Supplementary Material:
Nested Chinese Restaurant Franchise Process

Applications to User Tracking and Document Modeling

Figure 5. This is a demonstration of sampling 6., the dis-
tribution over topics for node r. The sampling is drawn
from a Dirichlet distribution with parameters consisting of
count statistics n, from node r, pseudo counts 7, gath-
ering from its children nodes and topic proportions 0 ;)
from its parent node.

APPENDIX A: Inference in the
Twitter Model

In this Section, we detail the sampling equations for
(z, @) in the twitter application for concreteness.

A.1 Sampling Topic Proportions

Since topic proportions for different regions are linked
through the cascading process defined in Equation (5),
we use an auxiliary variable method similar to (Teh
et al., 2006) that we detail below. We sample 6,. based
on three parts: 1) actual counts n, associated with
node r, 2) pseudo counts 7., propagated from all chil-
dren nodes of r and 3) topic proportion 6,y from the
parent node of r. Thus, topic proportions for node
r are influenced by its children nodes and its parent
node, enforcing topic proportion cascading on the tree.

To sample n.., we start from all children node of r. Let
$p,k be the number of counts that node p € C(r) will
propagate to its parent node r and n, ; is the actual
number of times topic k appears at node p. We sample
5p.1 by the following procedure. We firstly set it to 0,

then for j = 1,--- ,np i + Npk, flip a coin with bias
U . o .
y v and increment 3, if the coin turns head.

The final value of 5, is a sample from the Antoniak
distribution. Thus, for node r, 7, = ZPGC(T) Sp k-
This sampling procedure is done from the bottom to
the top. Note that 5, ; has the meaning as the number

o

o

Figure 6. This is a demonstration of “Maximal Paths”
(top) and “Minimal Paths” (bottom), showing how counts
on leaf nodes propagate to the top. w; is the number of
times term w; appearing on the node.

of times the parent node was visited when sampling
topic k£ at node p.

After smoothing over the tree from bottom to the top,
we will have pseudo counts on each node. Thus, new
topic proportions for each node can be effectively sam-
pled by:

0, ~ Dir (n, + fiy + Mx(r)) (7)

where n, is the actual count vector for node r and 7,
is the pseudo count vector. We do this process from
the top to the bottom of the tree.

A.2 Sampling Regional Language Models

As we discussed before, regional language models are
cascaded through the tree structure. Thus, we need to
sample them explicitly in the inference algorithm. The
sampling process is also a top-down procedure where
we start from the root node. For the root node, we
always sample it from a uniform Dirichlet distribution
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¢root ~ Dir(0.1/V,---,0.1/V). For all other nodes,
we sample ¢, from:
¢, ~ Dir (mr +m, + w¢7‘r(r)) (8)

where m, is the count vector for node r, m, is a
smoothed count vector for node r and w is a parameter.
Here, m,,,) is the number of times term v appearing
in node r. For m,., it is a smoothed vector of counts
from sub-trees of node r. It can be sampled through
a draw from the corresponding Antoniak distribution,
similar to Section (8). However, since the element in
¢, is much larger than topic proportions, it is not ef-
ficient. Here, we adopt two approximations (Cowans,
2006; Wallach, 2008):

1. Minimal Paths: In this case each node p € C(r)
pushed a value of 1 to its parent, if m,_, > 0.

2. Maximal Paths: Each node r propagate its full
count m,,, vector to its parent node.

The sum of the values propagated from all p € C(r) to
r defines m,.. Although the sampling process defined
here is reasonable in theory, it might be extremely in-
efficient to store ¢ values for all nodes. Considering a
modest vocabulary of 100k distinct terms, it is diffi-
cult to keep a vector for each region. To address this
we use the sparsity of regional language models and
adopt a space efficient way to store these vectors.

A.4 Tree Structure Kalman Filter

For all latent regions, we sample their mean vectors
as a block using the multi-scale Kalman filter algo-
rithm (Chou et al., 1994). The algorithm proceeds
in two stages: upward filtering phase and downward-
smoothing phase over the tree. Once the smoothed
posterior probability of each node is computed, we
sample its mean from this posterior.

We define the following two quantities, ¥,, to be the
prior covariance of node n, i.e. the sum of the covari-
ances along the path form the root to node n, and
F, = \Ijlevel(n)—l[\Ijlevel(n)]_l’ which are used to ease
the computations below.

We first begin the upward filtering phase by computing
the conditional posterior for a given node n based on
each of its children m € C(n). Recall that each child
0 of every node specify the set of documents sampled
directly from this node. Thus we have two different
update equations as follows:

-1
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where m € C(n). Once these quantities are calculated
for all children nodes for n, we update the filtered mean
and covariance of node n, (fi,, $,) based on its down-
ward tree as follows:

£, = [\If;1+ > [E;ﬁn—\lfgll}_l
meC(n)
meC(n)

Once we reach the root node, we start the sec-
ond downward smoothing phase and compute the
smoothed posterior for each node (u,, ), as follows:

:“;oot = firoot Egoot = Yroot (12)

,LL;I = /an +Jn {/L;(n) - Nﬂ'(n),n]

o= St Ju[Sh = Sen ] (13)

where J,, = =3 FTEﬂ(ln). Here, ¥ and p.,.
upward phase. After upward and downward updates,
we sample the mean p,, of each node n from N(u!,, 3" ).

are from

A.3 Sampling Topic Assignments

Given the current region assignment, we need to sam-
ple the topic allocation variable z(4 ;) for word w(qg
in document d:

P(Z(d,i) =k | W, Z2—(dyi)> T la 97 (P) X

P(za) = k| 2—(a4,5), 70, ®)P(wa | 2, w_(q,i), P)

Since all 8 are integrated out, this is essentially similar
to the Gibbs sampling in LDA where document-level
topic proportions in LDA becomes region-level topic
proportions. Thus, we can utilize a similar equation
to sample topic assignments. Note, as we discussed in
the last section, we have a (T'+ 1) matrix IT where the
first dimension is a special row for regional language
models that are distinct for each region. The sampling
rule is as follows:
o i my
) e B

~ —i M+ M w0t A G (7)o _
(0 + 10 + PO 0) [ S Mo A ] h=0

(14)
where v = w(q4), Nrk is the number of times topic k
appearing in region r and my , is the number of times
term v assigned to k. Here, n,o and m,, serve the
purpose for the special index for the regional language
model. Note, n_* and m_? mean that the count should
exclude the current token.
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Figure 7. A small portion of the tree structure discovered from DS1.

APPENDIX B: Detailed Analysis of
the Twitter dataset

B.1 User Location modeling

We demonstrate the efficacy of our model on two
datasets obtained from Twitter streams. Each tweet
contains a real-valued latitude and longitude vector.
We remove all non-English tweets and randomly sam-
ple 10,000 Twitter users from a larger dataset, with
their full set of tweets between January 2011 and
May 2011, resulting 573,203 distinct tweets. The
size of dataset is significantly larger than the ones
used in some similar studies (e.g, (Eisenstein et al.,
2010; Yin et al., 2011)). We denote this dataset as
DS1. For this dataset, we split the users (with all her
tweets) into disjoint training and test subsets such
that users in the training set do not appear in the
test set. In other words, users in the test set are
like new users. This is the most adversarial setting.
In order to compare with other location prediction
methods, we also apply our model a dataset avail-
able at http://www.ark.cs.cmu.edu/GeoText, de-
noted as DS2, using the same split as in (Eisenstein
et al., 2010). The priors over topics and topics mixing
vectors were set to .1 and w, A to .1 favouring sparser
representation at lower levels. The remaining hyper-

parameters are tunded using cross-validation. We ran
the model until the training likelihood asymptotes.

Figure 7 provides a small subtree of the hierarchy dis-
covered on DS1 with the number of topics fixed to 10.
Each box represents a region where the root node is
the leftmost node. The bar charts demonstrate overall
topic proportions. The words attached to each box are
the top ranked terms in regional language models (they
are all in English since we removed all other content).
Because of cascading patterns defined in the model,
it is clear that topic proportions become increasingly
sparse as the level of nodes increases. This is desir-
able as we can see that nodes in higher level represent
broader regions. The first level roughly corresponds
to Indonesia, the USA and the UK, under USA, the
model discovers CA and NYC and then under NYC
it discovers attraction regions. We show some global
topics in Table 1 as well which are more generic than
the regional language models.

B.2 LOCATION PREDICTION

As discussed in Section 1, users’ mobility patterns can
be inferred from content. We test the accuracy by es-
timating locations for Tweets. Differing from (Eisen-
stein et al., 2010) who aim to estimate a single location
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Table 5. Top ranked terms for some global topics.

Entertainment

video gaga tonight album music playing artist video
itunes apple produced bieber #bieber lol new songs
Sports

winner yankees kobe nba austin weekend giants
horse #nba college victory win

Politics

tsunami election #egypt middle eu japan egypt
tunisia obama afghanistan russian

Technology

iphone wifi apple google ipad mobile app online
flash android apps phone data

Table 6. Location accuracy on DS1 and DS2.

Results on DS1 Avg. Error | Regions
(Yin et al., 2011) 150.06 400
(Hong et al., 2012) 118.96 1000
Approx. 91.47 2254
MH 90.83 2196
Exact 83.72 2051
Results on DS1 Avg. Error | Regions
(Eisenstein et al., 2010) 494 -
(Wing & Baldridge, 2011) 479 -
(Eisenstein et al., 2011) 501 -
(Hong et al., 2012) 373 100
Approx. 298 836
MH 299 814
Exact 275 823

for each user (note that they use the location of the
first tweet as a reference, which may not be ideal), our
goal is to infer the location of each new tweet, based
on its content and the author’s other tweets.

Based on our statistics, only 1% ~ 2% of tweets
have either geographical locations (including Twitter
Places) explicitly attached, meaning that we cannot
easily locate a majority of tweets. However, geograph-
ical locations can be used to predict users’ behaviors
and uncover users’ interests (Cho et al., 2011; Cheng
et al., 2011) and therefore it is potentially invaluable
for many perspectives, such as behavioral targeting
and online advertisements. For each new tweet (from
a new user not seen during training), we predict its
location as [;. We calculate the Euclidean distance
between predicted value and the true location and av-
erage them over the whole test set & > I(Ig,14) where
l(a,b) is the distance and N is the total number of
tweets in the test set. The average error is calculated
in kilometres. We use three inference algorithms for
our model here: 1) exact algorithm denoted as Exact,
2) M-H sampling, denoted as MH and 3) the approxi-
mation algorithm as Approx..

For DS1 we compare our model with the following ap-
proaches:

Yin 2011 (Yin et al., 2011) Their method is es-

Table 7. Accuracy of different approximations and sam-
pling methods for computing ¢...

Method | Ds1 | Ds2

Minimal Paths | 91.47 | 298.15
Maximal Paths | 90.39 | 295.72
Antoniak 88.56 | 291.14

Table 8. Ablation study of our model

Results on DS1 Avg. Error Regions
(Hong et al., 2012) 118.96 1000
No Hierarchy 122.43 1377
No Regional Language Models | 109.55 2186
No Personalization 98.19 2034
Full Model. 91.47 2254
Results on DS2 Avg. Error Regions
(Hong et al., 2012) 372.99 100
No Hierarchy 404.26 116
No Regional Language Models | 345.18 798
No Personalization 310.35 770
Full Model. 298.15 836

sentially to have a global set of topics shared
across all latent regions. There is no regional lan-
guage models in the model. Besides, no user level
preferences are learned in the model.

Hong 2012 (Hong et al., 2012) Their method uti-
lizes a sparse additive generative model to incor-
porate a background language models, regional
language models and global topics. The model
also considers users’ preferences over topics and
regions as well.

For all these models, the prediction is done by two
steps: 1) choosing the region index that can maxi-
mize the test tweet likelihood, and 2) use the mean
location of the region as the predicted location. For
Yin 2011 and Hong 2012, the regions are the optimal
region which achieves the best performance. For our
method, the regions are calculated as the average of
number of regions from several iterations after the in-
ference algorithm converges. The results are shown in
the top part of Table 6.

The first observation is that all three inference algo-
rithms outperforms Yin 2011 and Hong 2012 signifi-
cantly. Note that for both Yin 2011 and Hong 2012,
we need to manually tune the number of regions as
well as the number of topics, which requires a signif-
icant amount of computational efforts, while for our
model, the number of regions grows naturally with the
data. Also, we notice that the number of regions for
the optimal performed model inferred by all three in-
ference algorithms is larger than its counterparts Yin
2011 and Hong 2012. We conjecture that this is due
to the fact that the model organizes regions in a tree-
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like structure and therefore more regions are needed
to represent the fine scale of locations. In addition,
we observe that Exact indeed performs better than
Approx. and MH.

For the comparison on the DS2 dataset, we compare
with:

(Eisenstein et al., 2010) The model is to learn a
base topic matrix that can be shared across all
latent regions and a different topic matrix as the
regional variation for each latent region. No user
level preferences are learned in the model. The
best reported results are used in the experiments.

(Eisenstein et al., 2011) The original SAGE paper.
The best reported results are used in the experi-
ments.

(Wing & Baldridge, 2011) Their method is essen-
tially to learn regional language models per ex-
plicit regions.

(Hong et al., 2012) This was the previous state of
the art.

For (Eisenstein et al., 2010; Wing & Baldridge, 2011;
Eisenstein et al., 2011), the authors do not report op-
timal regions. For (Hong et al., 2012), the optimal
region is reported from the paper. The best reported
results are used in the experiments. For our method,
the regions are calculated as the same fashion as above.
The results are shown in the second part of Figure 6. It
is obvious that our full model performs the best on this
public dataset. Indeed, we have approximately 40%
improvement over the best known algorithm (Hong
et al., 2012) (note that area accuracy is quadratic in
the distance). Recall that all prior methods used a flat
clustering approach to locations. Thus, it is possible
that the hierarchical structure learned from the data
helps the model to perform better on the prediction
task.

In Section 8, we discussed how regional language mod-
els can be sampled. Here, we compare the two ap-
proximation methods and directly sampling from An-
toniak distributions based on Approx., shown in Table
7. We can see that all three methods achieve compa-
rable results although sampling Antoniak distributions
can have slightly better predictive results. However, it
takes substantially more time to draw from the An-
toniak distribution, compared to Minimal Paths and
Maximal Paths. In Table 6, we only report the results
by using Minimal Paths.

B.3 ABLATION STUDY

In this section, we investigate the effectiveness of dif-
ferent components of the model and reveal which parts
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Figure 8. Error analysis for the state-of-the-art model
(Hong et al., 2012) (blue circles) and our model (orange
circles) on DS1.

really help with the performance, in terms of location
prediction. For both DS1 and DS2, we compare the
following versions:

No Hierarchy In this model, we do not have a hier-
archical structure of regions while the number of
regions is still infinite. Regional language models
and a set of global topics are utilized.

No Regional Language Model No regional language
model version of our proposed model: In this
model, we still have the hierarchical structure over
regions but no only having a global set of topics
without regional language models.

No Personalization No personal distribution over
the tree structure: In this model, we assume that
all tweets are generated by a fictitious user and es-
sentially no personal preferences are incorporated.

Full Model Our full model using the approximation
sampling algorithm.

The results are shown in Table 8. The first obser-
vation is that all variants which utilize hierarchical
structures of regions are better than other methods.
This validates our assumption that hierarchies of re-
gions can control the scope of regions and therefore
smaller regions can be discovered from the data. This
is also clearly observable from the optimal number
of regions these methods have discovered. For No
Regional language Model, it is only slightly better
than Hong as it does not incorporate regional language
models into account. We can see the effect of regional
language models by focusing on No Personalization
where no personal distributions over the tree is intro-
duced. In summary, Full Model. demonstrated that
personalized tree structures can further boost the per-
formance.
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B.5 ERROR ANALYSIS

In order to understand how our model performs in
terms of prediction we conduct a qualitative error anal-
ysis on our model as well on the the state-of-the-art
model (Hong et al., 2012) on all users in the USA on
DS1. The results are given in Figure 8. Each circle
in the map represents 1000 tweets. The magnitude of
the circle represents the magnitude of average error
made for these 1000 tweets. Note that the circles are
re-scaled such as to be visible on the map (i.e. radii do
not correspond to absolute location error).

We observe that in the industrialized coastal regions
both models perform significantly better than in the
Midwest. This is because that we have more users
in those areas and therefore we can, in general, learn
better distributions over those regions. At the same
time, users in those areas might have much more dis-
criminative mobility patterns relative to users in the
Midwest. The second observation is our method con-
sistently outperforms (Hong et al., 2012). This is par-
ticularly salient in the Midwest.



