good-Turing estimator is shown to behave better than simpler approaches, but not as
well as what one could optimally achieve.

The rest of this paper is organized as follows. In Section 2, we give the basic definition of
consistency and show the failure of Good-Turing to be consistent for geometric distributions. In
Section 3, we define regularly varying distributions with heavy tails. The rest of the needed back-
ground material is given in Appendix A as an exposition to the exponential moment method and the
property of negative association. Using these tools, in Section 4.1 we extend the additive concen-
tration results of McAllester, Schapire and Ortiz – McAllester and Schapire (2000); McAllester and
Ortiz (2003) – to all rare probabilities.

Employing the same methodology, but adding regular variation, we derive multiplicative con-
centration and strong laws under heavy tails in Section 4.2. Lastly, in Section 5, we use the strong
laws to show the consistency of Good-Turing estimation under heavy-tailed regular variation, and
to construct a family of new consistent estimators. All detailed proofs can be found in Appendix B,
organized by section. We end with a summary in Section 6.
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NOTATION

Throughout the paper, it is convenient to use the limiting notation f ∼ g to mean f/g → 1. We
also use the subscript a.s. to indicate almost sure convergence with random quantities.

2. The Good-Turing Estimator is not Universally Consistent

Let us first formalize the multiplicative notion of consistency, which we use throughout the paper,
and which naturally conforms to the asymptotics of rare probabilities.

Definition 1 (Consistency) We say that an estimator M̂n,r ofMn,r is consistent if M̂n,r/Mn,r → 1
in probability. We say that it is strongly consistent if M̂n,r/Mn,r → 1 almost surely. We also write
the latter as M̂n,r/Mn,r →a.s. 1 or M̂n,r ∼a.s. Mn,r.

We first show that consistency is not trivial, as even in the case of fairly well-behaved distribu-
tions, the Good-Turing estimator does not result in a consistent estimator for the missing mass.

Proposition 2 For a geometric distribution pj = (1−q)qj for j ∈ N0, with small enough q ∈ (0, 1),
there exists a positive η > 0, and a subsequence ni such that for i large enough we have that
Gni,0/Mni,0 = 0 with probability no less than η. In particular, it follows that the Good-Turing
estimator of the missing mass is not consistent.

This motivates us to ask what are sufficient conditions to obtain consistent estimation. In par-
ticular, the problem seems to be that with a light-tailed distribution like the geometric, there are not
enough samples to learn the rare probabilities well enough for consistency. With this insight, we
move next to show that regularly varying heavy-tailed distributions are a natural situation in which
one has enough samples and, most importantly, consistency.

3. Regularly Varying Heavy-Tailed Distributions

We now characterize heavy-tailed discrete distributions, by using Karamata’s theory of regular vari-
ation, which was developed originally in Karamata (1933), with the standard reference being Bing-
ham et al. (1987). The application we have here is based on the early work of Karlin (1967), which
was recently given an excellent exposition by Gnedin et al. (2007). We follow the notational con-
vention of the latter.

It is first useful to introduce the following counting measure on [0, 1]:

ν(dx) :=
∑
j

δpj (dx),

where δx is a Dirac mass at x.
Using ν, we define the following function, which was used originally by Karlin (1967) to define

what is meant by a regularly varying distribution, and which is a cumulative count of all symbols
having no less than a certain probability mass:

ν(x) := ν[x, 1].
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We also define the following family of measures, parametrized by r = 1, 2, · · · :

νr(dx) := xrν(dx) =
∑
j

prjδpj (dx).

Definition 3 (Regular Variation) Following Karlin (1967), we say that P is regularly varying with
regular variation index α ∈ (0, 1), if the following holds:

ν(x) ∼ x−α`(1/x), as x ↓ 0, (2)

where `(t) is a slowly varying function, i.e. for all c > 0, `(ct)/`(t)→ 1 as t→∞.

The following portmanteau theorem (which compiles results found in Gnedin et al. (2007)) is a
very useful collection of conditions that are equivalent to regular variation as given by Definition 3,
in addition to facts that follow from regular variation.

Theorem 4 Equation (2) is equivalent to any (and therefore all) of the following:

• Probability accrual:

ν1[0, x] ∼ α

1− α
x1−α`(1/x), as x ↓ 0,

• Expected number of distinct observed symbols:

E[Kn] ∼ Γ(1− α)nα`(n), as n→∞,

• Expected number of symbols observed exactly once:

E[Kn,1] ∼ αΓ(1− α)nα`(n), as n→∞, (3)

• Number of distinct observed symbols:

Kn ∼a.s. Γ(1− α)nα`(n), as n→∞, (4)

• Number of symbols observed exactly once:

Kn,1 ∼a.s. αΓ(1− α)nα`(n), as n→∞, (5)

Finally any of the above implies the following for all r > 1:

νr[0, x] ∼ α

1− α
xr−α`(1/x), as x ↓ 0,

E[Kn,r] ∼
αΓ(r − α)

r!
nα`(n), as n→∞, (6)

Kn,r ∼a.s.
αΓ(r − α)

r!
nα`(n), as n→∞. (7)
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Theorem 4 shows how the regularly varying case is very well behaved, especially in terms of
the strong laws on the occupancy numbers Kn,r, which are the elementary quantities for Good-
Turing estimation. In fact, from Equations (3), (5), (6), and (7), we have that for all r ≥ 1,
Kn,r/E[Kn,r]→a.s. 1. We will harness this fact throughout the paper.

Lastly we note that, with additional care, it is possible to also incorporate the cases α = 0 (slow
variation, light tail) and α = 1 (rapid variation, very heavy tail), as is done for example in Gnedin
et al. (2007). The example of the geometric distribution illustrates why care is needed. Indeed, the
geometric satisfies regular variation with α = 0, yet the decay of rare probabilities, in expectation,
can have oscillatory behavior, as hinted at by the proof of Proposition 2.

4. Concentration Results for Rare Probabilities

4.1. Additive Concentration for General Distributions

We now follow the methodology of McAllester and Ortiz (2003) in order to extend their additive
concentration results for the missing mass Mn,0, to all of Mn,r. These results are valid for all
distributions, whereas the next section we specialize to regularly varying distributions, and show
multiplicative concentration. The main theorem of this section is as follows.

Theorem 5 Consider an arbitrary P. Then, for every r = 0, 1, 2, · · · , there exist absolute constants
ar, br, εr > 0 such that for every n > 2r, and for all 0 < ε < εr, we have

P {|Mn,r −E[Mn,r]| > ε} ≤ are−brε
2n. (8)

Proof sketch For the proof of this theorem, we cannot directly parallel the proofs of McAllester and
Ortiz (2003) for the additive concentration of the missing mass, because unlike Mn,0, Mn,r cannot
be expressed as a sum of negatively associated random variables. Instead, we work with a quantity
that can be expressed as such, namely the total probability of all symbols appearing no more than r
times:

Mn,0→r :=
r∑

k=0

Mn,k.

Indeed, we can express it as follows Mn,0→r =
∑

j pjZn,j,r, where Zn,j,r = 1{Cn,j ≤ r},
where Cn,j :=

∑n
i=1 1{Xi = j} designates the count of symbol j. Thus Zn,j,r’s are indicator

random variables associated with each symbol j, in order to contribute its probability mass only
when it appears no more than r times in the observation. Note that each Zn,j,r is a non-increasing
function of the corresponding count Cn,j . Since {Cn,j}j∈N are negatively associated by Lemma 17,
then by Lemma 16 so are {Zn,j,r}j∈N.

To establish additive concentration forMn,0→r, we use the exponential moment method and the
Gibbs variance lemma and negative association, as outlined in Appendix A, in a close parallel to
McAllester and Ortiz (2003). The main technical challenge is to properly bound the Gibbs variance
for the upper deviation. To complete the proof, we show that it’s sufficient to establish additive
concentration for all Mn,0→r, in order to have it for Mn,r.
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4.2. Multiplicative Concentration and Strong Laws under Heavy Tails

Our objective is to establish strong laws for Mn,r for all r = 0, 1, · · · , which is an extension of the
known result for the case of the missing mass (r = 0), which was previously established (without
explicit proof) by Karlin (1967) (Theorem 9) and (with an explicit proof) by Gnedin et al. (2007)
(Proposition 2.5). Beyond being a generalization for all r, the results we present here differ from
the latter in two important ways: they use power (Chebyshev) moments and concentration whereas
we use exponential (Chernoff) moments and concentration, and they use the Poissonization method
whereas we use negative association instead. The derivation of multiplicative concentration parallels
that of additive concentration as in the previous section, with the use of regular variation to more
tightly bound moment growth. The main theorem of this section is as follows.

Theorem 6 Assume P is regularly varying with index α ∈ (0, 1), as in Definition 3. Then for every
r = 0, 1, 2, · · · , there exists an absolute constant ar, and distribution specific constants br > 0,
nr <∞ and δr > 0, such that for all n > nr and for all 0 < δ < δr, we have:

P
{∣∣∣∣ Mn,r

E[Mn,r]
− 1

∣∣∣∣ > δ

}
≤ are−brδ

2nα`(n). (9)

Proof sketch We cannot deduce the multiplicative concentration of Theorem 6 directly from the ad-
ditive concentration of Theorem 5, because the latter uses a worst case bound on the Gibbs variance,
whereas regular variation allows us to give more information about how this variance behaves. This
is what we harness in the detailed proof.

The strong laws for the rare probabilities are easily established using the multiplicative concen-
tration of Theorem 6.

Proposition 7 If P is regularly varying with index α ∈ (0, 1), as in Definition 3, then for every
r = 0, 1, 2, · · · , we have

Mn,r

E[Mn,r]
→a.s. 1, (10)

and the asymptotic expression:

Mn,r ∼a.s. E[Mn,r] ∼
αΓ(r + 1− α)

r!
nα−1`(n). (11)

5. Consistent Probability Estimation

5.1. Consistency of Good-Turing Estimation

As a first application of the strong laws of Proposition 7, in conjunction with the strong laws for
Kn,r, we prove the strong consistency of the Good-Turing estimator in this regime.

Proposition 8 If P is regularly varying with index α ∈ (0, 1), as in Definition 3, then the Good-
Turing estimators are strongly consistent for all r = 0, 1, · · · :

Gn,r
Mn,r

→a.s. 1. (12)
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5.2. New Consistent Estimators

Since we are now considering a model where regular variation plays a critical role, we can take
inspiration from extreme value theory, Beirlant et al. (2004), where regular variation is also pivotal.
In particular, we suggest dividing the estimation task into two: estimating the regular variation
index, then using it in asymptotic expressions, in order to estimate the quantities of interest. In
particular, we shall show that the Good-Turing estimator for the missing mass itself has such a two-
stage characterization, but that the concept can be used to develop a richer class of estimators for
the missing mass and other rare probabilities.

ESTIMATING THE REGULAR VARIATION INDEX

Using Equations (4) and (5), we have that the ratio of the number of symbols appearing exactly once
to the total number of distinct symbols defines a consistent estimator of the regular variation index:

α̂ :=
Kn,1

Kn
→a.s. α. (13)

Note that this is by no means the only approach to estimating the index. For example, other
asymptotic expressions that appear in Theorem 4 may be harnessed. Moreover, one may devise
methods that are inspired from techniques in extreme value theory Beirlant et al. (2004), such as
performing a Gumbelian splitting of the data into M blocks of size N , i.e. n = M · N . Then one
can perform the naive index estimation of Equation (13) in each block, call it α̂m, m = 1, · · · ,M ,
then average out:

α̂ =
1

M

∑
m

α̂m. (14)

With proper choices of M and N , this empirically shows much less volatility than a straight
application of (13) (i.e. M = 1, N = n). In Figure 1, we qualitatively illustrate the improved
volatility of a Gumbelian estimator with an example. The underlying distribution is regularly vary-
ing with index 0.5. For a sample size of n, the Gumbelian estimator is performing averaging of
M = b

√
nc blocks of size N = b

√
nc, according to Equation (14).
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Figure 1: Qualitative comparison of naive and Gumbelian index estimators.
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TWO PROBABILITY ESTIMATOR CONSTRUCTIONS

We have shown that the Good-Turing estimator is consistent in the regularly varying heavy-tailed
setting. But could one do better by working within this framework explicitly? We now provide
two new rare probability estimators, and show that they are consistent. Furthermore, these address
some of the shortcomings of the Good-Turing estimator. For example, they incorporate smoothing
implicitly. As suggested in the preamble of this section, our constructions are in two stages. We
first assume that we have chosen a consistent estimator α̂ →a.s. α. This can be given by (13),
or potentially more powerful estimators. We then use the estimated index to construct consistent
estimators for rare probabilities.

Proposition 9 Consider the following family of estimators, for r = 1, 2, · · · :

M̂ (1)
n,r := (r − α̂)

Kn,r

n
, (15a)

and for r = 0:

M̂
(1)
n,0 := 1−

∑
r≥1

M̂ (1)
n,r = α̂

Kn

n
. (15b)

If P is regularly varying with index α ∈ (0, 1), as in Definition 3. Then M̂ (1)
n,r are strongly consistent

for all r = 0, 1, · · · , that is M̂ (1)
n,r/Mn,r →a.s. 1.

One motivation for introducing the M̂ (1)
n,r family is because it has the “absolute discounting”

form that is a component of many language learning heuristics, and especially the Kneser-Ney line
of state-of-the-art algorithms, proposed originally by Kneser and Ney (1995) and extended by Chen
and Goodman (1998) and others. What we mean by absolute discounting is that, effectively, the
multiplicity of symbols in the empirical distribution is corrected by a constant: rKn,r

n is replaced
by (r−α̂)Kn,r

n , as though a symbol that appeared r times did in fact only appear r − α̂ times. Most
interestingly, we have systematically established the nature of the discount as the regular variation
index.

It is worth mentioning that this structure addresses a peculiarity of the Good-Turing estimator.
In particular Gn,r will assign a probability of zero to a group of symbols, simply because there are
no symbols appearing in the one higher occupancy level r + 1, regardless to how many symbols
there are in the occupancy level r of interest. Good-Turing is coarse in this sense, and Good (1953)
originally suggests various ways to “smooth” this behavior out. Here, on the contrary, the estimator
evaluates to 0 if and only if there are no symbols in the occupancy level itself. We can thus think of
M

(1)
n,r as having smoothing built-in.

Instead of using individual occupancy numbers Kn,r, we can perform additional smoothing
by using Kn, the number of distinct observed symbols. Since Kn has less variability, e.g. it is
non-decreasing with sample size, the resulting estimator inherits that robustness.

Proposition 10 Consider the following family of estimators, for r = 0, 1, · · · :

M̂ (2)
n,r :=

α̂Γ(r + 1− α̂)

r!Γ(1− α̂)

Kn

n
≡
(
r − α̂
r

)
α̂
Kn

n
. (16)

If P is regularly varying with index α ∈ (0, 1), as in Definition 3. Then M̂ (2)
n,r are strongly

consistent for all r = 0, 1, · · · , that is M̂ (2)
n,r/Mn,r →a.s. 1.
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It is worth noting that we always have M̂ (1)
n,0 = M̂

(2)
n,0 by construction, and that if α̂ is the naive

index estimator as in (13), we also have:

M̂
(1)
n,1 = (1− α̂)

Kn,1

n
= (1− α̂)α̂

Kn

n
= α̂

Γ(2− α̂)

Γ(1− α̂)
= M̂

(2)
n,1.

GOOD-TURING AS A TWO-STAGE ESTIMATOR

If we use the naive index estimator α̂ as in (13), then we have:

Gn,0 =
Kn,1

n
=
Kn,1

Kn

Kn

n
= α̂

Kn

n
= M̂

(1)
n,0 = M̂

(2)
n,0.

Therefore, we can interpret the Good-Turing estimator of the missing mass as a two-stage es-
timator: estimate the regular variation index α, as in (13), and then use it to obtain a probability
estimator, as in (15) or (16). However, the advantage of the estimators that we propose is that we
can use any alternative index estimator α, for example as suggested by Equation (14), in order to
benefit from less volatile convergence.

EXAMPLE

As an illustration of the various convergence results and estimators, we use a simple case where
pj ∝ j−1/α is a pure power law. This defines a distribution P which is regularly varying with index
α. In the numerical examples below we use α = 3

4 , motivated by the very heavy tails that appear in
natural language word frequencies.

In Figure 2(a), we show the decay behavior over up to 100, 000 samples, of a sample path of the
rare probabilities Mn,r and their expectations E[Mn,r], for r = 0, 1, 2, and 3. We can qualitatively
observe the close correspondence to the theoretical nα−1 rates.

In Figure 2(b) we illustrate the strong law by plotting the ratio Mn,r/E[Mn,r]. Though the
convergence is far from smooth, nor does it occur at a uniform rate over r, we can qualitatively see
that the sample paths narrow down toward 1 as the sample size increases.

To showcase the performance of the new estimators and to compare them to the Good-Turing es-
timator, we plot the general behavior ofGn,r, M̂

(1)
n,r , and M̂ (2)

n,r alongsideMn,r, in the same example.
We make two deliberate simulation choices:

- We use the naive estimator for α, as given by Equation (13), in order to show that the benefit
of the new estimators comes from their structure too, and not only because from better index
estimation.

- We purposefully use fewer samples than in Figure 2, in order to emphasize that the improve-
ments appear even at moderate sample sizes. We let n range from 0 to 10, 000.

Since we know that all estimators coincide for the case r = 0, and the new estimators coincide
for r = 1, we only look at the first distinctive case, r = 2. The typical behavior for larger r is
comparable. We show the raw behavior of the estimators in Figure 3(a). To make the comparison
crisper, we also show the behavior of the ratios of each estimator to Mn,r in Figure 3(b). For
reference, this figure also shows the 1-line and the ratio of the mean itself, i.e. E[Mn,r]/Mn,r.

We end with a few qualitative comments. First, it is apparent that M̂ (1)
n,r outperforms all esti-

mators when it comes to tracking Mn,r closely. It is followed by M̂ (2)
n,r in performance, while Ĝ(1)

n,r
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is consistently more volatile than both of the new estimators. Also note that M̂ (2)
n,r is the smoothest

estimator. However, it tracks the expectation E[Mn,r] rather than Mn,r itself. Asymptotically, this
does not matter, however for small samples this might be a feature or a shortcoming depending on
whether the focus is on Mn,r or E[Mn,r].
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Figure 2: (a) Decay behavior of Mn,r and E[Mn,r]. (b) Multiplicative concentration of Mn,r

around E[Mn,r] and strong law behavior, where Mn,r/E[Mn,r] approaches 1.
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Figure 3: (a) Behavior of Gn,2, M̂ (1)
n,2, and M̂

(2)
n,2, alongside Mn,2 and E[Mn,2]. (b) Ratios

Gn,2/Mn,2, M̂ (1)
n,2/Mn,2, and M̂ (2)

n,2/Mn,2 alongside E[Mn,2]/Mn,2.

6. Summary

In this paper, we studied the problem of rare probability estimation, from the perspective of the
(multiplicative) consistency of the estimator: requiring that the ratio of the estimate to the true

21.11



OHANNESSIAN DAHLEH

quantity converges to one. We first showed that consistency is not to be taken for granted. In partic-
ular, even in well-behaved distributions such as the geometric, the Good-Turing estimator may not
be consistent. We then focused our attention to heavy-tailed distributions. To characterize these, we
used Karamata’s theory of regular variation Karamata (1933), following closely the early develop-
ment of Karlin (1967) in the context of infinite urn schemes. We then used the McAllester and Ortiz
(2003) method to extend their additive concentration results to all rare probabilities. Moreover, in
the setting of regularly varying heavy-tailed distributions, we showed that one has multiplicative
concentration.

We then used the multiplicative concentration to establish strong laws. These allowed us to
show that regularly varying heavy tails are sufficient for the consistency of the Good-Turing estima-
tor. We used the newly established strong laws, in addition to those established for the occupancy
numbers by Karlin, to construct two new families of consistent rare probability estimators. These
new estimators address some of the shortcomings of the Good-Turing estimator. In particular, they
have built-in smoothing, and their structure follows closely the “absolute discounting” form used
extensively in computational language modeling heuristics, such as in the algorithm proposed by
Kneser and Ney (1995) and extended by Chen and Goodman (1998) and others. As such, in addition
to a systematic and principled estimation method, our results provide a justification to these algo-
rithms and an interpretation of the discount as the regular variation index. Since our estimators can
be split into two parts, first index estimation and then probability estimation, they are closely related
to tail estimation techniques in extreme value theory (Beirlant et al. (2004)). This correspondence
opens the door for modern semiparametric methods to be applied in the present framework.

Heavy tails are a very good model for natural language, as observed early on by Zipf (1949).
As such, it is satisfying that we have shown here that this is a property that is sufficient for consis-
tently estimating rare probabilities. The core multiplicative concentrations have room to generalize
to heavy tails that are potentially not regularly varying, as long as the mean and variance growths
balance out to yield a proper unbounded exponent. Naturally, to completely describe when rare
probability estimation is possible in a meaningful manner, one ought to establish necessary condi-
tions as well.
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Appendix A. Preliminaries

A.1. Exponential Moment Method and the Gibbs Variance Lemma

We adhere closely to the exposition of McAllester and Ortiz (2003). The exponential moment
method takes its name from Markov’s inequality applied to an exponentiated random variable. It is
embodied in the following statement, which traces back to Chernoff (1952).

Theorem 11 Let W be a real-valued random variable with finite mean E[W ]. Associate with W
the function S : R+ → R, w 7→ S(W,w), where:

S(W,w) = sup
β∈R

wβ − logZ(W,β), with Z(W,β) = E[eβW ].

Then, the lower and upper deviation probabilities can be bounded by:

P{W < E[W ]− ε} ≤ e−S(W,E[W ]−ε) and P{W > E[W ] + ε} ≤ e−S(W,E[W ]+ε).

We now give some background on Gibbs measures, which have distinct roots in statistical me-
chanics, but are also an integral part of the exponential moment method. For a givenW , let (β−, β+)
be the largest open interval over which Z(W,β) is finite. In this paper this interval will always be
the entire real line. Denote the law of W by µ, then with each β ∈ (β−, β+), we can associate a
new probability measure, the Gibbs measure:

µβ(dw) =
eβw

Z(W,β)
µ(dw).

Denote by Eβ any expectation carried out with respect to the new measure. In particular denote
the variance of W under the Gibbs measure by σ2(W,β) := Eβ[(W −Eβ[W ])2]. Note that Eβ[W ]
is continuous and monotonically increasing as β varies in (β−, β+). Denote its range of values
by (w−, w+), and let β(w), for any w ∈ (w−, w+) refer to the unique value β(β−, β+) satisfying
Eβ[W ] = w. McAllester and Ortiz (2003) distill a particular result out of Chernoff’s original work,
and dub it the Gibbs variance lemma.

Lemma 12 (Gibbs Variance) Let W be an arbitrary finite mean real-valued random variable.
Then for any w ∈ (w−, w+) and β ∈ (β−, β+), we have:

S(W,w) = wβ(w)− logZ(W,β(w))

= D
(
µβ(w)‖µ

)
=

∫ w

E[W ]

∫ v

E[W ]

1

σ2(W,β(u))
dudv, (17)

log(Z(W,β)) = E[W ]β +

∫ β

0

∫ α

0
σ2(W,γ)dγdα. (18)

The importance of this lemma is that it showcases how we can establish concentration by con-
trolling the variance σ2(W,β) in (17) and (18). The following two lemmas (reproducing Lemmas 9
and 11 from McAllester and Ortiz (2003), with the exception of part (ii) below) are established by
doing precisely that.
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Lemma 13 Let W be an arbitrary finite mean real-valued random variable.

(i) If for some β ∈ (0,∞], we have sup0≤β≤β σ
2(W,β) ≤ σ2, then for all ε ∈ [0, βσ2]:

S(W,E[W ] + ε) ≥ ε2

2σ2 .

(ii) If for some β ∈ [−∞, 0), we have supβ≤β≤0 σ
2(W,β) ≤ σ2, then for all ε ∈ [0,−βσ2]:

S(W,E[W ]− ε) ≥ ε2

2σ2
.

We can specialize part (ii) to the following case:

Lemma 14 If W =
∑

j bjWj , where bj > 0 and Wj are independent Bernoulli with parameter qj ,
then for all ε > 0, we have:

S(W,E[W ]− ε) ≥ ε2

2
∑

j b
2
jqj

. (19)

A.2. Negative Association

We now introduce the concept of negatively associated random variables. We start with the def-
inition, then give a few lemmas that facilitate establishing the property. Finally we illustrate the
usefulness of this concept within the framework of the exponential moment method. All these state-
ments and their proofs can be found in the exposition by Dubhasi and Ranjan (1998), and are also
outlined in McAllester and Ortiz (2003). We present the definitions and results in terms of finite col-
lections of random variables, but everything extends to countable collections with some additional
care.

Definition 15 (Negative Association) Real-valued random variables W1, · · · ,Wk are said to be
negatively associated, if for any two disjoint subsetsA andB of {1, · · · , k}, and any two real-valued
functions f : R|A| → R, and g : R|B| → R that are both either coordinate-wise non-increasing or
coordinate-wise non-decreasing, we have:

E[f(WA) · g(WB)] ≤ E[f(WA))] ·E[g(WB)].

This lemma constructs new negatively associated random variables from existing ones.

Lemma 16 If W1, · · · ,Wk are negatively associated, and f1, · · · , fk are real-valued functions on
the real line, that are either all non-increasing or all non-decreasing, then f1(W1), · · · , fk(Wk)
are also negatively associated.

The elementary negatively associated random variables in our context are the counts of each
particular symbol, or equivalently the components of the empirical measure.

Lemma 17 Let P = (p1, · · · , pk) define a probability distribution on {1, · · · , k}. Let X1, · · · , Xn

be independent samples from P, and define, for each j ∈ {1, · · · , k}:

Cn,j :=
n∑
i=1

1{Xi = j}.

Then the random variables Cn,1, · · · , Cn,k are negatively associated.
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The reason why negative association is useful is the following lemma, which shows that, for the
purpose of the exponential moment method, sums of negatively associated random variables can
be treated like a sum of independent random variables with the same marginals. More precisely,
the exponent of the negatively associated sum dominates that of the independent sum, and thus
bounding the latter from below, bounds the former also.

Lemma 18 SayW =
∑k

j=1Wj , whereW1, · · · ,Wk are negatively associated. Let W̃ =
∑k

j=1 W̃j ,
where W̃1, · · · , W̃k are independent real-valued random variables such that for each j the law of
W̃j is the same as the (marginal) law of Wj . Then for all w, we have:

S(W,w) ≥ S(W̃ , w).

It is worth noting that this approach is not unlike the Poissonization technique used by Karlin
(1967), Gnedin et al. (2007), and others who have studied the occupancy problem. Instead of ran-
domizing the sampling epochs to make counts independent, which creates independence at the cost
of distorting the binomial distributions into Poisson distributions, the negative association method
enforces only independence. Of course, just like de-Poissonization which allows one to reconstruct
results in terms of the original variables, here too we need such inversion theorems, and Lemma 18
does precisely that.

Appendix B. Proofs

B.1. Proofs of Section 2

Consider a geometric distribution given by pj = (1− q)qj for j ∈ N0, parametrized by q ∈ (0, 1).
We first show the following precise behavior for the counts of symbols seen exactly once.

Lemma 19 For the subsequence ni = bc/pic = bcq−i/(1− q)c, with c > 0, we have:

E[Kni,1]→ h(c, q),

where

h(c, q) :=

∞∑
m=−∞

cqme−cq
m
. (20)

Proof In general, by Poissonization (e.g. Gnedin et al. (2007), Lemma 1) or using the dominated
convergence theorem with

(
1− s

n

)n ↑ e−s, one has that as n→∞:∣∣∣∣∣∣
∞∑
j=0

npj(1− pj)n −
∞∑
j=0

npje
−npj

∣∣∣∣∣∣→ 0. (21)

This limit is not in general a bounded constant. It can grow unbounded, or can be bounded but
oscillatory. However, in the geometric case, we can obtain a bounded constant limit by restricting
our attention to a subsequence, such as the one we hypothesized, ni = bc/pic. For the moment,
assume that there exists a rather convenient sequence ji → ∞ that grows slow enough such that
i− ji →∞ and

ji∑
j=0

c
pj
pi
e
−c

pj
pi → 0.
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This gives us enough approximation leeway to show first that we can replace ni by c/pi in
Equation (21), without altering the limit:∣∣∣∣∣∣

∞∑
j=0

nipje
−nipj −

∞∑
j=0

c
pj
pi
e
−c

pj
pi

∣∣∣∣∣∣ ≤
∞∑
j=0

∣∣∣∣∣b
c
pi
c

c
pi

e

(
c
pi
−b c

pi
c
)
pj − 1

∣∣∣∣∣ cpjpi e−c
pj
pi

≤ (e+ 1)

ji∑
j=0

c
pj
pi
e
−c

pj
pi → 0

+
(pi
c
∨ (epji − 1)

) ∞∑
j=ji+1

c
pj
pi
e
−c

pj
pi → 0,

and second that we can remove the dependence on i from the limit, using the fact that:

∞∑
j=0

c
pj
pi
e
−c

pj
pi =

∞∑
j=ji

c
pj
pi
e
−c

pj
pi =

∞∑
j=ji

cq−(j−i)e−cq
−(j−i)

=

i−ji∑
m=−∞

cqme−cq
m →

∞∑
m=−∞

cqme−cq
m
.

Therefore, to complete the proof, we construct ji as desired. In particular, let ji = i −⌈
logq−1

(
2
c log 1

pi

)⌉
. First note that the subtracted term is of the order of log i, and thus ji → ∞

yet i− ji →∞. Then:

ji∑
j=0

c
pj
pi
e
−c

pj
pi ≤ c

pi
e
−c

pji
pi =

c

pi
e−cq

−
⌈
log
q−1( 2

c log 1
pi

)
⌉
≤ c

pi
e−cq

− log
q−1( 2

c log 1
pi

)
= cpi → 0,

by the fact that
∑
pj = 1 and e−c

pji
pi is the largest of the lot since pji is the smallest.

Proof [Proposition 2]
For any real-valued non-negative random variable W , Markov’s inequality yields:

P
{
W <

E[W ]

1− η

}
= 1− P

{
W ≥ E[W ]

1− η

}
≥ 1− E[W ]

E[W ]
1−η

= η.

Recall h from Equation (20). Assume for the moment that for some c > 0 and q0 > 0, and for
all 0 < q < q0, we have h(c, q) < 1. Choose any such q, then choose any η ∈ (0, 1 − h(c, q)).
Consider the subsequence ni obtained in Lemma 19 and let i0 be large enough such that for all
i > i0 we have E[Kni,1] < 1− η. Since Kni,1 takes integer values, it follows that for all i > i0:

P
{
Kni,1 <

E[Kni,1]

1− η

}
= P {Kni,1 = 0} ≥ η.

This means that there’s always a positive, bounded away from zero, probability that Kni,1 = 0,
implying Gni,0 = 0. Since Mni,0 > 0 for every sample, it follows that with positive probability no
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less than η > we have Gni,0/Mni,0 = 0. Therefore, for all geometric distributions with q < q0,
Gn,0/Mn,0 9 1 in probability, let alone almost surely.

To complete the proof, we show that our assumption about h is true. We could argue abstractly,
but we give a concrete bound instead. In particular, using the fact that xe−x < (x ∧ 1/x) for all
x > 0, we have:

h(c, q) =
∞∑

m=−∞
cqme−cq

m
<

−1∑
m=−∞

1/(cqm) + ce−c +
∞∑
m=1

cqm = ce−c +

(
1

c
+ c

)
q

1− q
.

Let c = 1 and q0 = (1 − e−1)/(3 − e−1). Then it is easy to verify that ce−c +
(

1
c + c

) q
1−q is

continuous, monotonically increasing, and at q0 it evaluates to 1. Therefore, for all q < q0, we have
that h(1, q) < 1 as desired.

B.2. Proofs of Section 4

The following lemma allows us to move from Mn,0→r to Mn,r.

Lemma 20 If for every r = 0, 1, 2, · · · , there exist constants ãr, b̃r, ε̃r > 0 such that for every
n > 2r, and for all 0 < ε < ε̃r, we have

P {|Mn,0→r −E[Mn,0→r]| > ε} ≤ ãre−b̃rε
2n. (22)

then for every r = 0, 1, 2, · · · , there exist constants ar, br, εr > 0 such that for every n > 2r, and
for all 0 < ε < εr the concentration (8) holds.

Proof Define the events: A = {E[Mn,0→r] − ε/2 ≤ Mn,0→r ≤ E[Mn,0→r] + ε/2}, and B =
{E[Mn,0→r−1] − ε/2 ≤ Mn,0→r−1 ≤ E[Mn,0→r−1] + ε/2}. Then A ∩ B ⊂ {E[Mn,r] − ε ≤
Mn,r ≤ E[Mn,r] + ε}, and thus:

{|Mn,r −E[Mn,r]| > ε} ⊂ Ac ∪Bc.

Therefore we can use our hypothesis and the union bound to write that for every n > 2r,
0 < ε < ε̃r ∧ ε̃r−1:

P {|Mn,r −E[Mn,r]| > ε} ≤ P(Ac ∪Bc) ≤ P(Ac) + P(Bc)

≤ ãre
−b̃rε2n/4 + ãr−1e

−b̃r−1ε2n/4 ≤ (ãr + ãr−1)e−(b̃r∧b̃r−1)ε2n/4.

This establishes Equation 8, with ar = ãr + ãr−1, br = (b̃r ∧ b̃r−1)/4, and εr = ε̃r ∧ ε̃r−1.

Proof [Theorem 5]

By Lemma 20, we can now work withMn,0→r rather thanMn,r. Because of the negative association
of {Zn,j,r}j∈N, it follows from Lemma 18 that in order to establish concentration for Mn,0→r it
suffices to show concentration for the quantity:

M̃n,0→r =
∑
j

pjZ̃n,j,r,
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where Z̃n,j,r are independent and have marginal distributions identical to Zn,j,r, namely Bernoulli
with parameter qj =

∑r
k=0

(
n
k

)
pkj (1 − pj)n−k. We would therefore like to use Lemma 13, with

W = M̃n,0→r. To obtain the lower exponent, it is easiest to use Lemma 14, with Wj = Z̃n,j,r and
bj = qj . We have:

∑
j

p2
jqj =

r∑
k=0

∑
j

pj

(
n

k

)
pk+1
j (1− pj)n−k

=
r∑

k=0

(
n
k

)(
n+1
k+1

)∑
j

pj

(
n+ 1

k + 1

)
pk+1
j (1− pj)(n+1)−(k+1)

︸ ︷︷ ︸
E[Mn+1,k+1]

≤
r∑

k=0

r + 1

n+ 1
E[Mn+1,k+1] =

r + 1

n+ 1
E[Mn+1,1→r+1] ≤ r + 1

n+ 1
. (23)

Adapting this bound to Equation (19), we therefore have the lower exponent:

S(W,E[W ]− ε) ≥ ε2n/[2(r + 1)].

To obtain the upper exponent, we would like to use part (i) of Lemma 13. Thanks to indepen-
dence and separation, the Gibbs measure forW = M̃n,0→r remains a sum of independent Bernoulli
random variables. However, rather than qj , these are parametrized by the following:

qj(β) :=
qje

βpj

qjeβpj + 1− qj
.

Therefore, the Gibbs variance is given by:

σ2(W,β) =
∑
j

p2
jqj(β) (1− qj(β)) ≤

∑
j

p2
jqj(β).

For β ≥ 0, we have qjeβpj + 1 − qj ≥ 1. Using this and the fact that eβpj ≤ (1 − pj)−β , we
can focus our attention on β ≤ n− r, and write:

σ2(W,β) ≤
∑
j

p2
jqj(1− pj)−β

=

r∑
k=0

∑
j

pj

(
n

k

)
pk+1
j (1− pj)n−β−k

=

r∑
k=0

(
n
k

)(
n−β+1
k+1

)∑
j

pj

(
n− β + 1

k + 1

)
pk+1
j (1− pj)(n−β+1)−(k+1)

︸ ︷︷ ︸
:= ζn,k+1(β)

=
r∑

k=0

k + 1

n− β + 1

(
n
k

)(
n−β
k

)ζn,k+1(β). (24)

Here we have used the usual extension of the binomial, to arbitrary real arguments, which can
be expressed in terms of the Γ function, or falling products. For every β ≤ n− r, the ζn,k(β) define
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a (defective) probability mass function on the non-negative integers k (just as E[Mn+1,k+1] did in
the lower exponent derivation), in the sense that 0 ≤ ζn,k(β) ≤ 1 for every k, and

∑
k ζn,k(β) ≤ 1.

Therefore, if we bound every summand, we can use the largest bound to bound the entire sum. We
have: (

n
k

)(
n−β
k

) ≤ (
ne
k

)k(
n−β
k

)k = ek (1− β/n)−k .

Therefore the largest summand bound is that at k = r:

σ2(W,β) ≤ r + 1

n− β + 1
er (1− β/n)−r =

(r + 1)er

n
(1− β/n)−(r+1) . (25)

Now select β = n/(r + 2) and σ2 = (r+1)er+1

n . First observe that β < n − r since n > 2r.
Then, using the fact that x ≤ 1/(m+ 1) implies (1− x)−m ≤ e, it follows from Equation (25) that
for all 0 < β < β we indeed have σ2(W,β) ≤ σ2. Therefore, part (i) of Lemma 13 applies, and we
deduce that for all 0 < ε ≤ 1 < r+1

r+2e
r+1 ≡ βσ2 we have:

S(W,E[W ] + ε) ≥ ε2

2σ2 .

By combining the lower and upper exponents using a union bound, we get that for ãr = 2,
b̃r = 1/[2(r + 1)er+1], εr = 1, we have that for every n > 2r and for all 0 < ε < 1, the additive
concentration for M̃n,0→r and consequently for Mn,0→r as given by Equation (22) holds, and by
Lemma 20, so does the additive concentration for Mn,r as given by Equation (8). It is worth noting
that, as remarked by McAllester and Ortiz (2003) for the missing mass, Bernstein inequalities can
recover the (simpler) lower deviation result of rare probabilities, but the upper deviation appears to
require the additional malleability of the Gibbs variance lemma.

Proof [Theorem 6]

Throughout this proof, η > 0 is an arbitrary constant. For clarity of exposition, we repeat parts
of the additive concentration proof, and use regular variation whenever it enters into play. Once
more, let’s first work with Mn,0→r rather than Mn,r. Again, because of the negative association
of {Zn,j,r}j∈N, it follows from Lemma 18 that in order to establish (additive) concentration for
Mn,0→r it suffices to show concentration for the quantity:

M̃n,0→r =
∑
j

pjZ̃n,j,r,

where Z̃n,j,r are independent and have marginal distributions identical to Zn,j,r, namely Bernoulli
with parameter qj =

∑r
k=0

(
n
k

)
pkj (1 − pj)n−k. We would therefore like to use Lemma 13, with

W = M̃n,0→r. For the lower exponent, we use the specialized Lemma 14 instead, withWj = Z̃n,j,r
and bj = qj . Replicating (23), we have:

∑
j

p2
jqj ≤

r + 1

n+ 1

r∑
k=0

E[Mn+1,k+1].
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At this point, we diverge from the additive concentration derivation, to use regular variation.
Let P be regularly varying with index α. Then there exists a sample size nr,1(η) > 2r that depends
only on P, r, and η, such that for all n > nr,1(η) we have:

r + 1

n+ 1

r∑
k=0

E[Mn+1,k+1] =
r + 1

n+ 1

r∑
k=0

k + 2

n+ 2
E[Kn+2,k+2]

≤ (1 + η)
r + 1

n+ 1

r∑
k=0

k + 2

n+ 2

αΓ(k + 2− α)

(k + 2)!
nα`(n)

= (1 + η)(r + 1)
r∑

k=0

αΓ(k + 2− α)

(k + 1)!
n−(2−α)`(n).

Now observe that
∑r

k=0
αΓ(k+2−α)

(k+1)! < (r + 1), since α ∈ (0, 1). Therefore, for cr,1 := (r + 1)−2,

we have
∑

j p
2
jqj ≤

(
cr,1n

2−α)−1
(1 + η)`(n). Adapting this to Equation (19), we therefore have,

for all n > nr,1(η) and all ε > 0, the lower exponent:

S(W,E[W ]− ε) ≥ cr,1
2
ε2n2−α 1

(1 + η)`(n)
.

We follow a similar track for the upper exponent. Once again, we would like to use part (i)
of Lemma 13. Recall that the Gibbs measure for W = M̃n,0→r remains a sum of independent

Bernoulli random variables, with modified parameters qj(β) :=
qje

βpj

qje
βpj+1−qj

. For any 0 ≤ β ≤
n− r, we replicate (24) and (25) to bound the Gibbs variance:

σ2(W,β) ≤
r∑

k=0

k + 1

n− β + 1

(
n
k

)(
n−β
k

)ζn,k+1(β) ≤ (r + 1)er

n
(1− β/n)−(r+1)

r+1∑
s=1

ζn,s(β).

Recall that we chose nr,1 ≥ 2r. Then, for all n > nr,1, we have n/(r+2) ≤ n/2 < (n+1)/2 ≤
n− r. If we again select β := n/(r + 2) then for all 0 ≤ β ≤ β and for all n > nr,1, we have:

σ2(W,β) ≤ (r + 1)er+1

n

r+1∑
s=0

ζn,s(β). (26)

Unlike Theorem 5, we preserve here the sum of the ζn,s(β) and adding the s = 0 term. We
do this in order to exploit regular variation. With the addition of the s = 0 term,

∑r+1
s=0 ζn,s(β)

becomes a monotonic non-decreasing function over β ∈ [0, n − r]. To see why, note that when β
is an integer, this sum represents the expectation of the total rare probabilities of symbols occurring
no more than r + 1 times, out of n − β samples. The larger the value of β, the fewer the samples,
and there is in average more probability in symbols with small counts.

Assume n is even, without loss of generality, as otherwise we can use (n+ 1)/2 instead. Then,
there exists a sample size nr,2(η) > nr,1 that depends only on P, r, and η, such that for all n >
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nr,2(η) and for all β ≤ β, we have:

r+1∑
s=0

ζn,s(β) ≤
r+1∑
s=0

ζn,s(n/2) ≡
r+1∑
s=0

E[Mn/2+1,s] =
r+1∑
s=0

s+ 1

n/2 + 2
E[Kn/2+2,s+1]

≤ (1 + η)

r+1∑
s=0

s+ 1

n/2 + 2

αΓ(s+ 1− α)

(s+ 1)!
(n/2 + 2)α`(n)

= (1 + η)

r+1∑
s=0

21−ααΓ(s+ 1− α)

s!
n−(1−α)`(n). (27)

Now observe that (r + 1)er+1
∑r+1

s=0 21−α αΓ(s+1−α)
s! < 2er+1(r + 1)(r + 2), since α ∈ (0, 1).

Therefore, using cr,2 := [2er+1(r + 1)(r + 2)]−1, we can combine Equations (26) and (27), and
obtain that for all β ≤ β, we have σ2(W,β) ≤ σ2, where

σ2 :=
[
cr,2n

2−α]−1
(1 + η)`(n).

With this bound, part (i) of Lemma 13 applies, and we deduce that for every n > nr,2(η), and
for all 0 < ε < 1

r+2

[
cr,2n

1−α]−1
(1 + η)`(n) ≡ βσ2 we have the upper exponent:

S(W,E[W ] + ε) ≥ ε2

2σ2 =
cr,2
2
ε2n2−α 1

(1 + η)`(n)
.

Let ãr = 2, b̃r = (cr,1 ∧ cr,2)/2, and ε̃r = d̃r(1 + η)nα−1`(n) where d̃r = 1
r+2c

−1
r,2 =

2(r+ 1)er+1. Then, by combining the lower and upper exponents using a union bound, we get that
for every n > nr,2 and for all 0 < ε < ε̃r, the additive concentration for M̃n,0→r and therefore of
Mn,0→r holds as follows:

P {|Mn,0→r −E[Mn,0→r]| > ε} ≤ ãre−b̃rε
2n2−α 1

(1+η)`(n) .

Observe that the range of ε depends on n, but that will not be a problem when we switch to multi-
plicative mode.

By using the same development as the proof of Lemma 20, we can deduce that there exist
constants ar = ãr + ãr−1, b̌r = (b̃r ∧ b̃r−1)/4, and εr = dr(1 + η)nα−1`(n) with dr = d̃r ∧ d̃r−1,
such that for every n > nr,2 and for all 0 < ε < εr, we have:

P {|Mn,r −E[Mn,r]| > ε} ≤ are−b̌rε
2n2−α 1

(1+η)`(n) . (28)

Now, observe that:

E[Mn,r] =
r + 1

n+ 1
E[Kn+1,r+1] ∼ αΓ(r + 1− α)

r!
nα−1`(n). (29)

Let’s define mr := αΓ(r+1−α)
r! for convenience. It follows from Equation (29) that there exists

nr(η) > nr,2(η) that depends only on P, r, and η, such that for all n > nr(η) we have:

(1 + η)−1mrn
α−1`(n) ≤ E[Mn,r] ≤ (1 + η)mrn

α−1`(n).
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Let br = b̌rm
2
r/(1 + η)3, and δr = dr/mr. Then for every n > nr(η) and for all δ < δr:

δE[Mn,r] ≤ δr(1 + η)mrn
α−1`(n) ≤ dr(1 + η)nα−1`(n) = εr.

Therefore Equation (28) applies, and we get:

P
{∣∣∣∣ Mn,r

E[Mn,r]
− 1

∣∣∣∣ > δ

}
= P {|Mn,r −E[Mn,r]| > δE[Mn,r]}

≤ are
−b̌rδ2E[Mn,r]2n2−α 1

(1+η)`(n)

≤ ar exp

{
−b̌rδ2

[
mrn

α−1`(n)

1 + η

]2

n2−α 1

(1 + η)`(n)

}

= ar exp

{
− b̌rm

2
r

(1 + η)3
δ2nα`(n)

}
= are

−brδ2nα`(n).

We end by noting that for fixed η > 0 and r, br and δr depend on P, but do so only through α,
due to mr. On the other hand, the sample size nr depends on the particular convergence rates in
the regular variation characterization, and to describe it explicitly requires more distribution specific
knowledge than simply having α.

B.3. Proofs of Section 5

Proof [Proposition 7]
For any α ∈ (0, 1), the integral

∫∞
0 e−z

α
dz = Γ

(
1 + 1

α

)
, i.e. converges and is bounded. By

a change of variable and the integral test, it follows that the right hand side of inequality (9) is
summable. Therefore, we can apply the Borel-Cantelli lemma in the usual way, to obtain the almost
sure convergence of Equation (10). As for equation (11), it follows from this strong law and from
Equation (6), using the fact that E[Mn,r] = r+1

n+1E[Kn+1,r+1], as in Equation (29) above.

Proof [Proposition 8]
Recall that Gn,r = r+1

n Kn,r+1. Therefore by the strong law of the rare counts, i.e. Equations
(6) and (7), we have that

Gn,r
E[Gn,r]

→a.s. 1. (30)

On the other hand, note that by equation (6), we have E[Kn,r]/E[Kn+1,r]→ 1 for any r. Since
E[Mn,r] = r+1

n+1E[Kn+1,r+1], it follows that

E[Gn,r]

E[Mn,r]
→ 1. (31)

Combining the convergences (10), (30), and (31), we obtain (12).

Proof [Proposition 9] Since E[Mn,r] = r+1
n+1E[Kn+1,r+1], it follows from Equation (6) and the

strong law for Mn,r given by (10) that:

Mn,r ∼a.s.
αΓ(r + 1− α)

r!
nα−1`(n).
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First consider the case r = 1, 2, · · · . Since α̂ →a.s. α, it follows that (r − α̂) ∼a.s. (r − α).
Observing that Γ(r + 1− α) = (r − α)Γ(r − α), we can use Equation (7) to obtain:

M̂ (1)
n,r = (r − α̂)

Kn,r

n
∼a.s.

αΓ(r + 1− α)

r!
nα−1`(n) ∼a.s. Mn,r.

For the case r = 0:

M̂
(1)
n,0 = α̂

Kn

n
∼a.s.

αΓ(1− α)

r!
nα−1`(n) ∼a.s. Mn,0,

where we use Equation (4) and α̂→a.s. α.

Proof [Proposition 10] For convenience, define:

g(α) :=
αΓ(r + 1− α)

r!Γ(1− α)
≡
(
r − α
r

)
α.

We can thus write, as in the proof of Proposition 9:

Mn,r ∼a.s.
αΓ(r + 1− α)

r!
nα−1`(n) = g(α)Γ(1− α)nα−1`(n).

By the continuity of g(α), since α̂→a.s. α, we also have that g(α̂)→a.s. g(α). Therefore:

M̂ (2)
n,r = g(α̂)

Kn

n
∼a.s. g(α)Γ(1− α)nα−1`(n) ∼a.s. Mn,r,

using once more Equation (4).
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