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Abstract

Monte Carlo tree search (MCTS) is a sampling and simulation based technique for searching
in large search spaces containing both decision nodes and probabilistic events. This tech-
nique has recently become popular due to its successful application to games, e.g. Poker
Van den Broeck et al. (2009) and Go Coulom (2006); Chaslot et al. (2006); Gelly and
Silver (2012)). Such games have known rules and the alternation between self-moves and
non-deterministic events or opponent moves can be used to prune uninteresting branches.
In this paper we study a real-world setting where the processes in the domain have a high
degree of uncertainty and the need for longer-term planning implies a sequence of (plan-
ning) decisions without any intermediate feedback. Fortunately, unlike the combinatorial
complexity in strategic games, many real-world environments can be approximated by effi-
cient algorithms on a short term. This paper proposes an MCTS variant using a new type
of prior information based on estimating the effects of part of the world and explores its
application to the problem of hospital planning, where machine learning algorithms can
be used to predict the length of stay of patients for each of the different stages of their
recovery.
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1. Introduction

Monte Carlo Tree Search (MCTS) is a best-first search technique that was first introduced in
the domain of game playing. In this context, MCTS uses stochastic playouts (simulations)
and their associated outcomes to estimate the expected long-term result of a given move.
Instead of spending an equal amount of time on each possible move, MCTS focuses on the
most promising moves.

The success of MCTS in solving complex games suggests that it may also have a broader
applicability. Real-world domains, however, often differ on a number of points with the
typical strategic game environment. First, typical for games such as Go is that moves
are played in turn: each move is immediately followed by an opponent’s. This reveals for
many actions their consequences early in the search. Pruning actions which turn out to be
suboptimal early allows for focussing on the few remaining candidates which are competitive
in the short run. For many problems, however, this does not hold. Consider, e.g., a problem
where a number of decisions has to be made at once, without any intermediate feedback
from the system. The larger the number of sequential decisions, the less feedback one
receives and the less one can prune the search.

Second, unlike many strategic games with combinatorial search spaces, real-world en-
vironments often allow for approximate models which are accurate on a short term and
can be searched efficiently. In such cases, it may be possible to combine an efficient and
accurate local optimization with an MCTS based global search.

Third, while in games the rules are known, in a real-world environment the dynamics
may be unknown. Often, an approximate model of the environment dynamics can be
learned from training examples. However, one must take into account that the accuracy of
the learned model may heavily influence the quality of a strategy based on simulating that
model, such as MCTS.

In this paper, we study the application of MCTS for planning in such a real-world
domain. Our contribution is two-fold. First, we propose a planning algorithm that combines
a local model and global Monte Carlo tree search. Second, we apply this algorithm to the
case of hospital planning where we perform an extensive experimental analysis.

The remainder of this paper is structured as follows. In section 2 we formulate the
general problem, to which a solution is proposed in section 3. The details of the hospital
planning problem are introduced in section 4 and experiments and results considering this
case are discussed in section 5. Finally, in section 6, we conclude.

2. Problem formulation

We will consider environments where objects come in, are processed and then outputted.
Generally speaking, the goal is to process as many objects as possible while completing
every accepted object/task and ensuring all of these follow a high-quality trajectory. One
example is a company accepting projects requested by customers: accepting more projects
and realizing them yields a higher reward, but committing to too many projects carries the
risk that one or more of the projects exceeds the capacity of the company, which may result
in penalties. Another example, which we will study in detail in this paper, is a hospital
accepting patients for surgery. Treating a larger number of patients yields a higher reward
but failing to give patients the care they need may cause significant damage.
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More formally, a partially observable Markov decision problem (POMDP) P is a tuple
P = (S,A,7,0,R) where S is a set of states, A is a set of actions, 7: S x A x S — [0,1]
is a transition function (giving the probability 7(s1, a, s2) to reach state so after executing
action a in state s1), O : S x A — O is an observation function mapping state-action pairs
on observations in some space O and R : S x A — R is a reward function assigning to
every state-action pair a reward. In our setting, we will denote the POMDP describing the
behavior of objects (company project or patient) with Pyy; = (Sobjs Aobjs Tobjs Oobjyr Robj)-

We consider applications where quitting a previously accepted object/task is not accept-
able. Therefore, in case of insufficient capacity to process the object additional expenses
must be made. E.g. when a company commits to a critical project it must be followed up,
even if this requires additional personnel or equipment. Similarly, once admitted, a patient
must be treated even if this implies cancellation of other planned admissions.

In order to define such problems more formally, we will first introduce some notations.
For a set X, X" is the set of all n-tuples of elements of X. We use some common string-
notations, in particular X* = U;enX* and for x € X™, we denote with x(i) the i-th element
of z. We denote with |x| the length of z. For x € X* and z € X, we denote with freq(z,x)
the number of ¢ for which z(i) = z. For x,y € X*, we write z C y if for every z € X we
have freq(z,z) < freq(z,vy).

We define a Critical Project Planning Problem (CPPP) as a tuple Poppp = (P, S5, 57, L)
where Sg C Sy is a set of beginning states, ST C Sy; is a set of terminal states and
L : AZb] — {0,1} is a function representing capacity limits. Given a tuple A of actions
to perform on objects, L(A) is 1 if it is possible to perform these actions simultaneously,
else L(A) = 0. Naturally, L is anti-monotonic in the sense that if A C A" and L(A) = 0
then L(A") = 0. To a CPPP there corresponds a global POMDP P, = (S, Ay, 74, Og7 Ry)
where S, = S;‘ . is the set of all tuples of object states of Sobj and likewise A, = A}, .. Let
s € S and a € Ay. If |s| = |a| and L(a) = 1, 74(s,a) = Hl 1 Tobj (8(4), a(t)), Rg(s,a) =
Z Ropj(s,a) and Oy(s,a) is a string of length |s| such that for all i, Oy(s,a)(i) =
O(s(z’),a(i)). Else (|s| # |a| or L(a) = 0), 74(s,a,s’) = d(s,s’) (the Kronecker delta),
Oy(s,a) =0 and Ry(s,a) = —oo.

We assume a CPPP starts in a state s which is a tuple with for each object a beginning
state s(i) € Sg, and that for s € S, Topj(s,a,s’) = (s, s") and Rppj(s,a) = 0. A terminal
state of P, is an s € S, with s(i) € Sy for all i < |s|. The idea of the resource limit
function L is not that a disaster possibly occurs by receiving a reward —oo, but that when
a particular type of resources would become exhausted a more expensive emergency resource
of the same type would be used (e.g. for company projects hiring temporary personnel).
We assume that once an object is accepted (its state is no longer in Sg), it must always
get the appropriate care (even if expensive) and hence assume that for any s and s’ with
s & 8, Topj(s,a,s") does not depend on a.

3. Monte Carlo Tree Search

MCTS was first introduced in 2006 in three variants Coulom (2006); Kocsis and Szepesvari
(2006); Chaslot et al. (2006). In general, MCTS is a technique for finding optimal decisions
through a guided process of simulations. This process constructs an asymmetric tree in an
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incremental manner. Each node of the tree represents a state of the system and has a visit
count associated with it, as well as an expected outcome.

A simulation starts at the root of tree and continues by sequentially selecting child nodes
until a terminal node is reached. The selection strategy tries to balance exploitation and
exploration of the tree, favoring scarcely visited nodes on the one hand, and nodes which are
likely to yield better outcomes on the other. The most frequently used selection strategy is
UCT Kocsis and Szepesvari (2006) (Upper bound Confidence for Trees), an adapted version
of UCB Auer et al. (2002) (Upper Confidence Bounds).

Once a terminal node of the tree is selected, it is then expanded by generating and
adding one or more of its children to the tree. Starting from these child nodes, simulation
then continues until conclusion. The simulation strategy can either be fully at random, or
based on prior information or heuristics. The latter strategy might exclude certain decisions,
whereas the former might contain nonsensical decisions. The outcomes of these simulations
are then backpropagated throughout the tree and the corresponding statistics are updated.
This full process is illustrated in Fig. 1.

Selection Expansion Simulation Backpropagation

Lo RLOR
5 |

Figure 1: A general overview of the different steps of the MCTS algorithm.

While the basic algorithm has proven effective for a wide range of problems Browne
et al. (2012), the full benefit of MCTS is typically not realized until this basic algorithm is
adapted to suit the domain at hand. In the case of game playing, a lot of effort has gone
into optimizing efficiency. Techniques such as progressive widening Coulom (2007) and
progressive unpruning Chaslot et al. (2008) help control the size of the search space, while
other techniques such as RAVE Gelly and Silver (2007) (Rapid Action Value Estimation)
aim at actively reducing computing time.

In this paper too we use domain knowledge to guide MCTS, but our setting and use
of action value estimates is significantly different from the one in Gelly and Silver (2007).
In particular, we only have a model for the near future (rather than an estimate of the
total expected future reward), our application is very different from the game of Go and
(as a consequence) we can’t use any of the optimisations such as “all moves as first” and
a — B-pruning used in Gelly and Silver (2007).

Another work related to ours is Runarsson et al. (2012), which applies MCTS to job
shop scheduling. An important difference with our setting (which we’ll explain in the next
section) is that in our case the nature of jobs (sequence of states patients have to pass) and
their duration (the length of stay of patients) is not known before scheduling them.
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MCTS for CPPPs Here, we define two types of nodes: action nodes where decisions
are made (e.g. calling patients, reserving resources) and probabilistic nodes where events
happen according to some probability distribution (e.g. patient recovery, discharge). The
MCTS algorithm iteratively performs a simulation of actions taken and probabilistic events
happening. The probabilistic nodes do not always produce the same event (as these are
uncertain at the time of planning), and iterating over them gives better estimates.

The MCTS algorithm consists of the following four steps, which are performed until
time runs out:

1. Selection: During the selection step, a node is selected by traversing the MCTS tree
from the root node onwards until some stopping criterion is satisfied. In general, this
procedure only stops upon reaching a leaf node of the tree. However, internal proba-
bilistic nodes can also end up being selected if their underlying probability distribution
has not yet been sufficiently sampled.

Which child node exactly is picked when traversing the tree depends on the type of
nodes. In the case of probabilistic nodes, the probability of picking one is proportional
to the probability of it occurring. In the case of action nodes, a node k is selected
according to the UCT formula:

Inwve
= argmaz;cy (Qm +C n) .
Vep,
Here, @y, is the expected reward of the i-th child node, vc, and vec,, the number
of visits to the parent and i-th child node respectively, and C' a constant factor that
represents the trade-off between exploration and exploitation.

2. Expansion: In this step, the previously selected node is expanded. This expansion
step depends on the type of child nodes. In the case of probabilistic nodes, a single
new child node is generated and added to the MCTS tree. In the case of action nodes,
all actions which make sense (don’t give a reward of —oo) are added as new child
nodes.

3. Simulation: Starting at each of the newly added nodes, simulations of the POMDP
are performed. During this process, probabilistic events are sampled according to
their assumed probability distribution and actions are sampled according to a fixed
distribution. At the end, the total reward is recorded.

4. Backpropagation: The reward is then backpropagated up the tree to the root,
starting at the newly added leaf node, according to the following procedure. If the
current node is a probabilistic node, its parent’s score becomes the mean of all of
its children. If the current node is an action node, its parent’s score becomes the
maximum of all of its children. This process is repeated until the root node is reached.

Once time has run out, (one of) the action(s) at the root which was used often during
the MCTS search is selected and performed in the actual real-world problem. When at a
later time a new decision has to be made, a new MCTS search is performed starting from
the new state.
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Priors When domain knowledge is available, it is possible to initialize node statistics
(visit count and total reward received) with a prior estimate of the expected reward (see
e.g. Gelly and Silver (2007)), such that the sampling converges faster.

In many applications, getting an estimate of the long-term reward is hard, while es-
timating the expected short-term evolution is feasible. In our case, we assume that for
s € Sopj \ Sg and a € Agy; such that Ry (s,a) > —00, Tey;(s, a, s’) is independent of a.
Hence, once objects are not in a beginning state any more, we can learn and simulate
a model for their evolution independently of the actions taken. This allows us to predict
which resources will be occupied in the near future and how much cost/reward the currently
accepted objects will have generated.

In particular, suppose that, using a model, we can estimate (or simulate) the total
reward Rg.. generated by the set of objects already accepted up to some node n, assuming
no further objects will be accepted in future. Let a node n of the MCTS tree have k children
ni, ng, ..., ng. We can write the total expected reward @), following the path through
n; as Qn, = Q7 + Qp¢” where Q¢ is the additional reward generated by accepting new
objects after node n;. While it is in many cases feasible to estimate Q7% it is often very
hard to assess what additional reward the objects not yet accepted could bring. They may
disappear (a project will be performed by another company, a patient dies or is treated at
another hospital), and optimal timing of their acceptance is combinatorially hard. We will
therefore adopt the following procedure to add our prior knowledge to the statistics of an
MCTS node. Let for node n; the number of visits to the node be vcy,; and let the sum of
the total rewards collected during these ve,,; visits be foim. Then, for our prior we use the
same reward generated by not-yet-accepted objects for all children of n, i.e. we estimate

Aggﬁ) dn) = z SF (folm Jven, — Q%fc> where Qfﬁc is the prior knowledge based estimation

of Q7. As prior for the total reward of node n; we use Q%wr = Qp + Q?ﬁ;’l’ d(n)° Then,
as is common, we consider as estimated reward for node n; the combination of prior and
samples Qn, = (Cprior Qb + Q") /(Coprior + ven,) where Cprior is a constant giving the
relative importance of the prior.

4. Hospital planning

In a hospital, scheduling patients for elective cardiac surgery is a challenging task that
involves the assignment of several of the hospital’s resources. In order to guarantee an
optimal throughput of patients, it is essential that these resources are used in an optimal
manner.

Once patients are admitted to the hospital, all resources for treatment and stay must
be available. Some resources should be reserved in advance, and hence it is necessary to
make a schedule. Unlike standard job shop scheduling, this resource reservation is not a
very combinatorial problem. Here, the main challenge is the fact that it is unknown how
patients, as well as the availability of resources, will evolve over time.

First, we will discuss our implementation of a virtual cardiac surgery unit in Section 4.1.
Next, we will discuss length of stay prediction, which is used to estimate the distribution
of probabilistic events, in Section 4.2.
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4.1. Virtual cardiac surgical unit

We have built a virtual cardiac surgical unit which allows us to simulate the dynamics of its
real counterpart in a realistic (albeit somewhat simplified) manner. A patient can be in one
of the states Spqt = {healthy, waiting list, called, ward, surgery, ICU, discharged,
deceased}. Here, being healthy or being on the waiting list (waiting list) are beginning
states, and being discharged after treatment (discharged) or having deceased (deceased)
are terminal states. The possible transitions are illustrated in Fig. 2. Initially, when a

Healthy

Figure 2: Flowchart summarizing the different possible patient flows.

formerly healthy patient requires elective cardiac surgery, he is added to a waiting list.
Each week, a number of patients is selected from this list and scheduled to undergo surgery
the following week. These patients are notified of the schedule and the necessary resources
are reserved. Upon their arrival patients are admitted to the ward, unless no bed is available,
in which case they are sent back home. After undergoing surgery, recovering patients require
a bed at the intensive care unit (ICU). However, if no such bed can be guaranteed, surgery
is postponed and the patient is sent home. Once a patient has sufficiently recovered, he
is transferred to the ward. A patient usually remains here until he can be discharged.
However, when complications arise, the patient might require additional ICU care followed
by additional care at the ward. In some cases, when complications are particularly severe,
the patient might not survive surgery or the following stay.

In practice, both ICU and ward can ’overflow’ due to several reasons. There is not
always a completely deterministic procedure to decide on priority. For instance, if surgery
is initiated and a patient from the ward must go back to the ICU, the ICU accepts one
patient more than its normal capacity for cardiac surgery. On the other hand, if first the
patient moves from the ward to the ICU and then a scheduled patient arrives, he is sent
back home. To avoid such non-deterministic behavior in our virtual hospital the ICU always
accepts patients, but a significant additional cost is incurred when the ICU overflows. In
particular, patients are not sent home but get an expensive ’overflow’ bed. Similarly, a
full ward may lead to arriving patients being sent home, patients staying at ICU rather
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than moving or the ward accepting more patients than its normal capacity. Again, in our
simulation we model this with expensive overflow beds.

The actions one can perform on a patient in the waiting list are no-action and call.
For a patient needing a bed in the ICU, actions in_icu and overflow_icu are possible. For
a patient needing a bed on the ward, actions are on_ward and overflow_ward. Clearly, for
patients which are healthy, discharged or deceased only no-action is possible.

The two major categories of costs in our virtual hospital are beds not being used for
cardiac surgery patients (in practice they won’t be empty, but such beds slow down the
cardiac surgery program), and patients who must be put on overflow rather than regular
beds. In our simulation, for a bed not used for a cardiac surgery patient we use a cost
(negative reward) of 0.16 per day. For a patient in an overflow bed, we use a cost of 5 per
day.

4.2. Predicting LOS

Previously, we have shown Meyfroidt et al. (2011); Ramon et al. (2007) that it is feasible to
predict a patient’s length of stay (LOS) after cardiac surgery accurately using data (physi-
ological information, laboratory results, administered treatments, ...) collected during the
first few hours of his stay in the ICU. Using these data sources, a Gaussian Process (GP)
model Rasmussen and Williams (2005) was learned. The accuracy of the resulting model
was validated against that of a general scoring model EuroSCORE Nashef et al. (1999),
nurses and physicians. The GP model was shown to be able to outperform nurses and
EuroSCORE on this specific prediction task, but was found to be equivalent to physicians.
However, in contrast to physicians, who are often too busy, the model is capable of making
predictions for all patients at an earlier point in time. It seems plausible that one can also
predict LOS at the ward (where patients go after their ICU stay) based on the data col-
lected during the ICU stay, though we are not aware of such a study. Several studies have
considered the dependency of length of stay and survival Nashef et al. (1999); Toumpoulis
et al. (2005) on pre-admission examination results. In conclusion, it is realistic to assume
that one can build models predicting at any point in time reasonably accurately the stay
and progress of a patient in the near future.

Unfortunately it was not possible to directly incorporate LOS predictors in this research
due to an insufficient amount of patient data. More precisely, information regarding physi-
ological parameters and administered treatments was not available for patients during their
ward stay. In order to overcome this, we use simulated LOS predictors that have the same
properties as regular predictors.

Fig. 3 and 4 respectively show the distribution of the length of stay in ICU and ward for
a population of virtual patients of the university hospitals (see Section 5 for details). These
distributions can be approximated quite well with Poisson distributions. This motivates us
to model LOS predictors as functions outputting Poisson distributions. If no information
is available, they output the Poisson distribution fitted to the complete population. If a
predictor is more accurate, it outputs for every patient a more narrow Poisson distribution.

More precisely, we assume that in order to go through a particular stage of his stay (ICU
or ward), a patient must pass a number of steps z. The average number of steps taken per
unit of time is 1/7Ts. In order to simulate the progress of a patient (and the assessment which
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Figure 3: Histogram of ICU LOS. Figure 4: Histogram of ward LOS.

can be made during the stay of a patient), a predictor performs the following steps. First,
from the actually recorded LOS L (which is hidden to (not yet known by) the planner until
discharge) the predictor samples a number of steps z the patient had to progress during
that stay according to P(z|L) = % and randomly distributes z events of “taking
one step” over the time interval of length L. Then, whenever a prediction is needed, the
predictor looks (in the list of step events generated above) how many steps 2’ the patient
still has to take between now and his moving away from the current hospital department
(ICU or ward), and returns a probability distribution P(L’|z’) indicating the probability
that taking 2’ steps takes L’ time.

Using this way of modeling has several advantages. First, the prediction may be initially
far off but will evolve to the correct LOS as time progresses (which corresponds to reality).
Second, the predictor returns a Poisson distribution as its prediction, which approximates
well the uncertainty of a real LOS predictor. Third, we can vary the parameter Ts. Smaller
T values will give more accurate predictors. We will call T the accuracy of the predictor.

We can then compute the probability distribution over the total expected reward for
every day d caused by the already accepted patients. For this, we use a dynamic program-
ming strategy computing for every d, sjoy and syqrq the probability that on day d exactly
srcu ICU beds and syqrg ward beds will be needed. Summing over all costs, weighted by
the probability of occurring them, gives the desired Q% estimate.

5. Experiments

In this section we discuss the various experiments. The concrete experimental setup is
introduced in section 5.1. Results are presented in section 5.2 and discussed in section 5.3.

5.1. Experimental setup

A virtual patient pool was created, consisting of 400 virtual adult cardiac surgery patients.
The properties of these virtual patients were selected from an anonimized administrative
database of all patients undergoing elective cardiac surgery at the university hospitals be-
tween October 2010 and November 2011, and for whom sufficient data was available.
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Table 1: Results for fixed planning, where each day a fixed number of patients is admitted.

Fixed planning

#admitted | c;cu  Cward  Cunused  Ctot  trun (3)
1 0 0 29360 4697 72
0 12191 1950 35
0 6476 1036 24
0 3607 577 18
35 1897 478 15
351 801 1918 13

S O = W N
N O O O O

Being able to accurately determine the flow of each individual virtual patient is impor-
tant for this study to be realistic. In order to do this, the ICU LOS and ward LOS of each of
the selected patients was retrieved. In our dataset, the median stay of a patient at the ICU
was 2 days. At the ward, the mean LOS counted 8 days. 385 of the 400 selected patients
had a stay without complications: after surgery they went straight from ICU to ward and
were discharged afterwards. 7 patients, on the other hand, required additional ICU care
after their stay at the ward. 8 patients died due to complications.

This information allows us to simulate a cardiac surgical unit as described in Section
4.1. The virtual unit we use in our experiments consists of 22 ICU beds, 40 ward beds
and 3 operating rooms. 3 surgeons perform surgery up to 2 times a day. These numbers
(except for a simplification regarding surgeons) are identical to the clinical practice at the
university hospitals. In each experiment, the hospital must admit and treat all patients
in the database. Every week starts with planning on each day the number of patients to
admit. After these 5 action nodes, the 5 days of the week with surgery and the 2 weekend
days without surgery are simulated. This cycle is repeated until all patients are discharged.

Table 2: MCTS results for varying number of iterations, without prior knowledge, using
predictors with Ts = 1.

No prior, Ts =1
iter ‘ Ccicu Cward Cunused Ctot trun(S)
300 |00 21+£30 2940+49 577+£111 344 + 15
1000 |00 29+14 2125465 485 £ 94 1290 £ 133
3000 | 0£0 37£22 17664369 469 +122 3627 £ 256
10000 | O£0 43+19 1345451 4324134 1153241072
30000 | 00 37+£19 1000£60 345+142 34665 + 3344

In our simulation experiments, we focus on the following three questions:
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Table 3: MCTS results for varying accuracies, without prior knowledge, using 10000 itera-
tions per decision.

No prior, iter = 10000

T CIcu Cward Cunused Ctot trun (S)

03]0£0 b54+4 1876+39 325453 14898 £ 309
07100 17+9 1614+41 344+74 13677+ 1357
0+0 43419 1345+51 4324134 1153241072
3+£3 204+£16 2358 £28 490 £ 82 10128 4+ 290
00 2&£5 330794 54076 11106 £ 593
0+£0 04+0 6129+64 981+64 14056 4+ 1378
0+0 0£0 8151+73 1304+73 17559+ 1286

N Ot W N

Q1 What is the impact of using MCTS instead of a fixed planning such as currently used
in our university hospitals?

Q2 When using MCTS, what is the effect of the accuracy of LOS predictors?
Q3 What is the effect of incorporating domain knowledge as explained in Section 37

Where applicable, we report average results and standard deviations over ten repetitions
of the concerned experiment. We report the number of patient-days where a patient was
in an overflow bed in the ICU c¢joy, the number of patient-days where a patient was in an
overflow bed on the ward cy4-q, the number of bed-days where the bed was not used for a
cardiac surgery patient cynused, total cost cior and runtime ¢,.,,,.

Every experiment has the following parameters:

e The number of iterations of the MTCS search each time an action must be made.
e The accuracy of the predictor (the value of the parameter T as explained above).
e Whether a domain knowledge based prior has been provided or not.

As an exception, the baseline experiments where a fixed number of patients are admitted
every day don’t have these parameters.

5.2. Results

Currently, elective cardiac surgery is planned in many hospitals simply by assuming that
a fixed number of ICU beds will become available for cardiac surgery patients each day,
and by planning that fixed number of surgeries. Table 1 shows the result of applying this
fixed planning strategy for k patients with kK = 1...6. Here, these results will be used as a
baseline.

Table 2 shows for a predictor of constant accuracy 1 the total cost as a function of the
number of MCTS iterations.
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Table 3 shows for a fixed number of 10000 MCTS iterations the results as a function of
the predictor accuracy.

Table 4 compares MCTS using a prior with the same experiment not using a prior and
using an equal amount of iterations and the same experiment using approximately the same
amount of time. These experiments are performed for varying accuracies.

Table 5 compares MCTS with and without using priors in the expansion phase, and
with and without priors in the simulation phase. Again, these experiments are performed
for varying accuracies. Furthermore, the number of iterations was chosen in such a way
that it takes on average 7200 seconds to perform each of the experiments.

Table 4: Comparison of MCTS with and without prior knowledge.
Prior, iter = 1000 No prior, iter = 1000 | No prior, comparable timing
T Ctot Lrun (3) Ctot trun (S) Ctot trun (5)
0.1 ] 283+32 13624 + 862 375457 1627+85 | 294+49 13388 + 225
0.3 | 317+38 12572 + 365 393+32 1636+ 174 | 335+ 52 12284 4+ 209
0.7 | 372+30 12370 +945 435+32 1390+ 97 | 383 +27 12216 + 334

1 | 3884+68 10812+ 1058 || 504 +40 1087 +36 | 426 + 139 10615 + 215
491 £33 14211 £ 981 522 4+ 56 931 £+ 86 489 + 48 13885 + 519
7 | 987+ 87 25289+ 1605 || 1147 +98 1391 +56 | 1123 +47 25074 + 1568

Table 5: Comparison of different combinations of using prior information (P) and no prior
information (NP) during the expansion and simulation phases respectively. Each
experiment takes on average 7200 seconds to perform.

NP-NP P-P NP-P P-NP

T, Ctot iter Ctot iter Ctot iter Ctot iter

0.3 | 333£23 5500 | 291+24 600 | 466 +54 550 269 £ 67 5500
1 443+ 75 6500 | 399+26 695 | 463 +42 650 | 414+ 175 7200

4894+ 37 7500 | 475+42 575 | 69962 550 | 480+23 9500

10 | 1269 £ 66 3700 | 1015486 190 | 978 88 180 | 1307 £116 3700

5.3. Discussion

Comparing table 1 and table 2, one can see that MCTS outperforms a fixed strategy even for
a moderate amount of iterations. We can therefore answer Q1 that MCTS planning would
be better than current practice assuming that the simulations are sufficiently realistic and
the predictors have an accuracy similar to the accuracy of our simulated predictors. We
have experimented with several variations in the cost schemes, and the obtained results
are along the same lines. From Ramon et al. (2007) it appears that it is possible to learn
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sufficiently good predictors. In a future study we hope to assess our method in a real-world
setting.

Concerning question 2, as can be observed from table 3, the quality of the LOS pre-
dictors significantly influences the performance. Even moderately weak predictors allow for
MCTS results competitive to the fixed strategy.

Concerning question Q3, it can be inferred from table 4 that using MCTS with domain
knowledge takes more time per iteration (about a factor 11 more), but outperforms standard
MCTS both for the same number of iterations and the same runtime budget. This is a
promising result especially as significant runtime optimization is possible in our dynamic
programming implementation. Furthermore, as can be seen in table 5, prior information
seems to be more important during the tree expansion phase than the simulation phase.

6. Conclusions

The choice of a strategy for planning staff and patient admission in the context of elective
cardiac surgery patients can have a significant influence on the total cost incurred. As a
first step towards a better understanding of the impact, we have compared several realistic
options in a simulation of a retrospective patient population.

In particular, we have developed a new MCTS variant suited for this and similar
problems. More specifically, we expect our approach is applicable to problems where
the allocation of resources is not a combinatorial problem but the evolution of running
projects/patients is highly uncertain. In such case, using MCTS shows to be a decent
approach, and using domain knowledge can help.

In future work, we intend to further refine the integration of prior information, to opti-
mize our computation schemes to compute the priors, and to consider alternative simplified
priors which may have a better cost-benefit ratio. Also, motivated by our application re-
sults, in future work we intend to build and validate a refined planning system based on
complete patient data integrated over all relevant hospital departments, and to integrate
our algorithm and models in a practical planning tool.
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