Supplementary Information: Ellipsoidal Multiple Instance Learning

Gabriel Krummenacher

GABRIEL.KRUMMENACHERQINF.ETHZ.CH

Department of Computer Science, ETH Zurich, Switzerland

Cheng Soon Ong

CHENGSOON.ONGQUNIMELB.COM.AU

National ICT Australia, Victoria Research Laboratory, Melbourne, Australia

Joachim M. Buhmann

JBUHMANN@INF.ETHZ.CH

Department of Computer Science, ETH Zurich, Switzerland

A. Proofs for Lemmas 3 and 4

Proof of Lemma 3. We make use of the following mul-
tivariate Chebyshev’s inequality to proof Lemma 3

Theorem 1. (Marshall & Olkin, 1960), (Bertsimas
& Popescu, 2001), (Lanckriet et al., 2002)
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Where y is a random vector, the supremum is over all
distributions for y with mean y and covariance matriz
Yy and S is a given convex set.

Now, setting S = {x;|y; ((w,x;) +b) < 1—¢&;} we get
the claimed equality. O

Proof of Lemma 4. We follow the proof in (Lanck-
riet et al., 2002) to find a closed form expression for

infy, 1y, (woxi) oy <i—e (% — @) T2 (x5 — @)
If y;((w,q;) + b) < 1—¢&; then we can just set x; = q;
and the infimum becomes 0.

To show the other case of y;((w,q;) +b) > 1—¢&; we
write d? = inf ¢ 1> ¢ (k, k), where k = 2;1/2(& —qi),

¢’ = —yw =% and f = yi((w,q;) +0) —1+& > 0.
We form the Lagrangian:

L(k, A) = (k k) + A(f = (¢, k)

and maximize it with respect to the dual variable A > 0
and minimize with respect to the primal variable k.
At the optimum we get 2k = Ac and f = (c,k). So,

A= <f£> such that indeed A > 0 because f > 0. Also,

k= L°
C
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Combining both cases y;((w,q;) +b) < 1 — & and
yi({(w,q;) +b) > 1 —¢&; we get the right hand side of
Lemma 4:

max(0, y; ((w,q;) +b) — 1 +&)?
wid,w

B. Derivation of SOCP
First we write \/w ' P;w as ||A;w| with P; = AT A,.

Then we replace the hinge-loss type part of the objec-
tive function in Equation (21) in the main article with
the following constraints, by introducing slack vari-
ables &;:
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Where Zy+ means sum over all ¢ for which y; = +1.

Next replace the remaining objective function with 6



Supplementary Information: Ellipsoidal Multiple Instance Learning

and add it as a constraint:

min 6
0,w,b,&
A Piw -
s.t. f||w||2 - w, B L +q; ) +b]|+ & <0 oLC " 2
M2\ AT L=t Tl -
[Aiw|| +w qi+b< & -1, Viiy=-1

0<¢
(3)
Finally we see that this quadratic constraint is equiva-

lent to the SOC constraint in Equation 22 in the main
article.

C. Distance between an ellipsoid and a
hyperplane

Proof of Proposition 1. We would like to minimize the
squared distance between a point x on the hyperplane,
and a point z on the ellipsoid. This can be expressed
as the following constrained optimisation problem:

min, ., [z —z|?
s.t. (z—q) TP (z—q) =1
w'z+b=0

We form the Lagrangian, using multiplier n for the
ellipsoidal constraint and « for the hyperplane.

L(z,2,n,7) = ||z2—=|*4+n(z—q) TP~ (z—q)—n+yw " z+7b

(4)

Taking the gradient of Equation (4) with respect to x
and z respectively, and setting it to zero gives

2(z —x) = yw (5)

20z—2)+2nP (z2—¢q) =0 (6)

By substituting Equation (5) into Equation (6), we
obtain that

g
- Tp 7
z o w+q (7)
and using this in Equation (5) gives
x:—;—nPw—&—q—%w (8)

By substituting Equation (7) and (8) into the La-
grangian (Equation (4)) we obtain an expression only
in the dual variables.
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We would like to maximize the dual with respect to
n and 7, and this point is achieved at the stationary
points

%wTPw—i—qu—kb:O (9)

and or )
o= 47—772wTPw —1=0 (10)

Equation (10) implies
n= :I:%\/wTPw (11)

Substituting the expression for n (Equation (11)) into
the stationary condition for v (Equation (9)) gives

Dl £ VaTPutwTgrb=0  (12)

Observe from Equation (5) that the distance from the
ellipsoid to the hyperplane is given by | wl|| which
from Equation (12) is given by

1
et - (T

When the ellipsoid intersects the hyperplane, we would
like the point on the ellipsoid furthest away from the
hyperplane, which is given by the solution of the fol-
lowing constrained optimisation problem.

s, ||z - af
s.t. (z—q) TP (z—¢q)=1
w'z+b=0

Since the only difference is from finding the minimum
to finding the maximum, the above derivation remains
identical and the theorem follows.

O

D. Gradients

The gradient of the smooth hinge loss with respect to
w and b is given respectively by
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Where

P=1-0<y; f(Pisq) <1
U=y f(Piq) <1-0
Q=yi- f(Pisqi) > 1
And where the gradient of the ellipsoid predictor

f(q;P) = Vvw'Pw + w'q + b is given by Equa-
tion (15) and Equation (16).

0 Pw
%f(q, P)=q+ T Pw (15)
0
o f@P)=1 (16)
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