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Abstract

Multi-fold cross-validation is an established
practice to estimate the error rate of a learn-
ing algorithm. Quantifying the variance re-
duction gains due to cross-validation has
been challenging due to the inherent correla-
tions introduced by the folds. In this work we
introduce a new and weak measure called loss
stability and relate the cross-validation per-
formance to this measure; we also establish
that this relationship is near-optimal. Our
work thus quantitatively improves the cur-
rent best bounds on cross-validation.

1. Introduction

Cross-validation is a classical tool in the machine
learner’s repertoire for obtaining good estimates of
a learning algorithm’s performance (Rosset, 2009;
Mullin & Sukthankar, 2000; Blockeel & Struyf, 2002).
By repeatedly slicing the data into test and training
sets, one obtains k dependent estimates of the average
error that are usually further averaged to obtain an es-
timate of the performance of the algorithm. Although
it was initially motivated by the lack of labeled exam-
ples (and the cost in obtaining labels), cross-validation
remains extremely popular and pertinent, even in the
current age of ‘big data.’

Despite its ubiquity in practice, cross-validation has
largely eluded formal analysis. Under investigation is
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the decrease in the variance of the generalization er-
ror, i.e., the variance in the estimate of the algorithm’s
performance. In their seminal work, Blum, Kalai, and
Langford (Blum et al., 1999), proved insanity check
bounds, and showed that cross-validation always helps
to reduce this variance, although they did not quan-
tify the magnitude of the improvement. Such a task is
non-trivial since cross-validation involves subtle corre-
lations between the hypotheses learned on the different
overlapping slices of the input.

Recently, Kale, Kumar, and Vassilvitskii (Kale et al.,
2011) showed that under a suitable notion of stability
(called mean-square stability), k-fold cross-validation
achieves a significant variance reduction. Specifically,
they showed that in a ‘noisy’ setting, the variance re-
duction is near-optimal (a factor of k) and, for weakly
stable algorithms, one obtains a sub-optimal O(1/

√
k)

reduction (for more details, see (Kale et al., 2011)).
Even though they improved upon previous results,
their bound was far from tight, for example, simple
calculations illustrate the gap in the bound even in
the toy setting of estimating the mean of a Gaussian.

In this work we introduce a new stability measure
called loss stability, which is weaker than the mean-
square stability and other stability measures defined
in the past. Our main contribution is to show that
this new notion serves as an additive factor to the op-
timal variance reduction obtained by cross-validation.
In other words, an algorithm’s loss stability precisely
captures the degradation of the reduction of gener-
alization errors due to the dependencies between the
different folds. Thus, we obtain an improved bound
on the performance of cross-validation; in addition, we
prove that this bound is near-optimal. We illustrate an
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application of our findings to the problem of estimating
the mean of a distribution and show that loss stability
is able to precisely capture the variance reduction in
the generalization error due to cross-validation. We
then show that, in the noisy setting, many algorithms
such as t-nearest neighbor rules obtain a near-optimal
Θ(k) variance reduction.

2. Related work

Cross-validation has been studied (Moore & Lee,
1994; Ng, 1997; Bengio & Grandvalet, 2004; Ko-
havi, 1995; Kearns, 1996), and has been used in
practice for many decades; see also the references
in http://masi.cscs.lsa.umich.edu/~crshalizi/

notabene/cross-validation.html. However, ana-
lyzing the improvements offered by cross-validation
has been tricky. Blum, Kalai, and Langford (Blum
et al., 1999) showed under mild assumptions on the
learning algorithm that the variance of the cross-
validation estimate is never more than that of a sin-
gle holdout estimate. Kale, Kumar, and Vassilvit-
skii (Kale et al., 2011) generalized this considerably,
quantifying the variance reduction as a function of the
algorithm’s stability. Our results can be viewed as
an improvement over their work: we obtain a near-
optimal connection between cross-validation and an
appropriately defined notion of algorithmic stability.

The notion of algorithmic stability, once again, has
been studied in various contexts over the past many
years. Rogers and Wagner (Rogers & Wagner,
1978) and Devroye and Wagner (Devroye & Wagner,
1979) implicitly defined weak hypothesis stability in
their work on leave-one-out cross-validation. Kearns
and Ron (Kearns & Ron, 1999) and Anthony and
Holden (Anthony & Holden, 1998) defined weak-error
stability in the context of proving sanity check bounds.
Kutin and Niyogi (Kutin & Niyogi, 2002) defined the
weak-L1 stability notion; see also the work of Bous-
quet and Elisseeff (Bousquet & Elisseeff, 2002). The
notion of mean-square-stability introduced by (Kale
et al., 2011) is weaker than all the previous notions
except for that of weak-error stability and is closely
related to the efficacy of cross-validation. Our new def-
inition of loss stability is weaker still, but can be used
to obtain near-optimal results. In contrast, we show
that the notion of weak-error stability is not enough
to obtain a significant variance reduction.

3. Preliminaries

Let X be the input space and Y be the set of labels
and let Z = X × Y. Labeled examples are drawn

from an unknown, fixed distribution D over Z. We
will denote by DX the marginal distribution of D over
X , i.e., x ∈ X is sampled from DX with probability∑
y∈Y Prz[z = (x, y)]. To help readability, every time

we refer to some examples z ∈ Z or x ∈ X , we will
implicitly assume that z and x are respectively drawn
from D and DX .

A hypothesis is a function h : X → Y. The loss of
a hypothesis h on an example z = (x, y) is defined
as `h(z) = `(y, h(x)), where ` : Y2 → R≥0 is a fixed
loss function. This leads to the following two notions:
the expected loss of a hypothesis h defined as ¯̀

h =
Ez[`h(z)] and the (empirical) loss of a hypothesis h on
a test set T defined as `h(T ) = 1

|T |
∑
z∈T `h(z); note

that the latter is an unbiased estimator of the former.
As in (Blum et al., 1999), we denote the discrepancy
in the estimation by disch(T ) = `h(T )− ¯̀

h.

A learning algorithm A is a (symmetric) function
whose input is a set S of labeled training examples
and whose output is a hypothesis A(S). In a stan-
dard k-fold cross-validation setting we are given a set
of nk examples drawn from D, which we denote by U .
Let T1, . . . , Tk be a random equipartition of U into k
parts, called folds, with |Ti| = n. We learn k different
hypotheses with hi = A(U \Ti) the hypothesis learned
on all of the data except for the ith fold; we denote by
m = n(k − 1) the size of the training set for each of
these k hypotheses. Following the work of (Blum et al.,
1999) we focus on the cross-validated hypothesis, hcv,
which picks one of the {hi}ki=1 uniformly at random.

Specifically, we want to relate the discrepancy of
hcv to that of the discrepancy of a hypothesis
trained on a single fold. Formally, let disci =
disci(Ti) = `hi

(Ti) − ¯̀
hi

be the discrepancy
of the ith hypothesis. We are interested in:

disccv =
1

k

k∑
i=1

`hi
(Ti)−

1

k

k∑
i=1

¯̀A(hi) =
1

k

k∑
i=1

disci.

We assume that each of the hypotheses is unbiased,
EU [disci] = EU [disccv] = 0. Therefore, we focus on
higher moments, specifically the variance of the dis-
crepancy, varU (disccv). Note that if each of the k
hypothesis was trained on an independently drawn set
of training and test examples, it would be easy to con-
clude that var(disccv) is smaller than var(disc1) by
a factor of k. The goal of this work is to quantify the
relationship between these two quantities while taking
into account the dependencies between the folds.

For the rest of the paper, we assume that the training
set T is drawn i.i.d. from D and the loss function `
is arbitrary but fixed. To simplify notation, for a set
T of examples and an example z /∈ T , we will use T z
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to denote the set of examples obtained by replacing an
example chosen uniformly at random from T by z. We
will also use shorthand notation such as

∑
x∈A g(x) to

denote
∑

(x,y)∈A g(x).

4. Loss stability

Kale, Kumar, and Vassilvitskii (Kale et al., 2011) in-
troduced the concept of mean-squared stability (MSS),
which was based on the expected variance of the loss
on a random test example under a change of a single
element in the training set. We recall their definition.

Definition 1 (Mean-square stability (Kale
et al., 2011)). The mean-squared stability of
a learning algorithm A trained on m exam-
ples and with respect to a loss ` is defined as

mssm,`(A) = E
T :|T |=m,z′,z

[(
`A(T )(z)− `A(T z′ )(z)

)2
]
.

Since m and ` are fixed, we will drop them for clar-
ity. We refine and weaken the MSS notion further
and introduce the concept of loss stability, which
tightly captures the variance reduction possible in
cross-validation.

We begin by considering an unbiased loss of a learning
algorithm on a test set example. Given a training set
T , let the unbiased loss of the algorithm on example x
be `′A(T )(z) = `A(T )(z)− ¯̀A(T ). When the algorithm is

clear from the context we will use the shorthand `′T (z)
for `′A(T )(z).

Definition 2 (Loss stability). The loss stability
of a learning algorithm A trained on m exam-
ples and with respect to a loss ` is defined as

lsm,`(A) = E
T :|T |=m,z′,z

[(
`′A(T )(z)− `

′
A(T z′ )

(z)
)2
]
.

A learning algorithm A is γ-loss stable if lsm,`(A) ≤ γ.

By a simple rearrangement of the terms, and using the
fact that 2 var(X) = Ex,y∼X(x−y)2, the loss-stability
of a learning algorithm can be viewed as the variance
of the loss due to a change in a single training example
of a typical training set.

Lemma 1. lsm,`(A) = 2 E
T :|T |=m,z

[
var
z′

(`′A(T z′ )
(z))

]
.

As before, we will drop the subscriptsm and `. We first
show that loss stability is upper bounded by mean-
squared stability.

Lemma 2. For any algorithm A, ls(A) ≤ mss(A).

Proof. Using Definitions 1 and 2, we have mss(A) =

= E
T,z′,z

[
(`A(T )(z)− `A(T z′ )(z))

2
]

= E
T,z′,z

[(
(`′T (z)− `′

T z′ (z)) + (¯̀A(T ) − ¯̀
A(T z′ ))

)2
]

= E
T,z′,z

[
(`′T (x)− `′

T z′ (z))
2
]

+ E
T,z′,z

[
(¯̀A(T ) − ¯̀

A(T z′ ))
2
]

≥ E
T,z′,z

[
(`′T (z)− `′

T z′ (x))2
]

= ls(A),

where the second step follows from the facts that
Ex[`′A(T )(z)] = 0 for any T and neither ¯̀A(T ) nor
¯̀
A(T z′ ) depends on z.

Kale et al. (Kale et al., 2011) showed that many pre-
viously studied notions of stability, for example, weak-
error stability (Kearns & Ron, 1999), uniform stabil-
ity (Bousquet & Elisseeff, 2002), and others imply a
bounded MSS. Therefore all of their bounds apply to
loss stability as well; for the sake of brevity, we do not
repeat them.

The discrepancy introduced earlier has a simple char-
acterization using the unbiased loss.

Lemma 3. For any learning algorithm A and i ∈ [k],

var
U

(disci) =
1

n
E
T

[var
z

(`′A(T )(z))].

Proof.

var
U

(disci) = E
U\Ti

[var
Ti

(disci | U \ Ti)]

=
1

n
E

U\Ti

[var
z

(`hi
(z)− ¯̀

hi
| U \ Ti)]

=
1

n
E

U\Ti

[var
z

(`′hi
(z))].

5. Cross-validation from loss stability

We now prove our main result regarding the variance
reduction obtained using k-fold cross-validation for an
algorithm that is γ-loss stable. We first state a char-
acterization of the variance of the discrepancy when
using k-fold cross-validation in terms of the variance
and covariance of the discrepancy on the folds.

Lemma 4 ((Kale et al., 2011)). varU (disccv) =
1
k varU (disc1) +

(
1− 1

k

)
covU (disc1, disc2).

We next state our main result.

Theorem 1. Consider any learning algorithm A
that is γ-loss stable with respect to `. Then

var
U

(disccv) ≤
1

k
var
U

(disc1) +

(
1− 1

k

)
γ.
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By Lemma 4 it is enough to analyze the covariance
covU (disc1, disc2) between the discrepancies on two
different folds. The following key lemma provides a
more manageable form for covU (disc1, disc2). To
simplify notation, let S = U \ (T1 ∪ T2) be the set of
training examples shared by the first two folds.

Lemma 5. Let a fold Ti consist of a single element zi
and elements T̃i. Then,

cov
U

(disc1, disc2) =

E
S,T̃1,T̃2

z1,z2,z
′
1,z

′
2

[
(`′
S∪T̃1∪z1

(z2)− `′
S∪T̃1∪z′1

(z2))

· (`′
S∪T̃2∪z2

(z1)− `′
S∪T̃2∪z′2

(z1))
]
.

Proof. We first reduce the covariance over the folds to
the covariance over a change in a single example.

cov
U

(disc1, disc2)

= E
S,T1,T2

[(
1

n

∑
z∈T2

`A(S∪T1)(z)− ¯̀A(S∪T1)

)

·

(
1

n

∑
z∈T1

`A(S∪T2)(z)− ¯̀A(S∪T2)

)]

= E
S,T1,T2

[(
1

n

∑
z∈T2

(`A(S∪T1)(z)− ¯̀A(S∪T1))

)

·

(
1

n

∑
z∈T1

(`A(S∪T2)(z)− ¯̀A(S∪T2))

)]
.

By definition of unbiased loss,

cov
U

(disc1, disc2) = E
S,T1,T2

[(
1

n

∑
z∈T2

`′A(S∪T1)(z)

)

·

(
1

n

∑
z∈T1

`′A(S∪T2)(z)

)]

= E
S,T1,T2

[
E
i
[`′S∪T1

(zi2)] E
j
[`′S∪T2

(zj1)]

]
,

where i, j, are distributed uniformly in {1, . . . , n}, and
zi2, zj1 represent the ith element of T2 and the jth ele-
ment of T1 (for some ordering of their elements). We
can now write:

cov
U

(disc1, disc2) = E
S,T1,T2

[
E
i
[`′S∪T1

(zi2)] E
j
[`′S∪T2

(zj1)]

]
= E
i,j

[
E

S,T1,T2

[`′S∪T1
(zi2) · `′S∪T2

(zj1) | i, j]
]

= E
S,T1,T2

[`′S∪T1
(z1

2) · `′S∪T2
(z1

1)],

where the last step uses the fact that the elements in
T1 and T2 are i.i.d.

Denote by T̃1, T̃2 sets of (n− 1) i.i.d. samples from D,
and z1, z2, z

′
1, z
′
2 i.i.d. samples from D. We have

cov
U

(disc1, disc2) = E
S,T̃1,T̃2
z1,z2

[`′
S∪T̃1∪z1

(z2) · `′
S∪T̃2∪z2

(z1)]

= E
S,T̃1,T̃2

z1,z2,z
′
1,z

′
2

[(`′
S∪T̃1∪z1

(z2)− `′
S∪T̃1∪z′1

(z2))

· (`′
S∪T̃2∪z2

(z1)− `′
S∪T̃2∪z′2

(z1))],

since

E
S,T̃1,T̃2

z1,z2,z
′
1,z

′
2

[`′
S∪T̃1∪z′1

(z2) · `′
S∪T̃2∪z2

(z1)]

= E
S,T̃1,T̃2

z1,z2,z
′
1,z

′
2

[E
z1

[`′
S∪T̃1∪z′1

(z2) · `′
S∪T̃2∪z2

(z1)

| S, T̃1, T̃2, z2, z
′
1, z
′
2]]

= E
S,T̃1,T̃2

z1,z2,z
′
1,z

′
2

[`′
S∪T̃1∪z′1

(z2) · E
z1

[`′
S∪T̃2∪z2

(z1)

| S, T̃1, T̃2, z2, z
′
1, z
′
2]] = 0;

similar arguments hold for the other cross-terms.

The proof of our main theorem is now a simple appli-
cation of the Cauchy–Schwarz inequality.

Proof of Theorem 1. By Lemma 4 it is enough to show
that covU (disc1, disc2) ≤ γ. By Lemma 5 and
Cauchy–Schwarz,

cov
U

(disc1, disc2)

= E
S,T̃1,T̃2

z1,z2,z
′
1,z

′
2

[
(`′
S∪T̃1∪z1

(z2)− `′
S∪T̃1∪z′1

(z2))

· (`′
S∪T̃2∪z2

(z1)− `′
S∪T̃2∪z′2

(z1))
]

≤
√

E
S,T̃1,T̃2

z1,z2,z
′
1,z

′
2

[(`′
S∪T̃1∪z1

(z2)− `′
S∪T̃1∪z′1

(z2))2]

·
√

E
S,T̃1,T̃2

z1,z2,z
′
1,z

′
2

[(`′
S∪T̃2∪z2

(z1)− `′
S∪T̃2∪z′2

(z1))2]

= E
S,T̃1,z1,z2,z′1

[(`′
S∪T̃1∪z1

(z2)− `′
S∪T̃1∪z′1

(z2))2]

= E
T1,z′1,z2

[(`′T1
(z2)− `′

T
z′1
1

(z2))2] ≤ γ.

6. Does cross-validation always help?

Previous work left open the question whether an as-
sumption on the stability of the algorithm is at all
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necessary for k-fold cross-validation to yield a signif-
icant variance reduction. Intuitively, one may try to
argue that discrepancy estimates obtained from very
unstable algorithms are essentially independent. On
the other hand, one can try to weaken the notion of
stability needed to obtain O(k) variance reduction.
In studying the effect of mean square stability, Kale
et al. (Kale et al., 2011) asked whether the weakest
such notion, that of weak-error1 stability introduced
in (Kearns & Ron, 1999) is enough to obtain a signif-
icant variance reduction.

In this section we provide an answer to both questions
by showing that there are instances that are (0, 0)-
weak-error stable for which the variance reduction is
only a constant independent of k. We observe that
such instances have hypothesis class with VC dimen-
sion only 2, hence assumptions based only on the VC
dimension are also insufficient.

Theorem 2. For every 4
√
n ≤ t ≤

√
n(k − 2)/2,

there is a loss function ` and a learning algorithm
A such that varU (disc1) = 1/n and varU (disccv) =
Ω( 1

t
√
n

). Furthermore the algorithm A is ( 2√
n(k−2)

+

2
t )-loss stable and (0, 0)-weak-error stable.

Proof. The input space X and labels Y are both
{−1, 1}, with uniform distribution over Z = X × Y.
The loss function is `(y, h(x)) = h(x), i.e., it is inde-
pendent of y. (While having negative loss may be non-
standard, it greatly simplifies notation, and changing
the loss function to `(y, h(x)) = h(x) + c for any con-
stant c would not change the obtained results.)

For b ∈ {±1}, let hb(x) = b · x. The expected loss of
hb is

¯̀
hb

= E
(x,y)

[`hb
((x, y))]

= E
(x,y)

[`(y, hb(x))] = E
(x,y)

[b · x] = 0. (1)

For every t ∈ Z and set S = {(x1, y1), . . . , (xt, yt)} ⊆
(X×Y)t, define ‖S‖ =

∑
i≤t xi. For a function f : Z→

{−1, 1} to be defined later we consider the algorithm
A(S) that returns the hypothesis hf(‖S‖). Observe
that (1) implies the unbiased loss `′A(S)(z) = `A(S)(z)
for all S.

We start by computing varU (disc1) and
covU (disc1, disc2) = EU [disc1 · disc2]. By
Lemma 3, the definition of `′, and the fact

1A learning algorithm is A is (β, δ)-weak-error stable
w.r.t. ` if PrS,z′(|¯̀A(S) − ¯̀

A(Sz′ )| ≤ β) ≥ 1− δ.

f(·) ∈ {−1, 1},

var
U

(disc1) =
1

n
E
S,T2

[var
(x,y)

(`′S∪T2
(x, y) | S, T2)]

=
1

n
E
S,T2

[var
x

(f(‖S‖+ ‖T2‖) · x | S, T2)]

=
1

n
.

We now proceed with covU (disc1, disc2). In the fol-
lowing we write fS,T,x as a shorthand for f(‖S‖+‖T‖+
x). By Lemma 5 and the definition of `′, we have

cov
U

(disc1, disc2)

= E
S,T1,T2,x1,x2,x′

1,x
′
2

[x2(fS,T1,x1
− fS,T1,x′

1
)

· x1(fS,T2,x2 − fS,T2,x′
2
)]

= E
S

[ E
T1,x1,x′

1

[x1(fS,T1,x1
− fS,T1,x′

1
)]

· E
T2,x2,x′

2

[x2(fS,T2,x2
− fS,T2,x′

2
)]]

= E
S

[( E
T1,x,x′

[x(fS,T1,x − fS,T1,x′)])2]

=
1

2
· E
S

[(E
T1

[fS,T1,1 − fS,T1,−1])2],

where the last step follows as x, x′ ∈ {1,−1}.

Thus to create a setting where cross-validation per-
forms poorly we need to find a function f that maxi-
mizes ES [(ET1 [fS,T1,1 − fS,T1,−1])2]. We now describe
such a function f . In fact we will describe a family
of functions, with one function f for every choice of a
parameter 10

√
n ≤ t ≤

√
n(k − 2)/2 in order to allow

for different values of loss stability for A.

f(x) =

 −1, if x ≥ 0 and bxt c is even,
1, if x ≥ 0 and bxt c is odd,

−f(−x), if x < 0.

The function f is a step-wise function: we will call x
a step of f if f(x) 6= f(x− 1).

We now proceed with computing the covariance. De-
note by s the size of the overlapping training set,
s = |S| = (k − 2)n. We say that the set S is active if
the following two properties are satisfied. (a) −

√
s ≤

‖S‖ ≤
√
s, and (b) ‖S‖ mod t ∈ {0, 1, . . . ,

√
n

2 }.
Since ‖S‖ =

∑
(x,y)∈S x where the x′s are uniform

in {−1, 1}, we can interpret ‖S‖ as a one-dimensional
unbiased random walk of length s. The following facts
are known for a random walk W of length n starting
at zero2:

2Such bounds can be easily derived by approximating
the distribution of W by a (shifted) binomial distribution
which in turn can be approximated by the normal distri-
bution.
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1. Pr [W = 0] ≥ 1√
n

.

2. For every −
√
n ≤ i ≤

√
n with the same parity as

n, 1
3 ≤

Pr[W=i]
Pr[W=0] ≤ 1.

3. Pr [−
√
n ≤W ≤

√
n] ≥ 1

2 .

4. For i ≥ 0, Pr[|W | = i+
√
n] ≤ 1

e Pr[|W | = i].

Let AS be the event that S is active. For 4
√
n ≤ t ≤√

s
2 , the number of values for ‖S‖ that make S active is

at least (b 2
√
s
t c − 1)

√
n

2 ≥
√
sn

2t . Thus, using properties
2–3 above,

Pr[AS ] ≥
√
sn

2t
· 1

2
√
s
· 1

3
≥
√
n

12t
.

We will derive a bound for the covariance by simply
considering the case in which S is active.

cov
U

(disc1, disc2)

≥ E
S

[(E
T1

[fS,T1,1 − fS,T1,−1 | AS ])2] · Pr[AS ]. (2)

Observe that fS,T1,1 − fS,T1,−1 ∈ {2,−2} when ‖S‖+
‖T‖ lands on a step of f , i.e., when ‖S‖ + ‖T‖ ∈
{x∗, x∗ + 1} where x∗ is a step3, and zero otherwise.
For a specific S, let x∗0, x

∗
1, . . . be the steps of f sorted

by the distance to ‖S‖. Let EjS(T1) be the event that,
conditioned on S, T1 is such that ‖S‖ + ‖T1‖ lands
on the jth step from ‖S‖. Recall that ‖T1‖ is dis-
tributed as a random walk of length n. When S is
active, the zeroth step is at distance at most

√
n from

‖S‖ and therefore properties 1 and 2 above imply that
PrT1(E0

S [T1] | AS) ≥ 1
3
√
n

. For j ≥ 1 and S active,

the distances of x∗2j−1 and x∗2j to ‖S‖ are at least

(t−
√
n

2 )+(j−1)t ≥ 7
2j
√
n as t ≥ 4

√
n. Thus, property

4 yields Pr[E2j−1
S [T1] | AS ] ≤ exp(−7j/2)√

n
and similarly

for Pr[E2j
S [T1] | AS ]. We can conclude∣∣∣ E
T1

[fS,T1,1 − fS,T1,−1 | AS ]
∣∣∣

≥ 2 Pr
T1

[E0
S [T1]]−

∣∣∣2∑
j≥1

Pr
T1

[EjS [T1]]
∣∣∣

≥ 2√
n

1

3
− 2

∑
j≥1

e−7j/2

 .

Simple algebra now gives |ET1
[fS,T1,1 − fS,T1,−1]| ≥

1
2
√
n

. Combining this with (2) and the bound on

Pr[AS ], we have covU (disc1, disc2) ≥
√
n

12t ·
(

1
2
√
n

)2

≥

3Note that only one of {x∗, x∗ + 1} is obtainable by
‖S‖+ ‖T‖ because of parity.

1
48t
√
n
. The bound on varU (disccv) now follows by

Lemma 4.

It remains to analyze the loss stability and the weak
error stability of the algorithm. Since both hypothe-
ses output by the algorithm have expected loss 0, the
algorithm is (0, 0)-weak error stable. Finally,

ls(A) = E
T,z′,x

[(
`′A(T )(x)− `′A(T z′ )

(x)
)2
]

= E
T,z,z′,x

[(
`A(T )(x)− `A(T z′ )(x)

)2
]
.

Inserting the definition for the loss function yields

ls(A) = E
T,z,z′,x

[
(f(‖T‖) · x− f(‖T‖ − z + z′) · x)

2
]

= E
T,z,z′

[
(f(‖T‖)− f(‖T‖ − z + z′))

2
]

≤ 2 · Pr
T

[f(‖T‖) 6= f(‖T‖+ 2)] ≤ 2√
s

+
2

t
.

7. Near-optimality

In this section we show that the bound derived in The-
orem 1 is nearly tight. We begin with a discussion
of our main result and then show a specific instance
where it cannot be improved by more than a factor of
3/2.

Theorem 1 shows that the reduction in the variance
of the discrepancy is bounded by the loss stability of
the learning algorithm. In fact, the reduction in error
depends on how the variance of an average training set
on a single training example compares in magnitude to
the variance due to a change in a single training exam-
ple on an ‘average’ training set. To see this, observe
that using Lemma 1 and Lemma 3 we can rewrite the
statement of our main theorem as

var
U

(disccv) ≤
1

k
var
U

(disc1) +
k − 1

k
γ

=
1

kn
E
S,T

[var
z

(`′S∪T (z))] +
2(k − 1)

k
E

S,T,z
[var
z′

(`′
S∪T z′ (z))]

=
1 + ρ

k
var
U

(disc1),

where

ρ = 2n(k − 1)
ES,T,z[varz′(`

′
S∪T z′ (z))]

ES,T [varz(`′S∪T (z))]
,

is the exchange ratio. Thus the lower the exchange
ratio of a learning algorithm, the higher the reduction
due to cross-validation.
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Regression. We begin by considering the case of re-
gression under squared loss and show that for the em-
pirical risk minimization algorithm, ρ = 2, and there-
fore k-fold cross-validation achieves a k/3 reduction in
the variance of the discrepancy.

Suppose the examples are drawn from a one-
dimensional distribution and we are interested in pre-
dicting the mean. We will consider the setting of a
squared-loss function. Specifically, suppose that the
examples are drawn from a distribution Dx with mean
µ and variance σ2. Let hT be the hypothesis output by
the algorithm A trained on T . The loss of a hypothesis
on an example x is then `A(T )(x) = (hT − x)2.

We begin by computing the unbiased loss,

`′T (x) = `T (x)− ¯̀
T (x) = (x− hT )2 − E

x
[x− hT ]2

= x2 − 2hT (x− µ)− E
x

[x2].

We can now proceed with computing ρ. For the nu-
merator,

E
T,x

[var
z′

(`′
T z′ (x))]

= E
T,x

[var
z′

(x2 − 2(x− µ)hT z′ − E
x

[x2])]

= E
T,x

[4(x− µ)2 var
z′

(hT z′ )]

= 4σ2 E
T

[var
z′

(hT z′ )].

For the denominator, we have

E
T

[var
x

(`′T (x))]

= E
T

[var
x

(x2 − 2hTx)]

= E
T

[var
x

(x2) + 4h2
T var

x
(x)− 4hT cov

x
(x, x2)]

=
(
var
x

(x2) + 4 var
x

(x)(E
T

[hT ])2 − 4 cov
x

(x, x2) E
T

[hT ]
)

+ 4 var
x

(x) var
T

(hT ).

We claim that the first term is non-negative which will
imply that

E
T

[var
x

(`′T (x))] ≥ 4σ2 var
T

(hT ).

To prove the claim, define g(z) = varx(x2) +
4 varx(x)z2 − 4 covx(x, x2)z.

We have that g′(z) = 0 if and only if z = z∗ =
covx(x, x2)/(2 varx(x)) and g′′(z) = 8 varx(x) > 0.
Hence, it is enough that g(z∗) is non-negative. We
have

g(z∗) = var
x

(x2) +
(covx(x, x2))2

varx(x)
− 2(covx(x, x2))2

varx(x)

= var
x

(x2)− (covx(x, x2))2

varx(x)
≥ 0,

where the last step follows by the well-known fact that
cov(X,Y ) ≤

√
var(X) · var(Y ), for any two random

variables X and Y .

Therefore, the exchange ratio, ρ is bounded by:

ρ ≤ 2n(k − 1)
ET [varz′(hT z′ )]

varT (hT )
. (3)

Consider the bound in Equation 3. For algorithms
where the effect of a single training example on the hy-
pothesis is independent of the rest of the training set,
we expect that the variance of the hypothesis when
replacing a single sample in the training set T is a fac-
tor |T | = n(k − 1) smaller than the variance of the
hypothesis over the whole training set. This results
in ρ = 2. For instance, in case of empirical risk min-
imization (ERM) algorithm that given a training set
T returns hypothesis A(T ) = hT = 1

|T |
∑
x∈T x, it is

easy to check that:

E
T

[var
z′

(hT z′ )] =
σ2

n2(k − 1)2
, and var

T
(hT ) =

σ2

n(k − 1)
,

which give ρ = 2. Hence, cross-validation achieves
a k/3 reduction in the variance of the discrepancy.
On the other hand, an algorithm that considers more
interactions between training examples will have a
higher value of ρ.

Lower bound. We now show that the bound in The-
orem 1 is nearly optimal.

Theorem 3. There exists a loss function ` and
a γ-loss stable learning algorithm A such that
covU (disc1, disc2) ≥ γ/2. Hence,

var
U

(disccv) ≥
1

k
var
U

(disc1) +

(
1− 1

k

)
γ

2
.

Proof. Consider again the setting of estimating the
mean of a distribution using the ERM algorithm with
squared-loss function, and assume µ = 0. Due to sym-
metry, we again focus on the covariance between the
first two folds. First we write down the discrepancies.

disc1 = `hS∪T1
(T2)− E

T
[`hS∪T2

(T )]

=
1

n

∑
y∈T2

(
(y2 − 2yhS∪T1 + h2

S∪T1
)

− E
y

[y2 − 2yhS∪T1
+ h2

S∪T1
]

)

=
1

n

∑
y∈T2

y2 − 2hT2
hS∪T1

− σ2.
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Similarly, disc2 = 1
n

∑
y∈T1

y2 − 2hT1
hS∪T2

− σ2. By
the law of total covariance (Kale et al., 2011):

cov
U

(disc1, disc2) = E
S,T1

[
cov
T2

(disc1, disc2 | S, T1)

]
.

We are concerned with the covariance over the fold T2,
and therefore can drop terms independent of T2:

cov
T2

(disc1, disc2 | S, T1)

= cov
T2

(
1

n

∑
y∈T2

y2 − 2hS∪T1hT2 ,−2hS∪T2hT1)

= 4hS∪T1
hT1

cov
T2

(hT2
, hS∪T2

)

− 2hT1

n
cov
T2

(
∑
y∈T2

y2, hS∪T2
).

Since hS∪T1
=

(n(k−2)hS+nhT1)
n(k−1) , we have

cov
T2

(hT2
, hS∪T2

) = cov
T2

(hT2
,

1

k − 1
hT2

)

=
1

k − 1
var
T2

(hT2
) =

σ2

n(k − 1)
.

Therefore, the first term of the covariance is:

4σ2

n(k − 1)
E
S,T1

[hS∪T1
hT1

]

=
4σ2

n(k − 1)
E
S,T1

[
1

n(k − 1)
(n(k − 2)hS + nhT1

)hT1

]
=

4σ4

n2(k − 1)2
.

To bound the second term, we want to compute:

E
S,T1

2hT1

n
cov
T2

(
∑
y∈T2

y2, hS∪T2)

 .
Note that the covariance is independent of T1, there-
fore, we can rewrite as

E
T1

[hT1
] E
S

 2

n
cov
T2

(
∑
y∈T2

y2, hS∪T2
)

 = 0.

Therefore, covU (disc1, disc2) = 4σ4

n2(k−1)2 . On the

other hand, Lemma 1 implies that the loss stability of

the algorithm is γ = 8σ4

n2(k−1)2 .

8. Noisy setting

In previous work Kale et al. (Kale et al., 2011) consid-
ered the noisy setting, where every label is corrupted
with a small probability. We recall their definition be-
low:

Definition 3. An instance of the cross-validation
problem composed of the algorithm A, the loss
function `, and the distribution D is δ-volatile, if

varU (disc1) ≥ Ω(δ)
n .

They showed that O(1/m)-uniform stable algorithms
achieve optimal variance reduction of 1/k. However,
uniform stability is a very strong assumption and many
algorithms such as t-nearest neighbor learning rules do
not have non-trivial uniform stability but have small
(O(
√
t/m), O(

√
t/m))-weak L1 stability (Devroye &

Wagner, 1979). This setting of weak L1 stability im-
plies that these algorithms are O(1/m)-mean square
stable, and thus by Lemma 2, are O(1/m)-loss stable.

The following Lemma is immediate and allows us to
conclude that these learning algorithms achieve a near-
optimal variance reduction.

Lemma 6. In an Ω(1)-volatile setting, a learning
algorithm A that is either (O(1/m), O(1/m))-weak-
hypothesis or weak-L1 stable has:

var
U

(disccv) ≤
O(1)

k
var
U

(disc1).

9. Conclusions

We studied the decrease in the variance of cross-
validation through the lens of a new algorithmic stabil-
ity notion, namely, the loss stability. We also showed
that this is a near-tight connection. It will be interest-
ing to empirically compute the loss stability of popular
learning algorithms such as decision trees and SVM,
for which an analysis similar to the one in Section 7
seems daunting.
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