JMLR: Workshop and Conference Proceedings 27:155-166, 2012 Workshop on Unsupervised and Transfer Learning

Transfer Learning for Auto-gating of Flow Cytometry Data

Gyemin Lee CGYEMIN@QEECS.UMICH.EDU
Lloyd Stoolman STOOLMAN@UMICH.EDU
Clayton Scott CSCOTT@EECS.UMICH.EDU

University of Michigan, Ann Arbor, MI, USA

Editor: I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

Abstract

Flow cytometry is a technique for rapidly quantifying physical and chemical properties
of large numbers of cells. In clinical applications, flow cytometry data must be manually
“gated” to identify cell populations of interest. While several researchers have investigated
statistical methods for automating this process, most of them falls under the framework of
unsupervised learning and mixture model fitting. We view the problem as one of transfer
learning, which can leverage existing datasets previously gated by experts to automatically
gate a new flow cytometry dataset while accounting for biological variation. We illustrate
our proposed method by automatically gating lymphocytes from peripheral blood samples.
Keywords: flow cytometry, automatic gating, transfer learning, low-density separation

1. Introduction

Flow cytometry is a technique widely used in many clinical and biomedical laboratories for
rapid cell analysis (Shapiro, 1994). It plays an important role in the diagnosis of blood-
related diseases such as acute or chronic leukemias and malignant lymphomas.

Mathematically, a flow cytometry data can be represented as D = {Xi}fil, where
x; € R% is an attribute vector of the ith cell. The attributes include the cell’s size (FS),
granularity (SS) and expression levels of different antigens (CD45, CD3, CD4, etc.). The
number of cells N can range from 10,000 to 1,000,000, and d is usually between 7-12. In
clinical settings, each data corresponds to a particular patient, where the cells are typically
drawn from a peripheral blood, lymph node, or bone marrow sample.

To make a diagnosis, a pathologist will use a computer to visualize different two-
dimensional scatter plots of a flow cytometry data as in Fig. 1. These plots illustrate the
presence of several clusters of cells within each dataset. They also illustrate the variation
of measured data from one patient to another. This variation arises from both biological
(e.g., health condition) and technical (e.g., instrument calibration) sources.

The pathologist will typically visualize a certain type of cell (e.g., lymphocytes in the
diagnosis of leukemias) and diagnose based on its shape, range and other distributional
characteristics. A necessary preprocessing is to label every cell as belonging to the cell type
of interest or not, a process known as “gating.” This amounts to assigning binary labels
yi € {—1,1},i = 1,..., N, to every cell. Fig. 1 indicates lymphocytes with an alternate
color. Without gating, cells of other types will overlap with the targeted cell type in the
scatter plots used for diagnosis. After gating, only the cells of interest are visualized.

© 2012 G. Lee, L. Stoolman & C. Scott.

LEE STOOLMAN SCOTT

Case 7 Case 7 Case 7 Case 7 Case 7
1000 1000 1000 1000
o
-
9 s & sm ¥ £ s & am
w» | ’
0] 0 L o B 0
0 500 1000 i} 500 1000 0 500 1000 0 500 1000 0 500 1000
FS 55 cD3 ch3 CD4
Case 12 Case 12 Case 12 Case 12 Case 12
1000 1000 1000 1000 1000
2 i - > ; :
% sm 2 & 500 O 500 g 0 500 ps O os00f ¢
o] il il : L=t ? [St O A
0 500 1000 0 500 1000 0 500 1000 0 500 1000 0 500 1000
FS 55 CD3 CD3 CD4

Figure 1: Clinicians analyze flow cytometry data using a series of scatter plots on attributes
pairs. The distribution differs from patient to patient, and changes after treat-
ments. Lymphocytes, a type of white blood cell, are marked dark/blue and others
are marked bright/green. These were manually selected by a domain expert.

Unfortunately, in clinical settings gating is still performed manually. It is a labor-
intensive task in which a pathologist visualizes the data from different two-dimensional
scatter plots, and uses special software to draw a series of boundaries (“gates”) to eliminate
a portion of the cells outside of the desired type. The person performing gating must utilize
specialized domain knowledge together with iterative refinement. Since modern clinical
laboratories can see dozens of cases per day, it would be highly desirable to automate this
process.

Because of this need, several researchers have tackled the auto-gating problem. A re-
cent survey on flow cytometry analysis revealed that more than 70% of studies focus on
auto-gating techniques (Bashashati and Brinkman, 2009). However, the vast majority of
approaches rely on a clustering/mixture modeling, using a parametric representation for
each cell type (Chan et al., 2008; Lo et al., 2008; Pyne et al., 2009). The mixture modeling
approach has a number of difficulties, however. One is that the clusters are typically not el-
liptical, meaning complex parametric models must be employed, such as skewed Gaussians,
leading to challenging inference problems. Another limitation is that human intervention is
necessary to interpret the clustering results and to select some of the clusters for the task.
Finally, these algorithms are unsupervised, and do not fully leverage expert knowledge.

We propose to view auto-gating as a transfer learning problem. In particular, we assume
that a collection of expert-gated datasets are available. Although different datasets have
different distributions, there is enough similarity, (e.g., lymphocytes show low levels of SS
while expressing high levels of CD45) that this expert knowledge can be transferred to the
new data. Our approach is to train classifiers on expert-gated data, and to summarize these
classifiers to form a baseline classifier. This baseline is then adapted to the new data by
optimizing a “low-density separation” criterion. The transfer learning problem we study
is, to our knowledge, a new one, although it has similarities to previously studied transfer
learning problems, as well as multi-task learning. These connections are reviewed below.

156

TRANSFER LEARNING FOR AUTO-GATING OF FLOW CYTOMETRY DATA

2. Problem Setup

There are M labeled datasets Dy, = {(Xm., yml)}f\i”i, m=1,---, M, each a random sample
from a distribution P,,. D,, corresponds to the mth flow cytometry dataset and its labels
are determined by experts. There is also an unlabeled dataset 7 = {xt,i}ZN:tl, a random
sample from a new distribution P; corresponding to a new flow cytometry dataset. The
labels {y:;}Yt, are not observed. The goal is to assign labels {7}, to 7 so that the
misclassification rate is minimized. All the distributions are different, but defined on the
same space R? x {—1,+1}.

3. Related Work

As a transfer learning problem, our problem is characterized by having multiple source
domains (the expert-gated datasets), and a single target domain (the unlabeled dataset).
Using the taxonomy of Pan and Yang (2010), our setting can be described as follows:

(1) the source and target domains are different, because the marginal distributions of x

are different,

(2) the source and target tasks are different, because each dataset requires a different

gating,

(3) there are no labeled examples in the target domain.

To the best of our knowledge, previous work has not addressed this combination of charac-
teristics. Many previous works fall under the heading of inductive transfer learning, where
at least a few labels are given for the target domain (Ando and Zhang, 2005; Rettinger et al.,
2006). In transductive transfer learning (Arnold et al., 2007), and the related problems of
sample selection bias and covariate shift, the source and target tasks are assumed to be the
same.

Another closely related area is multi-task learning (Caruana, 1997; Evgeniou and Pontil,
2004). However, our problem contrasts to this line of studies in the sense that our ultimate
goal is achieving high performance for the target task only, and not the source tasks.

Toedling et al. (2006) explore using support vector machines (SVMs) for flow cytometry
data from multiple patients. They merge all the datasets to form a single large data, and
build a classifier on this data. However, due to its size of the combined dataset, the training
requires demanding computational and memory resources. Furthermore, this approach
ignores the variability among multiple datasets and treats all the datasets as arising from
the same distribution. This reduces the problem to standard single-task supervised learning.

4. Algorithm

We describe our approach to the problem. In this section, we show how our algorithm
summarizes knowledge from the source data and adapts it to the new task.

4.1. Baseline Classifier for Summarizing Expert Knowledge

We suppose that the knowledge contained in the source tasks can be represented by a set of
decision functions f1,---, fas. The sign of a decision function f,, provides a class prediction

157

LEE STOOLMAN SCOTT

Algorithm 1 Baseline Classifier Algorithm 2 Robust Mean and Covariance
Input: source task data D,, for m = 1,--- , M, Input: (w,,,b,)form=1--- M
regularization parameters {C,, }M_, 1: Concatenate: W, < [Wpn,by], Vm

1: for m=1to M do 2: Initialize: p <+ mean(u,,), C <+ cov(u,,)
2 (Wi, b)) < SVM Dy, Crn) 3: repeat
3: end for 4: dm — ((um - N)Tc_l(um - “))1/2
4: Robust Mean: 5 Wy — V(dy)/dum
6

(wo, bo) + Algorithm 2 ({(Wm, bim)}m) . Update: une® ¢ 2m WmUm
Output: (wo,by) or fo(x) = (wo,X) + bg : p %ieuf‘ o .
Em w?n(um—ﬂncw)(u,’n_uncw)T
> w2, —1

7: until Stopping conditions are satisfied
Output: p = [wo,bg], Co=C(1:d,1:4d)

of a data point x: y = sign(fm(x)). Each f,, is separately learned from each of the M
source datasets. Then these decision functions form the pool of knowledge.

In this work, we consider linear decision functions f(x) = (w,x) + b. Then f defines a
hyperplane {x : f(x) = 0} with a normal vector w € R? and a bias b € R. The SVM is
among the most widely used methods for learning a linear classifier (Scholkopf and Smola,
2002). It finds a separating hyperplane based on the maximal margin principle. We use the
SVM to fit a decision function f,, or a hyperplane (Wi, b;,) to the mth source data D,,.

We devise a baseline classifier fo = (wg,x) + by by letting (wg,by) be the mean of
(Wi, bp). Instead of the simple mean, Algorithm 1 uses a robust mean to prevent fy from
being unduly influenced by atypical variations among datasets. Algorithm 2 presents the
robust estimator as formulated in Campbell (1980). Here 1 is a weight function corre-
sponding to a robust loss, and we use the Huber loss function. Note that we also robustly
estimate the covariance of the w,,, which is used below in Section 4.2.3.

The learning of fy does not involve T at all. Thus, it is not expected to provide a good
prediction for the target task. Next we describe a way to adapt this baseline classifier to
the target data based on the low-density separation principle.

4.2. Transferring Knowledge to Target Task

Low-density separation is a concept used extensively in machine learning. This notion
forms the basis of many algorithms in clustering analysis, semi-supervised classification,
novelty detection and transductive learning. The underlying intuition is that the decision
boundaries between clusters or classes should pass through regions where the marginal
density of x is low. Thus, our approach is to adjust the hyperplane parameters so that it
passes through a region where the marginal density of T is low.

4.2.1. PREPROCESSING

Instrument calibration often introduces different shifting and scaling to each flow cytometry
data along coordinate axis. While a typical solution is aligning all datasets via some global
d-dimensional shift/scale transformation, it is sufficient for our purposes to align datasets
in the direction of the baseline normal vector wq. Specifically, for each dataset, we compute
a kernel density estimate (KDE) of the projection onto wg. Then, we align the target data

158

TRANSFER LEARNING FOR AUTO-GATING OF FLOW CYTOMETRY DATA

Algorithm 3 Shift Compensation Algorithm 4 Bias Update
Input: hyperplane (w,b), source task data Input: hyperplane (w,b), target task data T
{D,, }M_, | target task data T 1: Compute: zi < (W,xy;) +b, Vi

1t 2z < (W,Xxg0) +0, Vi 2: Build a Grid: s; < sort (z;)

2: for m=1to M do 3: for j =1 to V; do

3z (W, Xpi) + b, Vi 4 o sl <1y

4: ep < argmax, KDE(z, z; ;) *KDE(2, zm:) 5. end for

5: end for 6: h < kernel bandwidth ({(s;,¢;)};)

6: b < b—median(enm) 7: Smooth: p(z) < 32, ¢ikn(2, s5)
Output: b 8 2% gradient descent (p(z), 0)

9: bW «— b — z*

Output: 0" or fi(x) = (w,x) + b"¥

to each source data using maximum cross-correlation (denoted by x in Algorithm 3), and
modify the baseline bias by the median of these shifts. This new bias b will serve as the
initial bias when adapting the baseline to 7.

4.2.2. VARYING BiIAs

We first describe adapting the bias variable to the unlabeled target data 7 based on low-

density separation. The process is illustrated in Algorithm 4.

To assess whether a linear decision boundary is in a low density region, we count data
points near the hyperplane. As the hyperplane moves, this number will be large in a high
density region and small in a low density region. In particular, we define a margin, as in
SVMs, to be a region of a fixed distance from a hyperplane, say A, and count data points
within this margin. We use A = 1. Given a hyperplane (w,b), basic linear algebra shows

that <w” X>H+b is the signed distance from x to the hyperplane. Hence, computing

Zﬂ{w <A}

Iwl

over a range of b followed by locating a minimizer near the baseline hyperplane gives the
desired solution. Algorithm 4 implements this on a grid of biases {s;} and builds), ¢; §(2—
s;j) where 0 is the Dirac delta. The grid points and the counts at each grid point are denoted
by s; and c;.

Before searching for the minimizing bias, we smooth these counts over the grid by con-

volving with a Gaussian kernel kp(z,2) = \ﬁh exp <— |Z;,le |2). The bandwidth A controls

the smoothness of the kernel. This operation yields a smooth function p(z) = 3, cjkn(z, s;).
Running a gradient descent algorithm on this smoothed function p(z) returns a local mini-
mum near 0 if initialized at 0 (the second parameter in Line 8).

To facilitate a streamlined process for practical use, we automatically select the kernel
bandwidth A as shown in Algorithm 5. This kernel choice is motivated from the rule of
thumb for kernel density estimation suggested in Silverman (1986).

159

LEE STOOLMAN SCOTT

Algorithm 5 Kernel Bandwidth Algorithm 7 Set Estimation based on Low-
Input: grid points and counts {(sg, cx)} Density Separation
I N> ek Input: source task data {D,,}M_,, target task

s, 1
205 < 7 Dp SkCk) data T, regularization parameters {C,, }_,

1/2
3 04 (ﬁ >k Cr(sk — 5)2)

1: for m=1to M do
4: h+09-5-N"1/° 2 (Wi, bm) < SVM(D,y, Cry)
Output: h 3: end for

4: Initialize:

((wo, o), Co) = Alg 2 ({(Win, bm) }m)
vo + eig(Cy)
5: Normalize:
we < wo/[[woll, b < bo/|lwol|
vy < orthonormalize vowith respect to wy

Algorithm 6 Normal Vector Update

Input: hyperplane (w,b), direction of change vy,
target task data T

1: for a = —0.5 to 0.5 step 0.01 do 6: Compensate Shift:
2: Wi <~ W+ apVvy , b, <—Alg3(Wt,bt,{Dm}7T)
Ck 4 D H{‘ wﬁ\::kﬁ - ‘ <1} 7: Update Bias:
3: end for by + Alg 4 (wy, b, T)
4: h «+ kernel bandwidth ({(ak, cx)}r) 8: repeat
5: Smooth: g(a) < >, cxkn(a, ar) 9: Update Normal Vector:
6: a; < gradient descent (g(a), 0) wy < Alg 6 (wy, by, v, T)
7 W — W+ ap vy 10: Update Bias:
Output: w"e® by + Alg 4 (wy, by, T)

11: until Stopping conditions are satisfied
Output: (wg, b)) or fp = (we,x)+ b

4.2.3. VARYING NORMAL VECTOR

We can also adjust the normal vector of a hyperplane. Given a normal vector w, we update
the normal vector by w™* = w + a;vy where v; is the direction of change and a; is the
amount of the change. Thus, the new normal vector is from an affine space spanned by v;.

Now we explain in detail the ways of choosing v; and a;. We find a direction of change
from the covariance matrix of the normal vectors wy,--- , wj; obtained from Algorithm 2.
We choose the first principal eigenvector for v; after making it orthogonal to wg, the baseline
normal vector, because changes in the direction of wy do not affect the decision boundary.

To determine the amount of change a;, we proceed similarly to the method used to
update the bias. We count the number of data points inside the margin as the normal vector
varies by a regular increment in the direction of v;. Convolving with a Gaussian kernel
smooths these quantities over the range of variation. Then a gradient descent algorithm
can spot a; that leads to a low density solution near the baseline hyperplane. Algorithm 6
summarizes this process.

4.2.4. PuTrTING IT ALL TOGETHER

Once the normal vector is updated, we build a new hyperplane by combining it with an
updated bias so that the hyperplane accords to a low density region of 7. Algorithm 7
outlines the overall scheme. In the algorithm, one can repeatedly update the bias and the

160

TRANSFER LEARNING FOR AUTO-GATING OF FLOW CYTOMETRY DATA

normal vector. A simple method is running a fixed number of times. In our experience, one
round of iteration was sufficient for good solutions.

Although the presented algorithm limits the varying direction of normal vector to a
single vector v;, we can generalize this to multiple directions. To do this, more than one
eigenvector can be chosen in Step 5 of Algorithm 7. Then the Gram-Schmidt process (Golub
and Van Loan, 1996) generates a set of orthonormal vectors that spans a subspace for a
new normal vector. The counting in-margin points in Algorithm 6 can be extended to a
multivariate grid with little difficulty.

x10°*

[JEvents
gl I Lymphocytes ||

=
<) o

Number of Events / Lymphocytes
N

i M MMVLH.H.&H.}OH.HRN.MHMM.N

0 5 10 25 30 35

Case

Figure 2: Number of total events and lymphocytes in each flow cytometry dataset.

5. Experiments

We demonstrate the proposed methods on clinical flow cytometry data. Specifically, we
apply them to detect lymphocytes from peripheral blood samples. In diagnosing diseases
such as leukemias, identifying these cells is the first step in most clinical analysis. Since
the gating tools for this task are still primitive and unsatisfactory, a streamlined automatic
gating procedure will be highly valuable in practice.

For the experiments, peripheral blood sample datasets were obtained from 35 normal
patients. These datasets are provided by the Department of Pathology at the University of
Michigan. The number of events in a dataset ranges from 10,000 to 100,000 with a varying
portion of lymphocytes among them (see Fig. 2). An event in a dataset has six attributes
(FS, SS, CD45, CD4, CD8 and CD3) and a corresponding binary label (41 for lymphocytes
and —1 for others) from the manual gates set by experts (see Fig. 1).

For the experiments, we adopt a leave-one-out setting: choose a dataset as a target task
T, hide its labels, and treat the other datasets as source tasks D,,. Each D,, constitutes a
binary classification problem with the goal of predicting the correct labels.

On each source data D,,, we trained a SVM classifier f,,. We used LIBSVM package
(Chang and Lin, 2001) with the default setting (C,, = 1). Then we applied the algorithms
described in Section 4 and evaluated the prediction accuracy on the unlabeled target data
T. The considered transfer learning algorithms are:

e fo : baseline classifier with no adaptation, referred to as “baseline.”

e f : classifier adapted to T by varying the bias-only, referred to as “bias.”

e f; : classifier adapted to T by varying both the direction and the bias, referred to as

“dir. and bias.”
In addition to the above classifiers, we compared the error rates from the following classifiers
as points of reference:

e Pooling : A SVM is trained after merging all source data as in Toedling et al. (2006).

161

LEE STOOLMAN SCOTT

e Transductive : A transductive SVM is also trained on the merged source data and
the target data using SVM-light package (Joachims, 1999).

o f, form=1,--- /M : Each f,, learned from a source data D,, is applied straight
to 7. This emulates a supervised learning setup with a train sample D,,, and a test
sample T while implicitly assuming D,,, and T are drawn from the same distribution.
A box plot in Fig. 3 displays the range of results with some ‘+’ indicating extreme
values. Table 1 numbers f2¢ the best of the 34 error rates.

e Oracle : We also applied the standard SVM with the true labels of 7. Its performance

is computed by 5-fold cross validation. This quantity is what we can expect when a
sufficient amount of labeled data are available for the target task.
For each dataset, we repeated these and reported their results in Fig. 3 and Table 1.

As can be seen in the figure and table, applying one of the f,, to the target task result
in a wide range of accuracy. A classifier performing well on a dataset can perform poorly
on other datasets due to relative difficulty of a task, dataset shift, or dissimilarity between
tasks.

The Pooling performs poorly on many datasets. The merging step of the Pooling makes
the classification problem more difficult. Even if classes are well-separated in each dataset,
the separation will be lost in the merged dataset. Additionally, the classifier from Pooling
can be biased toward larger source data. The optimization algorithm might also terminate
prematurely before it converges to an optimal solution because the merged dataset is very
large. Therefore, the Pooling can perform poorly, sometimes even worse than the worst
fm-

Because Transductive merges all the labeled and unlabeled datasets for training, it
shares the similar problems as the Pooling. Moreover, the objective function is non-convex,
and the solutions from an optimization algorithm are often suboptimal. The obtained results
are very high error rates and low gating quality as shown in the table.

The baseline classifier fy typically improves when we adapt fy by changing the bias
variable in most cases except Case 14 and Case 23. They further improve by adaptively
varying both the direction and the bias. The differences among the f5¢ 0Oracle and f;
are very small. This reveals that our strategy can successfully replicate what experts do in
the field without labeled training set for the target task.

6. Conclusion

We cast flow cytometry auto-gating as a novel kind of transfer learning problem. By combin-
ing existing ideas from transfer learning, together with a low-density separation criterion for
class separation, our approach can leverage expert-gated datasets for the automatic gating
of a new unlabeled dataset.

Although linear classifiers are sufficient to gate lymphocytes in peripheral blood, non-
linear classifiers may be necessary for other kinds of auto-gating. For example, a bone
marrow sample contains cells of whole range of developmental stages and is known to be
more difficult to gate. Depending on diseases being screened for, other types of cells need
to be separated or the separated lymphocytes need to be further gated. Our approach
accommodates the incorporation of inner-product kernels, which may offer a solution to

162

TRANSFER LEARNING FOR AUTO-GATING OF FLOW CYTOMETRY DATA

such problems. It is also quite likely that several other strategies from the transfer learning
literature can be adapted to this problem.

Biological and technical variation pose challenges for the analysis of many types of
biomedical data. Typically one or both types of variation is accounted for by performing
task-independent “normalization” prior to analysis. Our approach to flow cytometry auto-
gating can be viewed as a task-dependent approach. The application of transfer learning
to overcome biological and/or technical variations in other kinds of biomedical data is an
interesting problem for future work.

163

LEE STOOLMAN SCOTT

Table 1: The error rates (%) of various classifiers on each flow cytometry dataset, with the
other 34 treated as labeled datasets. The results from f; adapted to the unlabeled
target data are comparable to Oracle trained on labeled target data, and make
less errors than Pooling.

Case Trans Pool fo fo ft fE Oracle
1 44.64 38.65 291 3.05 3.17 2.87 2.79
2 70.66 20.27 5.44 2.09 2.10 2.06 1.71
3 18.46 2.05 1.66 1.00 0.94 0.91 0.74
4 19.27 2.93 2.62 254 267 244 2.56
5 34.10 5.06 1.50 140 1.44 141 1.58
6
7
8

31.90 1.60 1.84 1.60 1.80 1.62 1.56

90.82 7.00 091 0.82 0.77 0.80 0.79

89.28 2.44 0.65 0.60 0.50 0.52 0.47
9 16.92 8.31 219 191 183 1.78 1.71
10 37.14 26.65 216 1.09 1.09 1.03 1.03
11 73.47 2.67 511 1.8 186 1.77 1.79
12 65.48 21.89 6.69 1.60 1.63 1.78 1.54
13 58.44 39.44 1.69 163 1.65 1.59 1.64
14 75.60 3.67 229 3,55 087 0.71 0.81
15 32.68 5.90 1.78 1.16 1.22 1.11 1.11
16 64.41 4.34 3.79 319 323 282 2.83
17 56.92 7.70 2.75 349 3.51 247 2.44
18 63.88 2.53 1.86 1.64 1.67 1.59 1.60
19 84.48 8.25 3.44 345 314 246 2.29
20 31.01 3.03 4.48 239 237 2.56 2.45
21 63.61 10.14 771 6.28 6.30 5.64 5.08
22 18.69 4.16 1.60 181 182 1.54 1.42
23 75.95 21.73 289 751 158 1.61 1.43
24 29.89 2.79 241 206 206 191 1.89
25 6.57 1.98 222 225 232 204 1.47
26 56.89 1.55 213 182 183 1.42 1.39
27 56.83 11.34 11.22 9.02 9.18 8.17 8.72
28 53.73 2.21 1.68 223 217 1.56 1.48
29 80.58 9.19 1.06 096 097 0.77 0.73
30 14.20 7.80 1.25 124 125 1.25 1.24
31 61.83 16.08 13.46 4.57 4.59 4.80 4.45
32 80.56 20.39 12.66 2.62 2.62 2.72 2.21
33 75.87 5.57 458 574 574 228 1.77
34 20.82 4.66 210 190 193 1.79 1.80
35 55.84 9.33 6.68 5.46 5.49 5.56 5.59

avg 51.76 9.80 3.70 2.73 249 221 2.12
std err 4.12 1.68 0.54 0.33 0.30 0.26 0.27

164

TRANSFER LEARNING FOR AUTO-GATING OF FLOW CYTOMETRY DATA

"[qRYSMIUIISIPUI AJ[ensn a1e “f 10 189q oY)
pue eToeIQ ‘*f WOIJ SHMNSOI Y, ‘SIOYJO 9} UWIOIJ SOIRIADP JRY]) ON[RA SUIDIJXD UR SYIRW ,+, * / 07 pordde st *f j0 sUO
uayM S3[Nsal jo a3url o9y} 0} spuodsariod jo0[d Xoq oY J, "}oseiep po[ege[un [Ded U0 SISYISSe[d SNOLIRA JO S93RI IOLID 9], ¢ 9IndIq

EB

ase)d
GE ¥€ €€ 2€ T€ 0 62 82 /Z 92 SZ v¢ €2 2¢ T2 02 6T 8T LT 9T ST ¥T €T 2T IT OT 6

1,008 4200, nate

T

\‘x
X - - @
+ |1 —
+ ¥ =+ o+
= — — —
| — — — — —
p— —
+ | — —
X - &A
S
! a
- @
@
Y
wfxfzte
+ |
+ + |
e
n

1
, | N o1
N
+ I + ! - | +
+ | | + * I | +
* , N - | . *
B L + } + + gt
+ * \, + ! +
A * ! +
| + + + - * m
. i . T
| I * . + oz m
x . * + * + " X \M
! * X * X . <
+ +
[+
— + +
— ’ * +—{gz
N
+ . X
i+
N
N
L . . —oe
+
t
N
speio < "
Hseiqpue ip QO -15€
selq % '
aulaseq e
lood % % X
+

oy

165

LEE STOOLMAN SCOTT

References

R.

A.

A.

N.

“wITw

K. Ando and T. Zhang. A high-performance semi-supervised learning method for text chunking. Pro-
ceedings of the 43rd Annual Meeting on Association for Computational Linguistics (ACL 05), pages 1-9,
2005.

Arnold, R. Nallapati, and W.W. Cohen. A comparative study of methods for transductive transfer
learning. Seventh IEEFE International Conference on Data Mining Workshops, pages 77-82, 2007.
Bashashati and R. R. Brinkman. A survey of flow cytometry data analysis methods. Advances in
Bioinformatics, 2009:Article ID 584603, 2009. doi: 10.1155/2009/584603.

A. Campbell. Robust procedures in multivariate analysis I: Robust covariance estimation. Journal of the
Royal Statistical Society. Series C' (Applied Statistics), 29:231-237, 1980.

. Caruana. Multitask learning. Machine Learning, 28:41-75, 1997.

Chan, F. Feng, J. Ottinger, D. Foster, M. West, and T.B. Kepler. Statistical mixture modeling for cell
subtype identification in flow cytometry. Cytometry Part A, 73:693-701, 2008.

. Chang and C. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http:

//www.csie.ntu.edu.tw/~cjlin/libsvm.

. Evgeniou and M. Pontil. Regularized multi-task learning. Proceedings of the tenth ACM SIGKDD

international conference on Knowledge Discovery and Data mining (KDD 04), pages 109-117, 2004.

. H. Golub and C. F. Van Loan. Matriz computations. Johns Hopkins University Press, 1996.

Joachims. Making large-scale SVM learning practical. In B. Scholkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vector Learning, chapter 11, pages 169-184. MIT Press,
Cambridge, MA, 1999.

. Lo, R. R. Brinkman, and R. Gottardo. Automated gating of flow cytometry data via robust model-based

clustering. Cytometry Part A, 73:321 — 332, 2008.

. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engi-

neering, 22:1345-1359, 2010.

. Pyne, X. Hu, K. Wang, E. Rossin, T. Lin, L. M. Maier, C. Baecher-Allan, G. J. McLachlan, P. Tamayo,

D. A. Hafler, P. L. De Jager, and J. P. Mesirov. Automated high-dimensional flow cytometric data
analysis. PNAS, 106:8519-8524, 2009.

. Rettinger, M. Zinkevich, and M. Bowling. Boosting expert ensembles for rapid concept recall. Proceedings

of the 21st National Conference on Artificial Intelligence (AAAI 06), 1:464-469, 2006.

. Scholkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
. Shapiro. Practical Flow Cytometry. Wiley-Liss, 3rd edition, 1994.

W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London, 1986.

. Toedling, P. Rhein, R. Ratei, L. Karawajew, and R. Spang. Automated in-silico detection of cell popula-

tions in flow cytometry readouts and its application to leukemia disease monitoring. BMC' Bioinformatics,
7:282, 2006.

166

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Problem Setup
	Related Work
	Algorithm
	Baseline Classifier for Summarizing Expert Knowledge
	Transferring Knowledge to Target Task
	Preprocessing
	Varying Bias
	Varying Normal Vector
	Putting It All Together

	Experiments
	Conclusion

